Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = mine tailing dumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5917 KiB  
Article
Cyanobacterial Assemblages Inhabiting the Apatity Thermal Power Plant Fly Ash Dumps in the Russian Arctic
by Denis Davydov and Anna Vilnet
Microorganisms 2025, 13(8), 1762; https://doi.org/10.3390/microorganisms13081762 - 28 Jul 2025
Viewed by 197
Abstract
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly [...] Read more.
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly susceptible to wind and water erosion. This results in the dispersion of contaminants into adjacent ecosystems. Pollutants migrate into terrestrial and aquatic systems, compromising soil quality and water resources, and posing documented risks to the environment and human health. Primary succession on the coal ash dumps of the Apatity thermal power plant (Murmansk Region, NW Russia) was initiated by cyanobacterial colonization. We studied cyanobacterial communities inhabiting three spoil sites that varied in time since decommissioning. These sites are characterized by exceptionally high concentrations of calcium and magnesium oxides—levels approximately double those found in the region’s natural soils. A total of 18 cyanobacterial taxa were identified in disposal sites. Morphological analysis of visible surface crusts revealed 16 distinct species. Furthermore, 24 cyanobacterial strains representing 11 species were successfully isolated into unialgal culture and tested with a molecular genetic approach to confirm their identification from 16S rRNA. Three species were determined with molecular evidence. Cyanobacterial colonization of coal fly ash disposal sites begins immediately after deposition. Primary communities initially exhibit low species diversity (four taxa) and do not form a continuous ground cover in the early years. However, as succession progresses—illustrated by observations from a 30-year-old deposit—spontaneous surface revegetation occurs, accompanied by a marked increase in cyanobacterial diversity, reaching 12 species. Full article
(This article belongs to the Special Issue Microbial Diversity Research in Different Environments)
Show Figures

Figure 1

19 pages, 6727 KiB  
Article
Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania
by Emilia-Cornelia Dunca, Mădălina-Flavia Ioniță and Sorin Mihai Radu
Land 2025, 14(7), 1492; https://doi.org/10.3390/land14071492 - 18 Jul 2025
Viewed by 240
Abstract
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of [...] Read more.
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of waste material resulting from coal exploitation. To characterise the heavy-metal contamination in detail, we applied a comprehensive methodology that includes the calculation of the geo-accumulation index (Igeo), contamination factor (Cf), and potential ecological risk index (PERI), along with an analysis of the heavy-metal concentration isolines and a statistical analysis using the Pearson correlation coefficient. The results reveal varying levels of heavy-metal concentrations, as indicated by the calculated indices. The findings underscore the need for remediation and ongoing monitoring to mitigate the environmental impacts. This study provides a scientific basis for decision making in environmental management and highlights the importance of assessing mining-waste disposal near human settlements using various contamination-assessment methods. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

29 pages, 28225 KiB  
Review
Toxic Legacy—Environmental Impacts of Historic Metal Mining and Metallurgy in the Harz Region (Germany) at Local, Regional and Supra-Regional Levels
by Louisa Friederike Steingräber, Friedhart Knolle, Horst Kierdorf, Catharina Ludolphy and Uwe Kierdorf
Environments 2025, 12(7), 215; https://doi.org/10.3390/environments12070215 - 26 Jun 2025
Viewed by 1295
Abstract
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and [...] Read more.
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and metallurgical activities in the Harz Region (Germany), one of the oldest and most productive mining landscapes in Central Europe. The release of large amounts of metal-containing waste into rivers during historic ore processing and the ongoing leaching of metals from slag heaps, tailings dumps and contaminated soils and sediments are the main sources of metal pollution in the Harz Mountains and its foreland. This pollution extends along river systems with tributaries from the Harz Mountains and can even be detected in mudflats of the North Sea. In addition to fluvial discharges, atmospheric pollution by smelter smoke has led to long-term damage to soils and vegetation in the Harz Region. Currently, the ecological hazards caused by the legacy pollution from historical metal mining and metallurgy in the Harz Region are only partially known, particularly regarding the effects of changes in river ecosystems as a consequence of climate change. This review discusses the complexity and dynamics of human–environment interactions in the Harz Mountains and its surroundings, with a focus on lead (Pb) pollution. The paper also identifies future research directions with respect to metal contamination. Full article
Show Figures

