Heavy Metal Groundwater Transport Mitigation from an Ore Enrichment Plant Tailing at Kazakhstan’s Balkhash Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Site Background and Geographical Framework
2.2. Methodology
2.3. Numerical Groundwater Flow and Contaminant Transport Models
- -
- Monitoring study results [40].
- -
- Data from the Balkhash tailings facility construction and operation organization (permission to conduct field studies).
- -
- Remote sensing data (SRTM).
- -
- Groundwater-level monitoring data [40].
- -
- Cadmium, manganese, copper, lead, zinc, arsenic, selenium, and cyanide concentrations in tailings ponds; tailings storage facilities; drainage channels; and monitoring wells [8].
3. Results and Discussion
3.1. Groundwater Flow and Contaminant Transport Modeling
3.2. Prognostic Analysis and Risk Assessment
4. Conclusions
- -
- The construction of a wall boundary with a depth of 3–5 m between the existing drainage channel and Lake Balkhash is ineffective since the aquifer thickness ranges from 20 to 30 m, exceeding the wall’s effective barrier depth.
- -
- Drilling drainage wells down to the bedrock between the existing drainage channel and the tailings pond (14 wells with depths ranging from 20 to 30 m) can significantly slow the spread of contamination during the forecast period but does not prevent Lake Balkhash becoming contaminated by heavy metals in the future.
- -
- Drilling drainage wells down to the bedrock between the existing drainage channel and Lake Balkhash was found to be optimal, as it requires the operation of a smaller number of wells (10 wells with depths ranging from 20 to 30 m), which will reduce the pollution spread rate to a level such that the pollution from the tailings will not reach Lake Balkhash during the forecast period or in the future.
- -
- The unified and integrated water quantity and quality database that was created in this project is accessible to all management bodies, water users, and the general public. It supports real-time decision-making for lake management as part of the Balkhash Lake Conservation Initiative.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
References
- Sandström, C.; Ring, I.; Olschewski, R.; Simoncini, R.; Albert, C.; Acar, S.; Adeishvili, M.; Allard, C.; Anker, Y.; Arlettaz, R.; et al. Mainstreaming Biodiversity and Nature’s Contributions to People in Europe and Central Asia: Insights from IPBES to Inform the CBD Post-2020 Agenda. Ecosyst. People 2023, 19, 2138553. [Google Scholar] [CrossRef]
- Mohammadi, A.A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of Heavy Metal Pollution and Human Health Risks Assessment in Soils Around an Industrial Zone in Neyshabur, Iran. Biol. Trace Elem. Res. 2020, 195, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Shokr, M.S.; Abdellatif, M.A.; El Behairy, R.A.; Abdelhameed, H.H.; El Baroudy, A.A.; Mohamed, E.S.; Rebouh, N.Y.; Ding, Z.; Abuzaid, A.S. Assessment of Potential Heavy Metal Contamination Hazards Based on GIS and Multivariate Analysis in Some Mediterranean Zones. Agronomy 2022, 12, 3220. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, T.A.K.; Khoo, K.S.; Hoang, T.K.A.; Ng, H.S.; Munawaroh, H.S.H.; Karaman, C.; Orooji, Y.; Show, P.L. A Critical Review on Various Remediation Approaches for Heavy Metal Contaminants Removal from Contaminated Soils. Chemosphere 2022, 287, 132369. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy Metal Contamination Risk Assessment and Correlation Analysis of Heavy Metal Contents in Soil and Crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Liang, Y.; Wu, H.; Li, S.; He, Y.; Du, J.; Chen, X.; Pu, S. Human-Health and Environmental Risks of Heavy Metal Contamination in Soil and Groundwater at a Riverside Site, China. Processes 2022, 10, 1994. [Google Scholar] [CrossRef]
