Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = microwave-assisted hydrothermal synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1259 KB  
Review
Transition Metal-Doped ZnO and ZrO2 Nanocrystals: Correlations Between Structure, Magnetism, and Vibrational Properties—A Review
by Izabela Kuryliszyn-Kudelska and Witold Daniel Dobrowolski
Appl. Sci. 2026, 16(2), 786; https://doi.org/10.3390/app16020786 - 12 Jan 2026
Viewed by 101
Abstract
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress [...] Read more.
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress on Fe-, Mn-, and Co-doped ZnO and ZrO2 nanocrystals synthesized by wet chemical, hydrothermal, and microwave-assisted hydrothermal methods, with emphasis on synthesis-driven phase evolution and apparent solubility limits. ZnO and ZrO2 are treated as complementary host lattices: ZnO is a semiconducting, piezoelectric oxide with narrow solubility limits for most 3d dopants, while ZrO2 is a dielectric, polymorphic oxide in which transition metal doping may stabilize tetragonal or cubic phases. Structural and microstructural studies using X-ray diffraction, electron microscopy, Raman spectroscopy, and Mössbauer spectroscopy demonstrate that at low dopant concentrations, TM ions may be partially incorporated into the host lattice, giving rise to diluted or defect-mediated magnetic behavior. When solubility limits are exceeded, nanoscopic secondary oxide phases emerge, leading to superparamagnetic, ferrimagnetic, or spin-glass-like responses. Magnetic measurements, including DC magnetization and AC susceptibility, reveal a continuous evolution from paramagnetism in lightly doped samples to dynamic magnetic states characteristic of nanoscale magnetic entities. Vibrational spectroscopy highlights phonon confinement, surface optical phonons, and disorder-activated modes that sensitively reflect nanocrystal size, lattice strain, and defect populations, and often correlate with magnetic dynamics. Rather than classifying these materials as diluted magnetic semiconductors, this review adopts a synthesis-driven and correlation-based framework that links dopant incorporation, local structural disorder, vibrational fingerprints, and magnetic response. By emphasizing multi-technique characterization strategies required to distinguish intrinsic from extrinsic magnetic contributions, this review provides practical guidelines for interpreting magnetism in TM-doped oxide nanocrystals and outlines implications for applications in photocatalysis, sensing, biomedicine, and electromagnetic interference (EMI) shielding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 9811 KB  
Article
Effect of PVP Concentration on the Crystalline Structure and Morphology of Hydroxyapatite via Microwave-Assisted Hydrothermal Synthesis
by Lesly S. Villaseñor-Cerón, Demetrio Mendoza-Anaya, Andres Galdámez-Martínez, Claudia E. Gutiérrez-Wing, Omar A. Domínguez-Ramírez, Josué E. Muñoz-Pérez and Ventura Rodríguez-Lugo
Materials 2026, 19(2), 223; https://doi.org/10.3390/ma19020223 - 6 Jan 2026
Viewed by 384
Abstract
In this study, hydroxyapatite was synthesized using a microwave-assisted hydrothermal method. Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and ammonium phosphate ((NH4)2HPO4) served as precursors in a pH 10 ammonium hydroxide (NH4OH) [...] Read more.
In this study, hydroxyapatite was synthesized using a microwave-assisted hydrothermal method. Calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and ammonium phosphate ((NH4)2HPO4) served as precursors in a pH 10 ammonium hydroxide (NH4OH) solution. Polyvinylpyrrolidone (PVP) was employed as a surfactant at varying concentrations of 0 (M0), 0.1% (M1), 0.2% (M2), and 0.3%wt (M3) to control particle size and morphology. The synthesized samples were characterized using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The addition of PVP during synthesis resulted in Ca/P ratios ranging from 0.93 to 1.37, and promoted predominantly rod-like morphologies. Samples M1 and M3 exhibited average diameters of 11.23–104.24 nm and lengths of 47.21–222.32 nm. XRD analysis confirmed the presence of both hexagonal and monoclinic phases, with crystallite sizes varying from 18.66 to 22.49 nm. FTIR spectra of sample M1 revealed an elongation at 3432 cm−1 corresponding to OH groups, indicative of water absorption within the material structure. Vibrational bands at 2950–2300, 1090, and 975 cm−1, attributed to C–H bonds in PVP were also identified. These findings highlight the influence of PVP concentration on the structural and morphological properties of hydroxyapatite, providing insights into its potential applications in various fields. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