Figure 1

23 pages, 10335 KiB  
Article
Multitemporal Spatial Analysis for Monitoring and Classification of Coal Mining and Reclamation Using Satellite Imagery
by Koni D. Prasetya and Fuan Tsai
Remote Sens. 2025, 17(6), 1090; https://doi.org/10.3390/rs17061090 - 20 Mar 2025
Viewed by 1513
Abstract
Observing coal mining and reclamation activities using remote sensing avoids the need for physical site visits, which is important for environmental and land management. This study utilizes deep learning techniques with a U-Net and ResNet architecture to analyze Sentinel imagery in order to [...] Read more.
Observing coal mining and reclamation activities using remote sensing avoids the need for physical site visits, which is important for environmental and land management. This study utilizes deep learning techniques with a U-Net and ResNet architecture to analyze Sentinel imagery in order to track changes in coal mining and reclamation over time in Tapin Regency, Kalimantan, Indonesia. After gathering Sentinel 1 and 2 satellite imagery of Kalimantan Island, manually label coal mining areas are used to train a deep learning model. These labelled areas included open cuts, tailings dams, waste rock dumps, and water ponds associated with coal mining. Applying the deep learning model to multitemporal Sentinel 1 and 2 imagery allowed us to track the annual changes in coal mining areas from 2016 to 2021, while identifying reclamation sites where former coal mines had been restored to non-coal-mining use. An accuracy assessment resulted in an overall accuracy of 97.4%, with a Kappa value of 0.91, through a confusion matrix analysis. The results indicate that the reclamation effort increased more than twice in 2020 compared with previous years’ reclamation. This phenomenon was mainly affected by the massive increase in coal mining areas by over 40% in 2019. The proposed method provides a practical solution for detecting and monitoring open-pit coal mines while leveraging freely available data for consistent long-term observation. The primary limitation of this approach lies in the use of medium-resolution satellite imagery, which may result in lower precision compared to direct field measurements; however, the ability to integrate historical data with consistent temporal coverage makes it a viable alternative for large-scale and long-term monitoring. Full article
Show Figures