- Qin, Y.; Tao, Y. Pollution Status of Heavy Metals and Metalloids in Chinese Lakes: Distribution, Bioaccumulation and Risk Assessment. Ecotoxicol. Environ. Saf. 2022, 248, 114293. [Google Scholar] [CrossRef] [PubMed]
- Zhirkov, V. Balkhash Basin Groundwater Monitoring; Biosphere Kazakhstan LLP: Karaganda, Kazakhstan, 2019. [Google Scholar]
- Karimian, S.; Shekoohiyan, S.; Moussavi, G. Health and Ecological Risk Assessment and Simulation of Heavy Metal-Contaminated Soil of Tehran Landfill. RSC Adv. 2021, 11, 8080–8095. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Huang, H.; Xia, F.; Liu, Y.; Dahlgren, R.A.; Zhang, M.; Mei, K. Risk Analysis of Heavy Metal Concentration in Surface Waters across the Rural-Urban Interface of the Wen-Rui Tang River, China. Environ. Pollut. 2018, 237, 639–649. [Google Scholar] [CrossRef]
- Torres-Bejarano, F.; Couder-Castañeda, C.; Ram-Rez-León, H.; Hernández-Gómez, J.J.; Rodr-Guez-Cuevas, C.; Herrera-Díaz, I.E.; Barrios-Piña, H. Numerical Modelling of Heavy Metal Dynamics in a River-Lagoon System. Math. Probl. Eng. 2019, 2019, 8485031. [Google Scholar] [CrossRef]
- Pratap, A.; Mani, F.S.; Prasad, S. Heavy Metals Contamination and Risk Assessment in Sediments of Laucala Bay, Suva, Fiji. Mar. Pollut. Bull. 2020, 156, 111238. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Saxena, P.; Kisku, G.C. Heavy Metal Contamination of Surface Water and Bed-Sediment Quality for Ecological Risk Assessment of Gomti River, India. Stoch. Environ. Res. Risk Assess. 2023, 37, 3243–3260. [Google Scholar] [CrossRef]
- Gayathri, S.; Krishnan, K.A.; Krishnakumar, A.; Maya, T.M.V.; Dev, V.V.; Antony, S.; Arun, V. Monitoring of Heavy Metal Contamination in Netravati River Basin: Overview of Pollution Indices and Risk Assessment. Sustain. Water Resour. Manag. 2021, 7, 20. [Google Scholar] [CrossRef]
- Madibekov, A.; Ismukhanova, L.; Opp, C.; Saidaliyeva, Z.; Zhadi, A.; Sultanbekova, B.; Kurmanova, M. Spatial Distribution of Cu, Zn, Pb, Cd, Co, Ni in the Soils of Ili River Delta and State Natural Reserve “Ili-Balkhash”. Appl. Sci. 2023, 13, 5996. [Google Scholar] [CrossRef]
- Arcega, R.D.; Chen, R.J.; Chih, P.S.; Huang, Y.H.; Chang, W.H.; Kong, T.K.; Lee, C.C.; Mahmudiono, T.; Tsui, C.C.; Hou, W.C.; et al. Toxicity Prediction: An Application of Alternative Testing and Computational Toxicology in Contaminated Groundwater Sites in Taiwan. J. Environ. Manag. 2023, 328, 116982. [Google Scholar] [CrossRef] [PubMed]
- Wagh, V.M.; Panaskar, D.B.; Mukate, S.V.; Gaikwad, S.K.; Muley, A.A.; Varade, A.M. Health Risk Assessment of Heavy Metal Contamination in Groundwater of Kadava River Basin, Nashik, India. Model. Earth Syst. Environ. 2018, 4, 969–980. [Google Scholar] [CrossRef]
- Rahman, M.S.; Saha, N.; Molla, A.H. Potential Ecological Risk Assessment of Heavy Metal Contamination in Sediment and Water Body around Dhaka Export Processing Zone, Bangladesh. Environ. Earth Sci. 2014, 71, 2293–2308. [Google Scholar] [CrossRef]
- Swarnalatha, K.; Letha, J.; Ayoob, S.; Nair, A.G. Risk Assessment of Heavy Metal Contamination in Sediments of a Tropical Lake. Environ. Monit. Assess. 2015, 187, 322. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- He, Y.; Li, B.; Zhang, K.; Li, Z.; Chen, Y.; Ye, W. Experimental and Numerical Study on Heavy Metal Contaminant Migration and Retention Behavior of Engineered Barrier in Tailings Pond. Environ. Pollut. 2019, 252, 1010–1018. [Google Scholar] [CrossRef]