29 pages, 3170 KB  
Review
Contribution of Microwave Irradiation in the Synthesis of Inorganic Compounds: An Italian Approach
by Cristina Leonelli, Elena Colombini and Cecilia Mortalò
Inorganics 2025, 13(12), 410; https://doi.org/10.3390/inorganics13120410 - 16 Dec 2025
Viewed by 433
Abstract
Microwave heating has a good number of advantages in the synthesis of inorganic compounds when opportunely exploited. A deep knowledge of the interaction of the electromagnetic waves and matter is necessary to optimize irradiation of the reactor vessel so as to obtain homogeneous [...] Read more.
Microwave heating has a good number of advantages in the synthesis of inorganic compounds when opportunely exploited. A deep knowledge of the interaction of the electromagnetic waves and matter is necessary to optimize irradiation of the reactor vessel so as to obtain homogeneous heating for homogeneous nucleation and growth of particles, localized heating of starting self-sustained high-temperature synthesis, and generation of a superfast heating and cooling profile to obtain metastable crystals. Case studies of pure oxides, mixed oxides, composites, phosphates, zeolites, and high-entropy alloys are discussed in the international frame of the academic and industrial research covering the last 20 years of microwave chemistry where Italian researchers covered a relevant role. Full article
(This article belongs to the Special Issue State-of-the-Art Inorganic Chemistry in Italy)
Show Figures

Figure 1

20 pages, 3654 KB  
Article
NO2 Detection Using Hierarchical WO3 Microflower-Based Gas Sensors: Comprehensive Study of Sensor Performance
by Paulo V. Morais, Pedro H. Suman and Marcelo O. Orlandi
Chemosensors 2025, 13(11), 390; https://doi.org/10.3390/chemosensors13110390 - 6 Nov 2025
Viewed by 669
Abstract
Monitoring nitrogen dioxide (NO2) in various scenarios is crucial due to its significant environmental impact as a hazardous gas which is emitted by several industrial sectors. This study reports the optimized synthesis of WO3 flower-like structures using the microwave-assisted hydrothermal [...] Read more.
Monitoring nitrogen dioxide (NO2) in various scenarios is crucial due to its significant environmental impact as a hazardous gas which is emitted by several industrial sectors. This study reports the optimized synthesis of WO3 flower-like structures using the microwave-assisted hydrothermal method under various experimental conditions, resulting in the optimized sample designated MF-WO3-K2. Structural, morphological, and chemical characterizations revealed that WO3 microflowers (MF-WO3-K2) exhibit a hexagonal crystalline phase, a bandgap of 2.4 eV, and a high specific surface area of 61 m2/g. The gas-sensing performance of WO3 microflowers was investigated by electrical measurements of six similarly fabricated MF-WO3-K2 sensors. The MF-WO3-K2 sensors demonstrated a remarkable sensor signal of 225 for 5 ppm NO2 at 150 °C and response/recovery times of 14.5/2.4 min, coupled with outstanding selectivity against potential interfering gases such as CO, H2, C2H2, and C2H4. Additionally, the sensors achieved a low detection limit of 65 ppb for NO2 at 150 °C. The exceptional sensing properties of WO3 microflowers are attributed to the abundance of active sites on the surface, large specific surface area, and the presence of pores in the material that facilitate the diffusion of NO2 molecules into the structure. Overall, the WO3 microflowers demonstrate a promising ability to be used as a sensitive layer in high-performance chemiresistive gas sensors due to their high sensor performance and good reproducibility for NO2 detection. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Graphical abstract