Graphical abstract

29 pages, 14102 KiB  
Article
Autogenously Calcined Clays from Coal Tailings Dumps as Supplementary Cementitious Material: From Exploratory Investigations to an Industrial Trial
by Steffen Overmann and Anya Vollpracht
Materials 2025, 18(5), 993; https://doi.org/10.3390/ma18050993 - 24 Feb 2025
Viewed by 512
Abstract
Autogenously calcined clays from tailings dumps, which are formed by the ignition of the contained residual coal, represent a huge resource of potentially pozzolanic material worldwide. This work presents preliminary studies of samples from the Western coal regions in Germany and investigations on [...] Read more.
Autogenously calcined clays from tailings dumps, which are formed by the ignition of the contained residual coal, represent a huge resource of potentially pozzolanic material worldwide. This work presents preliminary studies of samples from the Western coal regions in Germany and investigations on the first industrially produced cement with autogenously calcined tailings concerning its suitability as supplementary cementitious material (SCM). Samples of the tailings materials and blended cements were thoroughly characterized physically, chemically and mineralogically. The reactivity was studied using the R3 test and mortar compressive strength testing. The influence on cement hydration was studied using X-ray diffractometry (XRD) and isothermal calorimetry. The preliminary investigations showed that the material is basically suitable as SCM, as it consists mainly of SiO2 and Al2O3, which partially occurs in X-ray amorphous form and has a low content of impurities, which can impair cement properties such as carbon or sulfur. The R3 reactivity and the relative compressive strength differed significantly depending on the sample. For the industrial cement production trial, low-processed material was used which still contained inert fractions. The average sample showed a relatively low R3 reactivity but still significantly higher than mostly inert materials such as limestone or quartz powder. Calorimetry and XRD investigations on cement pastes showed that the clinker reactions remain basically unaffected by the tailings. Mortar tests showed that the material contributes to strength development at a late age. It can be concluded that the tailings are basically suitable as SCM and, in appropriate blends, the clinker factor and, thus, the CO2 footprint of cement can be reduced. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 4697 KiB  
Article
Utilization of Copper Flotation Tailings in Geopolymer Materials Based on Zeolite and Fly Ash
by Marija Štulović, Dragana Radovanović, Jelena Dikić, Nataša Gajić, Jovana Djokić, Željko Kamberović and Sanja Jevtić
Materials 2024, 17(24), 6115; https://doi.org/10.3390/ma17246115 - 14 Dec 2024
Cited by 2 | Viewed by 1231
Abstract
Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to [...] Read more.
Copper flotation tailings (FTs), resulting from the separation and beneficiation processes of ores, are a significant source of environmental pollution (acid mine drainage, toxic elements leaching, and dust generation). The most common disposal method for this industrial waste is dumping. However, due to their favorable physical and chemical properties—the high content of aluminosilicate minerals (60–90%)—flotation tailings can be effectively treated and reused through geopolymerization technology, thereby adding value to this waste. The objective of this study was to evaluate the potential of utilizing the geopolymerization of FTs to produce sustainable materials. Geopolymers based on natural zeolite (NZ), sodium-modified natural zeolite (NaZ), and fly ash (FA) were prepared using 20%, 35%, and 50% of FTs, activated with a 10 M NaOH solution. The study investigated the influence of Ca/Si, Si/Al, and Na/Al molar ratios on the structural, thermal, and mechanical properties (XRD, TG/DTG and unconfined compressive strength, UCS), and contaminant immobilization (TCLP method) of geopolymers. Geochemical modeling via the PHREEQC program was employed to interpret the results. The findings indicated that the UCS value decreased in zeolite-based geopolymers as the content of FT increased due to the inertness of the tailings and the low calcium content in the system (Ca/Si ≤ 0.3), in contrast to the FA-based geopolymer. The highest UCS of 44.3 MPa was recorded in an FA-based geopolymer containing 50% flotation tailings, with optimal molar ratios of 0.4 for Ca/Si, 3.0 for Si/Al, and 1.1 for Na/Al. In conclusion, the geopolymerization process has been determined to be a suitable technological approach for the sustainable treatment and reuse of FTs. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

9 pages, 1802 KiB  
Communication
The Past Is Never Dead: Soil Pollution from Mining in the Copiapó River Basin (Northern Chile)
by Luna Araceli Pérez, Tatiana Izquierdo, Manuel Abad, Manuel Caraballo, Sebastián Ureta and Francisco Ruiz
Soil Syst. 2024, 8(4), 106; https://doi.org/10.3390/soilsystems8040106 - 11 Oct 2024
Viewed by 1481
Abstract
This short paper analyses the concentrations of two major components (Fe, S) and eight trace elements (As, Au, Co, Cu, Hg, Ni, Mn, Zn) in soils and tailings from Tierra Amarilla (northern Chile) using ICP-Ms analysis. The levels of As, Au, Cu, Fe [...] Read more.
This short paper analyses the concentrations of two major components (Fe, S) and eight trace elements (As, Au, Co, Cu, Hg, Ni, Mn, Zn) in soils and tailings from Tierra Amarilla (northern Chile) using ICP-Ms analysis. The levels of As, Au, Cu, Fe and S are very high and come from polymetallic sulphides from nearby mines, together with minor contributions of Co, Ni and Mn. Hg has its origin in the extreme seasonal flows of the Copiapó River, which erodes the dumps of old precious metal mines. These high concentrations require further analysis of possible metal immobilisation techniques, bioavailability or analysis in cultivated plants. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