- Yaseen, Z.M. An Insight into Machine Learning Models Era in Simulating Soil, Water Bodies and Adsorption Heavy Metals: Review, Challenges and Solutions. Chemosphere 2021, 277, 130126. [Google Scholar] [CrossRef] [PubMed]
- Krupa, E.; Barinova, S.; Aubakirova, M. Tracking Pollution and Its Sources in the Catchment-Lake System of Major Waterbodies in Kazakhstan. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2020, 25, 18–30. [Google Scholar] [CrossRef]
- Baubekova, A.; Akindykova, A.; Mamirova, A.; Dumat, C.; Jurjanz, S. Evaluation of Environmental Contamination by Toxic Trace Elements in Kazakhstan Based on Reviews of Available Scientific Data. Environ. Sci. Pollut. Res. 2021, 28, 43315–43328. [Google Scholar] [CrossRef]
- Lovinskaya, A.; Kolumbayeva, S.; Suvorova, M. Screening of Natural Surface Waters of the Almaty Region of the Republic of Kazakhstan for Toxic and Mutagenic Activity. Sci. Total Environ. 2022, 849, 157909. [Google Scholar] [CrossRef] [PubMed]
- Alimbaev, D.U.; Omarova, B.; Tuleubayeva, S.; Kamzayev, B.; Aipov, N.; Mazhitova, Z. Ecological Problems of Water Resources in Kazakhstan. In Proceedings of the E3S Web of Conferences, Nalchik, Russia, 18–19 March 2021; EDP Sciences. Volume 244, p. 01004. [Google Scholar]
- Djangalina, E.; Altynova, N.; Bakhtiyarova, S.; Kapysheva, U.; Zhaksymov, B.; Shadenova, E.; Baizhanov, M.; Sapargali, O.; Garshin, A.; Seisenbayeva, A.; et al. Comprehensive Assessment of Unutilized and Obsolete Pesticides Impact on Genetic Status and Health of Population of Almaty Region. Ecotoxicol. Environ. Saf. 2020, 202, 110905. [Google Scholar] [CrossRef] [PubMed]
- Ramazanova, E.; Lee, S.H.; Lee, W. Stochastic Risk Assessment of Urban Soils Contaminated by Heavy Metals in Kazakhstan. Sci. Total Environ. 2021, 750, 141535. [Google Scholar] [CrossRef]
- Zadereev, E.; Lipka, O.; Karimov, B.; Krylenko, M.; Elias, V.; Pinto, I.S.; Alizade, V.; Anker, Y.; Feest, A.; Kuznetsova, D.; et al. Overview of Past, Current, and Future Ecosystem and Biodiversity Trends of Inland Saline Lakes of Europe and Central Asia. Inl. Waters 2020, 10, 438–452. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; De Maeyer, P.; Van de Voorde, T.; Li, Y. Ecological Security Warning in Central Asia: Integrating Ecosystem Services Protection under SSPs-RCPs Scenarios. Sci. Total Environ. 2024, 912, 168698. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Abid, Z.; Sagin, J.; Murtaza, R.; Sarbassov, D.; Shabbir, M. Prospects of Floating Photovoltaic Technology and Its Implementation in Central and South Asian Countries. Int. J. Environ. Sci. Technol. 2019, 16, 1755–1762. [Google Scholar] [CrossRef]
- Sala, R.; Deom, J.M.; Aladin, N.V.; Plotnikov, I.S.; Nurtazin, S. Geological History and Present Conditions of Lake Balkhash. In Springer Water; Springer: Cham, Switzerland, 2020; pp. 143–175. ISBN 978-3-030-42254-7. [Google Scholar]
- Gao, X.; Zhao, D. Impacts of Climate Change on Vegetation Phenology over the Great Lakes Region of Central Asia from 1982 to 2014. Sci. Total Environ. 2022, 845, 157227. [Google Scholar] [CrossRef]
- Mirlas, V.; Kulagin, V.; Ismagulova, A.; Anker, Y. MODFLOW and HYDRUS Modeling of Groundwater Supply Prospect Assessment for Distant Pastures in the Aksu River Middle Reaches. Sustainability 2022, 14, 6783. [Google Scholar] [CrossRef]
- KAZ-Minerals THE COPPER MINING PROCESS. Available online: https://www.kazminerals.com/about-us/focused-on-copper/the-copper-mining-process/ (accessed on 7 June 2024).