32 pages, 6854 KB  
Review
A Review of the Synthesis, Structural, and Optical Properties of TiO2 Nanoparticles: Current State of the Art and Potential Applications
by Mohd Al Saleh Alothoum
Crystals 2025, 15(11), 944; https://doi.org/10.3390/cryst15110944 - 31 Oct 2025
Viewed by 2538
Abstract
The manufacturing techniques, structural features, and optical attributes of titanium dioxide (TiO2) nanoparticles are highlighted in this study. These nanoparticles are notable for their remarkable photocatalytic activity, cheap cost, chemical stability, and biocompatibility. TiO2 consists of three polymorph structures: anatase, [...] Read more.
The manufacturing techniques, structural features, and optical attributes of titanium dioxide (TiO2) nanoparticles are highlighted in this study. These nanoparticles are notable for their remarkable photocatalytic activity, cheap cost, chemical stability, and biocompatibility. TiO2 consists of three polymorph structures: anatase, rutile, and brookite. Because of its electrical characteristics and large surface area, anatase is the most efficient for photocatalysis when exposed to UV light. The crystallinity, size, and shape of titania nanoparticles (NPs) are influenced by diverse production techniques. Sol-gel, hydrothermal, solvothermal, microwave-assisted, and green synthesis with plant extracts are examples of common methods. Different degrees of control over morphology and surface properties are possible with each approach, and these factors ultimately affect functioning. For example, microwave synthesis provides quick reaction rates, whereas sol-gel enables the creation of homogeneous nanoparticles. XRD and SEM structural investigations validate nanostructures with crystallite sizes between 15 and 70 nm. Particle size, synthesis technique, and annealing temperature all affect optical characteristics such as bandgap (3.0–3.3 eV), fluorescence emission, and UV-visible absorbance. Generally speaking, anatase has a smaller crystallite size and a greater bandgap than rutile. TiO2 nanoparticles are used in gas sensing, food packaging, biomedical coatings, dye-sensitized solar cells (DSSCs), photocatalysis for wastewater treatment, and agriculture. Researchers are actively exploring methods like adding metals or non-metals, making new composite materials, and changing the surface to improve how well they absorb visible light. Full article
Show Figures

Figure 1

28 pages, 3927 KB  
Review
Sustainable Carbon Dots from Cellulose Precursors for Environmental Sensing: Recent Trends and Outlook
by Viviana Bressi, Jihene Belhaj, Rayhane Zribi, Ramzi Khiari and Claudia Espro
Nanomaterials 2025, 15(21), 1649; https://doi.org/10.3390/nano15211649 - 29 Oct 2025
Viewed by 1276
Abstract
Carbon dots (CDs) have emerged as promising nanomaterials for optical sensing due to their outstanding photoluminescence, chemical stability, and biocompatibility. In recent years, the development of sustainable CDs derived from biomass—particularly cellulose—has attracted increasing interest as a green alternative to conventional synthetic routes. [...] Read more.
Carbon dots (CDs) have emerged as promising nanomaterials for optical sensing due to their outstanding photoluminescence, chemical stability, and biocompatibility. In recent years, the development of sustainable CDs derived from biomass—particularly cellulose—has attracted increasing interest as a green alternative to conventional synthetic routes. This review offers a comprehensive overview of recent advances in synthesis, functionalization, and application of cellulose-based carbon dots for environmental sensing. We examine key synthetic approaches—including hydrothermal, microwave-assisted, and pyrolytic methods—and discuss how the structure and origin of cellulose influence the physicochemical properties of the resulting CDs. The mechanisms underlying their sensing performance are analyzed in detail, with a focus on the detection of heavy metals, organic pollutants, and other environmental contaminants. Challenges related to reproducibility, scalability, and long-term stability are critically addressed. Finally, we outline future directions involving hybrid nanomaterials, real-time sensing platforms, and strategies aligned with circular economy principles. This review aims to serve as a valuable resource for researchers in the fields of sustainable nanomaterials, green chemistry, and environmental sensor development. Full article
Show Figures