24 pages, 4316 KiB  
Article
Profile of Bacterial Communities in Copper Mine Tailings Revealed through High-Throughput Sequencing
by Joseline Jiménez-Venegas, Leonardo Zamora-Leiva, Luciano Univaso, Jorge Soto, Yasna Tapia and Manuel Paneque
Microorganisms 2024, 12(9), 1820; https://doi.org/10.3390/microorganisms12091820 - 3 Sep 2024
Viewed by 2835
Abstract
Mine-tailing dumps are one of the leading sources of environmental degradation, often with public health and ecological consequences. Due to the complex ecosystems generated, they are ideal sites for exploring the bacterial diversity of specially adapted microorganisms. We investigated the concentrations of trace [...] Read more.
Mine-tailing dumps are one of the leading sources of environmental degradation, often with public health and ecological consequences. Due to the complex ecosystems generated, they are ideal sites for exploring the bacterial diversity of specially adapted microorganisms. We investigated the concentrations of trace metals in solid copper (Cu) mine tailings from the Ovejería Tailings Dam of the National Copper Corporation of Chile and used high-throughput sequencing techniques to determine the microbial community diversity of the tailings using 16S rRNA gene-based amplicon sequence analysis. The concentrations of the detected metals were highest in the following order: iron (Fe) > Cu > manganese (Mn) > molybdenum (Mo) > lead (Pb) > chromium (Cr) > cadmium (Cd). Furthermore, 16S rRNA gene-based sequence analysis identified 12 phyla, 18 classes, 43 orders, 82 families, and 154 genera at the three sampling points. The phylum Proteobacteria was the most dominant, followed by Chlamydiota, Bacteroidetes, Actinobacteria, and Firmicutes. Genera, such as Bradyrhizobium, Aquabacterium, Paracoccus, Caulobacter, Azospira, and Neochlamydia, showed high relative abundance. These genera are known to possess adaptation mechanisms in high concentrations of metals, such as Cd, Cu, and Pb, along with nitrogen-fixation capacity. In addition to their tolerance to various metals, some of these genera may represent pathogens of amoeba or humans, which contributes to the complexity and resilience of bacterial communities in the studied Cu mining tailings. This study highlights the unique microbial diversity in the Ovejería Tailings Dam, including the discovery of the genus Neochlamydia, reported for the first time for heavy metal resistance. This underscores the importance of characterizing mining sites, particularly in Chile, to uncover novel bacterial mechanisms for potential biotechnological applications. Full article
(This article belongs to the Special Issue Advances in Soil Microbial Ecology)
Show Figures

Figure 1

21 pages, 9141 KiB  
Article
Heavy Metal Groundwater Transport Mitigation from an Ore Enrichment Plant Tailing at Kazakhstan’s Balkhash Lake
by Dauren Muratkhanov, Vladimir Mirlas, Yaakov Anker, Oxana Miroshnichenko, Vladimir Smolyar, Timur Rakhimov, Yevgeniy Sotnikov and Valentina Rakhimova
Sustainability 2024, 16(16), 6816; https://doi.org/10.3390/su16166816 - 8 Aug 2024
Cited by 5 | Viewed by 2040
Abstract
Sustainable potable groundwater supply is crucial for human development and the preservation of natural habitats. The largest endorheic inland lake in Kazakhstan, Balkhash Lake, is the main water resource for the arid southeastern part of the country. Several ore enrichment plants that are [...] Read more.
Sustainable potable groundwater supply is crucial for human development and the preservation of natural habitats. The largest endorheic inland lake in Kazakhstan, Balkhash Lake, is the main water resource for the arid southeastern part of the country. Several ore enrichment plants that are located along its shore have heavy metal pollution potential. The study area is located around a plant that has an evident anthropogenic impact on the Balkhash Lake aquatic ecological system, with ten known heavy metal toxic hotspots endangering fragile habitats, including some indigenous human communities. This study assessed the risk of heavy metal contamination from tailing dump operations, storage ponds, and related facilities and suggested management practices for preventing this risk. The coastal zone risk assessment analysis used an innovative integrated groundwater numerical flow and transport model that predicted the spread of groundwater contamination from tailing dump operations under several mitigation strategies. Heavy metal pollution prevention models included a no-action scenario, a filtration barrier construction scenario, and two scenarios involving the drilling of drainage wells between the pollution sources and the lake. The scenario assessment indicates that drilling ten drainage wells down to the bedrock between the existing drainage channel and the lake is the optimal engineering solution for confining pollution. Under these conditions, pollution from tailings will not reach Lake Balkhash during the forecast period. The methods and tools used in this study to enable mining activity without environmental implications for the region can be applied to sites with similar anthropogenic influences worldwide. Full article
Show Figures