- Jawadi, H.A.; Sagin, J.; Snow, D.D. A Detailed Assessment of Groundwater Quality in the Kabul Basin, Afghanistan, and Suitability for Future Development. Water 2020, 12, 2890. [Google Scholar] [CrossRef]
- GMS. Groundwater Modeling System Introduction; Aquaveo, LLC: Provo, UT, USA, 2016. [Google Scholar]
- Dai, Y.; Liang, Y.; Xu, X.; Zhao, L.; Cao, X. An Integrated Approach for Simultaneous Immobilization of Lead in Both Contaminated Soil and Groundwater: Laboratory Test and Numerical Modeling. J. Hazard. Mater. 2018, 342, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Guo, Y.; Su, L. Risk Assessment of Geological Disasters in Nyingchi, Tibet. Open Geosci. 2021, 13, 219–232. [Google Scholar] [CrossRef]
- Zhirkov, V. Reconstruction of Drainage Channel No. 1 with a Vertical Drainage Device at the Tailing Dump of the Tailings Storage Shop of the Balkhash Concentrator; SIC Biosphere Kazakhstan LLP: Karaganda, Kazakhstan, 2016. [Google Scholar]
- Issayeva, L.; Assubayeva, S.; Kembayev, M.; Togizov, K. The Formation of a Geoinformation System and Creation of a Digital Model of Syrymbet Rare-Metal Deposit (North Kazakhstan). In International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM; SGEM: Sofia, Bulgaria, 2019; Volume 19, pp. 609–616. [Google Scholar]
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Niswonger, R.G.; Panday Sorab Provost, A.M. Documentation for the MODFLOW 6. US Geol. Surv. 2017, 6, 197. [Google Scholar] [CrossRef]
- Mukhamedzhanov, M.A.; Sagin, J.; Kazanbaeva, L.M.; Rakhmetov, I.K. Influence of Anthropogenic Factors on Hydrogeochemical Conditions of Underground Drinking Waters of Kazakhstan. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Techol. Sci. 2018, 5, 6–8. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, P.P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; US Army Corps of Engineers-Engineer Research and Development Center: Vicksburg, MI, USA, 1999. [Google Scholar]
- Hill, M.C.; Tiedeman, C.R. Effective Groundwater Model Calibration; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780120581030. [Google Scholar]
- Budania, R.; Dangayach, S. A Comprehensive Review on Permeable Reactive Barrier for the Remediation of Groundwater Contamination. J. Environ. Manag. 2023, 332, 117343. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Bennett, G.D. Applied Contaminant Transport Modeling-Theory and Practice; Wiley: Hoboken, NJ, USA, 1995; Volume 77. [Google Scholar]
- Oyarzun, R.; Arumí, J.; Salgado, L.; Mariño, M. Sensitivity Analysis and Field Testing of the RISK-N Model in the Central Valley of Chile. Agric. Water Manag. 2007, 87, 251–260. [Google Scholar] [CrossRef]
- Saltelli, A. Sensitivity Analysis for Importance Assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef]
- McCuen, M.R. Hydrologic Analysis and Design, 3rd ed.; Prentice-Hall: Saddle River, NJ, USA, 2004; ISBN 0134479548. [Google Scholar]
- Sharma, R.; Agrawal, P.R.; Kumar, R.; Gupta, G. Ittishree Current Scenario of Heavy Metal Contamination in Water. In Contamination of Water, Health Risk Assessment and Treatment Strategies; Academic press: Cambridge, MA, USA, 2021; pp. 49–64. [Google Scholar] [CrossRef]
- Tilekova, Z.T.; Oshakbaev, M.T.; Khaustov, A.P. Assessing the Geoecological State of Ecosystems in the Balkhash Region. Geogr. Nat. Resour. 2016, 37, 79–86. [Google Scholar] [CrossRef]
- Esfahani, S.G.; Valocchi, A.J.; Werth, C.J. Using MODFLOW and RT3D to Simulate Diffusion and Reaction without Discretizing Low Permeability Zones. J. Contam. Hydrol. 2021, 239, 103777. [Google Scholar] [CrossRef] [PubMed]
- Mirlas, V.; Kulagin, V.; Ismagulova, A.; Anker, Y. Field Experimental Study on the Infiltration and Clogging Processes at Aksu Research Site, Kazakhstan. Sustainability 2022, 14, 15645. [Google Scholar] [CrossRef]