Graphical abstract

25 pages, 11327 KB  
Article
Synthesis-Dependent Magnetic Modifications in Starch-Coated CoFe2O4 Monodomain Nanoparticles: Structural, Magnetic and Spectroscopic Study
by Zorica Ž. Lazarević, Valentin N. Ivanovski, Aleksandra Milutinović, Marija Šuljagić, Ana Umićević, Jelena Belošević-Čavor and Ljubica Andjelković
Nanomaterials 2025, 15(19), 1504; https://doi.org/10.3390/nano15191504 - 1 Oct 2025
Viewed by 807
Abstract
This study investigates the structural and magnetic properties of CoFe2O4 nanoparticles prepared by five different synthesis methods: coprecipitation, ultrasound-assisted coprecipitation, coprecipitation coupled with mechanochemical treatment, microemulsion and microwave-assisted hydrothermal synthesis. The produced powders were additionally functionalized with starch to improve [...] Read more.
This study investigates the structural and magnetic properties of CoFe2O4 nanoparticles prepared by five different synthesis methods: coprecipitation, ultrasound-assisted coprecipitation, coprecipitation coupled with mechanochemical treatment, microemulsion and microwave-assisted hydrothermal synthesis. The produced powders were additionally functionalized with starch to improve biocompatibility and colloidal stability. The starch-coating procedure itself by sonication in starch solution, as well as its result, affects the structural and magnetic properties of functionalized nanoparticles. The resulting changes of properties in the process of ligand addition depend significantly on the starting nanoparticles, or rather, on the method of their synthesis. The structural, magnetic and spectroscopic properties of the resulting materials were systematically investigated using X-ray diffraction (XRD), Raman spectroscopy, Mössbauer spectroscopy and magnetic measurements. Taken together, XRD, Raman and Mössbauer spectroscopy show that starch deposition reduces structural disorder and internal stress, resulting in nanoparticles with a more uniform size distribution. These changes, in turn, affect all magnetic properties—magnetization, coercivity and magnetic anisotropy. Magnetic responses are preserved what is desirable for future biomedical applications. This work emphasizes the importance of surface modification for tailoring the properties of magnetic nanoparticles while maintaining their desired functionality. Full article
Show Figures

Graphical abstract

17 pages, 4609 KB  
Article
Faster Microwave-Assisted Synthesis of Microspherical Carbons from Commercial and Biomass-Derived Carbohydrates
by Aroldo J. Romero-Anaya, M. Dolores González, Judith Granados-Reyes, Leví E. Arrieche-Hernández and Yolanda Cesteros
Catalysts 2025, 15(9), 885; https://doi.org/10.3390/catal15090885 - 15 Sep 2025
Viewed by 882
Abstract
Carbon microspheres were prepared by microwave-assisted hydrothermal treatment, at 180 °C, of commercial carbohydrates (saccharose, glucose, and xylose) and xylose extract obtained from almond shells with varying synthesis parameters. When 1.6 M aqueous solutions of commercial carbohydrates were used, 2–10 μm carbon microspheres [...] Read more.
Carbon microspheres were prepared by microwave-assisted hydrothermal treatment, at 180 °C, of commercial carbohydrates (saccharose, glucose, and xylose) and xylose extract obtained from almond shells with varying synthesis parameters. When 1.6 M aqueous solutions of commercial carbohydrates were used, 2–10 μm carbon microspheres were obtained from saccharose after 15 min, while a longer amount of time (60 min) and the addition of acid medium (1% v/v H2SO4, 1% v/v H3PO4) were needed to obtain carbon microspheres from commercial xylose and glucose (≤ 1 μm). The higher reactivity of saccharose could be related to the formation, during heating, of fructose, which is more reactive than glucose and xylose. An increase in the acid concentration and in the carbohydrate concentration increased the formation and size of the microspheres. Comparative experiments with conventional heating did not produce a solid. Interestingly, when xylose extract obtained from almond shells was used, small carbon microspheres (1–3 μm) were obtained at a much lower concentration (0.2 M) and time (15 min) than with commercial xylose. This could be related to the acid medium used during extraction of xylose from the biomass. Activation of microspheres with CO2 resulted in high-surface area materials (243–326 m2/g) with great potential as catalytic supports. Full article
Show Figures