Figure 1

17 pages, 3276 KiB  
Article
Preconcentration of a Medium-Grade Celestine Ore by Dense Medium Cyclone Using a Factorial Design
by Noemi Ariza-Rodríguez, Alejandro B. Rodríguez-Navarro, Francisco Ortega, Mónica Calero de Hoces and Mario J. Muñoz-Batista
Minerals 2024, 14(3), 306; https://doi.org/10.3390/min14030306 - 14 Mar 2024
Cited by 3 | Viewed by 1730
Abstract
A semi-industrial scale hydrocyclone with a 250 mm internal diameter was used to concentrate medium-grade celestine ore (75%–85% celestine) from the Montevive deposit of Granada (Spain) using a dense ferrosilicon (FeSi) medium. For this purpose, a Box–Behnken factorial design (BBD) was carried out, [...] Read more.
A semi-industrial scale hydrocyclone with a 250 mm internal diameter was used to concentrate medium-grade celestine ore (75%–85% celestine) from the Montevive deposit of Granada (Spain) using a dense ferrosilicon (FeSi) medium. For this purpose, a Box–Behnken factorial design (BBD) was carried out, with the response variable being the Sr concentration measured by X-ray fluorescence (XRF), as well as the concentration of celestine measured by X-ray diffraction (XRD) of the mineral collected from the under (sunk) stream of the hydrocyclone. The experimental factors to be optimised were the density of the medium in the mixing tank (water, FeSi, and feed mineral) varying from 2.7 to 2.9 kg/L, the hydrocyclone inlet pressure from 0.8 to 1.2 bar, and the hydrocyclone inclination (from 15° to 25° from the horizontal). The range of densities of the dense medium to be tested was determined from previous sink–float experiments using medium-grade ore, in which the distribution of mineral phases with different particle size fractions was determined. To evaluate the separation behaviour, the following parameters were considered: the enrichment ratio (E), the tailings discarding ratio (R), and the mineral processing recovery (ε). From the factorial design and the response surface, the optimum parameters maximising celestine concentration in the under stream (78%), were determined. These optimised parameters were: a density of 2.75 kg/L for the dense medium, an inlet pressure of 1.05 bar, and a hydrocyclone inclination varying from 18° to 20°. Under these conditions, a 94% recovery of celestine (68% Sr) can be achieved. These results show that medium-grade celestine ore, accumulated in mine tailings dumps, can be effectively concentrated using DMS hydrocyclones and that the operating parameters can be optimised using a factorial experiment design. This study can contribute to reducing overexploitation of strategic mineral resources, avoiding blasting and environmentally damaging clearing, by applying a simple and sustainable technique. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