- Barrow, C.J. Environmental Management: Principles and Practice; Routledge: London, UK; New York, NY, USA, 1999. [Google Scholar]
% | The Concentration of Heavy Metals in Groundwater, mg/L | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Pb | Zn | Cd | Mn | Se | As | ||
MAC–1 | MAC–0.03 | MAC–5 | MAC–0.001 | MAC–1 | MAC–0.01 | MAC–0.05 | ||
90–100 | 0.36–0.364 | 0.478–0.6102 | 0.2–0.23 | 0.111–0.1199 | 25.46–25.114 | 0.0053–0.00507 | 0.01–0.009 | |
80–90 | 0.404–0.328 | 0.7902–0.5624 | 0.28–0.21 | 0.1399–0.1088 | 27.314–22.568 | 0.00537–0.00454 | 0.009–0.008 | |
70–80 | 0.368–0.292 | 0.7424–0.5146 | 0.26–0.19 | 0.1288–0.0977 | 24.768–20.022 | 0.00484–0.00401 | 0.008–0.007 | |
60–70 | 0.332–0.256 | 0.6946–0.4668 | 0.24–0.17 | 0.1177–0.0866 | 22.222–17.476 | 0.00431–0.00348 | 0.007–0.006 | |
50–60 | 0.296–0.22 | 0.6468–0.419 | 0.22–0.15 | 0.1066–0.0755 | 19.676–14.93 | 0.00378–0.00295 | 0.006–0.005 | |
40–50 | 0.26–0.184 | 0.599–0.3712 | 0.2–0.13 | 0.0955–0.0644 | 17.13–12.384 | 0.00325–0.00242 | 0.005–0.004 | |
30–40 | 0.224–0.148 | 0.5512–0.3234 | 0.18–0.11 | 0.0844–0.0533 | 14.584–9.838 | 0.00272–0.00189 | 0.004–0.003 | |
20–30 | 0.188–0.112 | 0.5034–0.2756 | 0.16–0.09 | 0.0733–0.0422 | 12.038–7.292 | 0.00219–0.00136 | 0.003–0.002 | |
10–20 | 0.152–0.076 | 0.4556–0.2278 | 0.14–0.07 | 0.0622–0.0311 | 9.492–4.746 | 0.00166–0.00083 | 0.002–0.001 | |
0–10 | 0.116–0.04 | 0.4078–0.18 | 0.12–0.05 | 0.0511–0.02 | 6.946–2.2 | 0.00113–0.0003 | 0.001–0 |
Observed Well | Model Layer | Observed Head, m | Computed Head, m | Residual Head, m (Obs.H.- Comp.H.) |
---|---|---|---|---|
44 | 3 | 342.49 | 342.47 | 0.02 |
46 | 3 | 344.2 | 344.89 | −0.69 |
47 | 3 | 344.52 | 344.99 | −0.47 |
48 | 3 | 343.73 | 344.35 | −0.62 |
49 | 3 | 344.29 | 344.65 | −0.36 |
50 | 3 | 343.6 | 343.07 | 0.53 |
51 | 3 | 344.24 | 343.51 | 0.73 |
53 | 3 | 343.47 | 344.28 | −0.81 |
54 | 3 | 343.81 | 344.39 | −0.58 |
57 | 3 | 344.36 | 343.73 | 0.63 |
61 | 3 | 346.84 | 348.66 | −1.82 |
63 | 3 | 348.88 | 348.63 | −1.75 |
65 | 3 | 344.14 | 345.01 | −0.87 |
Input | Storage pond leakage | 1596 |
Tailings storage facility leakage | 3334 | |
Recharge | 4250 | |
Total input | 9180 | |
Output | Groundwater discharge into Balkhash Lake | 457 |
Groundwater discharge to drainage system | 5083 | |
Evapotranspiration | 3624 | |
Total output | 9164 | |
Input–Output | Difference—m3/day | 16 |
Difference—% from Input | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muratkhanov, D.; Mirlas, V.; Anker, Y.; Miroshnichenko, O.; Smolyar, V.; Rakhimov, T.; Sotnikov, Y.; Rakhimova, V. Heavy Metal Groundwater Transport Mitigation from an Ore Enrichment Plant Tailing at Kazakhstan’s Balkhash Lake. Sustainability 2024, 16, 6816. https://doi.org/10.3390/su16166816
Muratkhanov D, Mirlas V, Anker Y, Miroshnichenko O, Smolyar V, Rakhimov T, Sotnikov Y, Rakhimova V. Heavy Metal Groundwater Transport Mitigation from an Ore Enrichment Plant Tailing at Kazakhstan’s Balkhash Lake. Sustainability. 2024; 16(16):6816. https://doi.org/10.3390/su16166816
Chicago/Turabian StyleMuratkhanov, Dauren, Vladimir Mirlas, Yaakov Anker, Oxana Miroshnichenko, Vladimir Smolyar, Timur Rakhimov, Yevgeniy Sotnikov, and Valentina Rakhimova. 2024. "Heavy Metal Groundwater Transport Mitigation from an Ore Enrichment Plant Tailing at Kazakhstan’s Balkhash Lake" Sustainability 16, no. 16: 6816. https://doi.org/10.3390/su16166816
APA StyleMuratkhanov, D., Mirlas, V., Anker, Y., Miroshnichenko, O., Smolyar, V., Rakhimov, T., Sotnikov, Y., & Rakhimova, V. (2024). Heavy Metal Groundwater Transport Mitigation from an Ore Enrichment Plant Tailing at Kazakhstan’s Balkhash Lake. Sustainability, 16(16), 6816. https://doi.org/10.3390/su16166816