Graphical abstract

28 pages, 2156 KB  
Review
Au QDs in Advanced Biomedicine: Fluorescent, Biocompatible, and Multifunctional Nanoprobes for Imaging, Diagnostics, and Targeted Drug Delivery
by Nutan Shukla, Aayushi Chanderiya, Ratnesh Das, Elizaveta A. Mukhanova, Alexander V. Soldatov and Sabrina Belbekhouche
J. Nanotheranostics 2025, 6(3), 25; https://doi.org/10.3390/jnt6030025 - 8 Sep 2025
Viewed by 1938
Abstract
AuQDs (Au quantum dots) are ultrasmall nanostructures that combine the size-tunable fluorescence and photostability of semiconductor quantum dots with the chemical stability, low toxicity, and versatile surface chemistry of gold nanoparticles. This unique combination endows AuQDs with exceptional biocompatibility and multifunctionality, making them [...] Read more.
AuQDs (Au quantum dots) are ultrasmall nanostructures that combine the size-tunable fluorescence and photostability of semiconductor quantum dots with the chemical stability, low toxicity, and versatile surface chemistry of gold nanoparticles. This unique combination endows AuQDs with exceptional biocompatibility and multifunctionality, making them ideal for biomedical applications such as cellular imaging, real-time tracking, targeted drug delivery, diagnostics, therapeutic monitoring, and biosensing. Various synthesis methods—including chemical reduction, hydrothermal, laser ablation, and microwave-assisted techniques—allow for precise control over size and surface properties, optimizing fluorescence and electronic behavior for high-resolution imaging and sensitive detection. Compared to traditional quantum dots, AuQDs offer enhanced safety and biocompatibility, while surpassing larger gold nanoparticles by enabling fluorescence-based imaging. Their surfaces can be functionalized with diverse ligands for targeted delivery and specific biological interactions. In summary, AuQDs are multifunctional nanoprobes that combine superior optical properties, chemical stability, and biocompatibility, making them powerful tools for advanced biomedical diagnostics, therapy, and biosensing. Full article
Show Figures

Figure 1

28 pages, 11672 KB  
Article
Microwave-Assisted Hydrothermal Synthesis of Cu/Sr-Doped Hydroxyapatite with Prospective Applications for Bone Tissue Engineering
by Diana-Elena Radulescu, Bogdan Stefan Vasile, Otilia Ruxandra Vasile, Ionela Andreea Neacsu, Roxana Doina Trusca, Vasile-Adrian Surdu, Alexandra Catalina Birca, Georgiana Dolete, Cornelia-Ioana Ilie and Ecaterina Andronescu
J. Compos. Sci. 2025, 9(8), 427; https://doi.org/10.3390/jcs9080427 - 7 Aug 2025
Cited by 1 | Viewed by 1564
Abstract
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical [...] Read more.
One of the main challenges in hydroxyapatite research is to develop cost-effective synthesis methods that consistently produce materials closely resembling natural bone, while maintaining high biocompatibility, phase purity, and mechanical stability for biomedical applications. Traditional synthetic techniques frequently fail to provide desirable mechanical characteristics and antibacterial activity, necessitating the development of novel strategies based on natural precursors and selective ion doping. The present study aims to explore the possibility of synthesizing hydroxyapatite through the co-precipitation method, followed by a microwave-assisted hydrothermal maturation process. The main CaO sources selected for this study are eggshells and mussel shells. Cu2+ and Sr2+ ions were added into the hydroxyapatite structure at concentrations of 1% and 5% to investigate their potential for biomedical applications. Furthermore, the morpho-structural and biological properties have been investigated. Results demonstrated the success of hydroxyapatite synthesis and ion incorporation into its chemical structure. Moreover, HAp samples exhibited significant antimicrobial properties, especially the samples doped with 5% Cu and Sr. Additionally, all samples presented good biological activity on MC3T3-E1 osteoblast cells, demonstrating good cellular viability of all samples. Therefore, by correlating the results, it could be concluded that the undoped and doped hydroxyapatite samples are suitable biomaterials to be further applied in orthopedic applications. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