20 pages, 10438 KiB  
Article
A Study on the Long-Term Exposure of a Tailings Dump, a Product of Processing Sn-Fe-Cu Skarn Ores: Mineralogical Transformations and Impact on Natural Water
by Artem A. Konyshev, Evgeniya S. Sidkina and Ilya A. Bugaev
Sustainability 2024, 16(5), 1795; https://doi.org/10.3390/su16051795 - 22 Feb 2024
Cited by 1 | Viewed by 1324
Abstract
In the mining industry, one of the principal issues is the management of the waste generated during ore concentration, which represents a potential source of environmental pollution. The most acute issue originates from the mining heritage in the form of dumps formed of [...] Read more.
In the mining industry, one of the principal issues is the management of the waste generated during ore concentration, which represents a potential source of environmental pollution. The most acute issue originates from the mining heritage in the form of dumps formed of mining tailings that were created before the introduction of waste storage standards and may be located in urban areas. This research investigated this problem using the example of the tailings dump “Krasnaya Glinka”, located in a residential area of Pitkäranta (Karelia, Russia) in close proximity to the shoreline of Lake Ladoga. A complex approach, including the investigation of the natural water of the study area and tailings material and an experiment simulating the interaction of this material with atmospheric precipitation, allowed us to obtain the first data on the current status of the tailings dump and its surroundings and to identify environmental pollutants. This research used XRF, XRD, and EPMA analytical methods for assaying the tailings materials obtained from the dump and ion chromatography, potentiometric titration, ICP-MS, and AES for the water samples. The results show the influence of the tailings dump’s materials on the formation of the environmental impact—in the water from the area of the tailings dump, increased concentrations of chalcophilic elements are observed, for example, Zn up to 5028 µg/L. Based on this study of the tailings dump’s materials and the conducted experiment, an attempt is made to connect the chemical compositions shown in the natural water data with the specific mineral phases and processes occurring during supergene transformations in the tailings storage. As a result of the conducted research, it was found that despite more than 100 years of exposure of the tailings materials under natural factors, mostly atmospheric precipitation, equilibrium with the environment has not come. The processes of extracting toxic elements and carcinogenic mineral phases into the environment are continuing. In the process of studying the tailings materials, it was found that they are probably of economic interest as a technogenic source of W and Sn due to the contents of these components exceeding industrially significant values in the exploited fields. Full article
(This article belongs to the Special Issue Risk Assessments of Industrial Waste Pollution)
Show Figures

Figure 1

17 pages, 3143 KiB  
Article
Old Sulfidic Ore Tailing Dump: Ground Features, Mineralogy, Biodiversity—A Case Study from Sibay, Russia
by Maxim Muravyov, Dmitry Radchenko, Maria Tsupkina, Vladislav Babenko and Anna Panyushkina
Minerals 2024, 14(1), 23; https://doi.org/10.3390/min14010023 - 25 Dec 2023
Cited by 2 | Viewed by 1665
Abstract
The Urals (Russia) are among the largest mining areas in the world, with millions of tons of mine waste deposited. An old sulfidic tailing dump formed over decades of mining activities at the Sibay ore-processing plant is a typical cause of acid mine [...] Read more.
The Urals (Russia) are among the largest mining areas in the world, with millions of tons of mine waste deposited. An old sulfidic tailing dump formed over decades of mining activities at the Sibay ore-processing plant is a typical cause of acid mine drainage (AMD) formation, posing a threat to ecosystems of neighboring environments. In this study, the formation of oxidized surface soil layers in four zones of the Sibay tailing dump was revealed, and their chemical–mineralogical and physical–mechanical characteristics were analyzed. According to the results of the metabarcoding of hypervariable regions of the 16S rRNA genes, oxidation in soil layers was associated with the activity of sulfur- and iron-oxidizing acidophiles represented by a few genera: Ferroacidibacillus, Sulfoacidibacillus, Sulfobacillus, and Ferroplasma. The structure of the microbial communities in soil layers differed depending on the zone and depth of sampling. In the samples characterized by the weak oxidation of sulfide minerals, microbial communities were dominated by bacteria of the genus Pseudomonas. The data obtained in this research are of importance to predict the oxidation/leaching processes in mine wastes and their negative environmental impacts in the mining region, as well as to develop technologies for processing these raw materials. Full article
Show Figures

Figure 1

6 pages, 397 KiB  
Proceeding Paper
Ecotoxicity Assessment of Substrates from a Thermally Active Coal Tailing Dump Using Tests for Daphnia magna
by Veronika Bilkova, Bohdana Simackova, Oto Novak and Lukas Balcarik
Eng. Proc. 2023, 57(1), 39; https://doi.org/10.3390/engproc2023057039 - 13 Dec 2023
Viewed by 778
Abstract
The aim of the study was to compare the ecotoxicity of waste materials formed from a mixture of construction materials with tailings obtained from the thermally active Ema coal tailing dump located in the city of Ostrava, Czech Republic. The ecotoxicity assessment was [...] Read more.
The aim of the study was to compare the ecotoxicity of waste materials formed from a mixture of construction materials with tailings obtained from the thermally active Ema coal tailing dump located in the city of Ostrava, Czech Republic. The ecotoxicity assessment was performed using acute lethality tests on the crustacean Daphnia magna. The test results are relevant for further possibilities of using technogenic substrates from tailings after mining activities and are an integral part of a comprehensive assessment of their biological effects on the environment. Full article
Show Figures

Figure 1

21 pages, 7071 KiB  
Article
Mineral Weathering and Metal Leaching under Meteoric Conditions in F-(Ba-Pb-Zn) Mining Waste of Hammam Zriba (NE Tunisia)
by Oumar Barou Kaba, Fouad Souissi, Daouda Keita, Lev O. Filippov, Mohamed Samuel Moriah Conté and Ndue Kanari
Materials 2023, 16(23), 7443; https://doi.org/10.3390/ma16237443 - 30 Nov 2023
Cited by 5 | Viewed by 1896
Abstract
Mining waste is an obvious source of environmental pollution due to the presence of heavy metals, which can contaminate soils, water resources, sediments, air, and people living nearby. The F-(Ba-Pb-Zn) deposit of Hammam Zriba located in northeast Tunisia, 8 km southeast of Zaghouan [...] Read more.
Mining waste is an obvious source of environmental pollution due to the presence of heavy metals, which can contaminate soils, water resources, sediments, air, and people living nearby. The F-(Ba-Pb-Zn) deposit of Hammam Zriba located in northeast Tunisia, 8 km southeast of Zaghouan was intensively exploited from 1970 to 1992. More than 250,000 m3 of flotation tailings were produced and stored in the open air in three dumps without any measure of environmental protection. Thus, in this paper, mineralogical and chemical characterization, especially the sulfide and carbonate phases, were carried out to evaluate the potential for acid mining drainage (AMD) and metal leaching (ML). Conventional analytical methods (XRD, XRF, SEM) have revealed that this mining waste contains on average 34.8% barite–celestine series, 26.6% calcite, 23% quartz, 6.3% anglesite, 4.8% fluorite, 2.1% pyrite, and 0.4% sphalerite. The content of sulfides is less important. The tailing leaching tests (AFNOR NFX 31-210 standard) did not generate acidic leachate (pH: 8.3). The acidity produced by sulfide oxidation was neutralized by calcite present in abundance. Furthermore, the leaching tests yielded leachates with high concentrations of heavy metals, above the authorized thresholds. This high mobilization rate in potential toxic elements (PTE) represents a contamination risk for the environment. Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes–Volume 2)
Show Figures

Graphical abstract

33 pages, 37603 KiB  
Protocol
Goals of Restoration Ecology and the Role of Grasses in the Processes as Seen in Southeastern Africa Restoration Projects
by Roy Lubke
Grasses 2023, 2(4), 230-262; https://doi.org/10.3390/grasses2040018 - 14 Nov 2023
Cited by 1 | Viewed by 2414
Abstract
The goals of a “restoration” programme are often not clearly defined, which may radically influence the course of the change effected by the “restoration”. In this paper, I examine many restoration studies worldwide, the goals and the practice that was followed. Grasses often [...] Read more.
The goals of a “restoration” programme are often not clearly defined, which may radically influence the course of the change effected by the “restoration”. In this paper, I examine many restoration studies worldwide, the goals and the practice that was followed. Grasses often play an important role in both the succession and restoration processes. In Johannesburg, South Africa, wind-blown dust caused by gold mining was a problem in the early 20th century, so the goal was to stabilise the tailings. This was achieved by establishing vegetation on the dumps or revegetation of the land on which the tailings were deposited. Stabilisation of the Cape Flats was the goal in the late 19th century to allow easy movement along sandy roads in the region and marram grass was introduced from Europe specifically for this purpose. Revegetation with a different vegetation type is often a logical option where land use is of paramount importance. Replacement with crop plants or grasses is where the previous vegetation is replaced by an alternative land use that will be of benefit to the local people. The terms “rehabilitation” and “restoration” are often used interchangeably. Early researchers on the subject pointed out that rehabilitation is on the trajectory to full restoration or the original former state of the degraded site. In this review, the rehabilitation processes are discussed following dune mining in South Africa and at sites in Mozambique. Full article
Show Figures

Figure 1

Back to TopTop