17 pages, 1647 KB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 - 2 Aug 2025
Cited by 1 | Viewed by 1273
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Graphical abstract

20 pages, 5041 KB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Cited by 2 | Viewed by 1713
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

33 pages, 1666 KB  
Review
Synthesis, Characterization, and Application of Magnetic Zeolite Nanocomposites: A Review of Current Research and Future Applications
by Sabina Vohl, Irena Ban, Janja Stergar and Mojca Slemnik
Nanomaterials 2025, 15(12), 921; https://doi.org/10.3390/nano15120921 - 13 Jun 2025
Cited by 6 | Viewed by 2903
Abstract
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview [...] Read more.
Magnetic zeolite nanocomposites (NCs) have emerged as a promising class of hybrid materials that combine the high surface area, porosity, and ion exchange capacity of zeolites with the magnetic properties of nanoparticles (NPs), particularly iron oxide-based nanomaterials. This review provides a comprehensive overview of the synthesis, characterization, and diverse applications of magnetic zeolite NCs. We begin by introducing the fundamental properties of zeolites and magnetic nanoparticles (MNPs), highlighting their synergistic integration into multifunctional composites. The structural features of various zeolite frameworks and their influence on composite performance are discussed, along with different interaction modes between MNPs and zeolite matrices. The evolution of research on magnetic zeolite NCs is traced chronologically from its early stages in the 1990s to current advancements. Synthesis methods such as co-precipitation, sol–gel, hydrothermal, microwave-assisted, and sonochemical approaches are systematically compared, emphasizing their advantages and limitations. Key characterization techniques—including X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning and Transmission Electron Microscopy (SEM, TEM), Thermogravimetric Analysis (TGA), Nitrogen Adsorption/Desorption (BET analysis), Vibrating Sample Magnetometry (VSM), Zeta potential analysis, Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and X-Ray Photoelectron Spectroscopy (XPS)—are described, with attention to the specific insights they provide into the physicochemical, magnetic, and structural properties of the NCs. Finally, the review explores current and potential applications of these materials in environmental and biomedical fields, focusing on adsorption, catalysis, magnetic resonance imaging (MRI), drug delivery, ion exchange, and polymer modification. This article aims to provide a foundation for future research directions and inspire innovative applications of magnetic zeolite NCs. Full article
Show Figures

Figure 1

19 pages, 2334 KB  
Article
One-Pot Microwave-Assisted Synthesis of Fluorescent Carbon Dots from Tomato Industry Residues with Antioxidant and Antibacterial Activities
by Patrícia D. Barata, Alexandra I. Costa, Sónia Martins, Magda C. Semedo, Bruno G. Antunes and José V. Prata
Biomass 2025, 5(2), 35; https://doi.org/10.3390/biomass5020035 - 10 Jun 2025
Viewed by 3147
Abstract
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of [...] Read more.
Tomato waste (TW) was employed as a sustainable source for the synthesis of fluorescent carbon dots (CDs) via a microwave-assisted hydrothermal carbonization (Mw-HTC) method, aiming at its valorization. Several amines were used as nitrogen additives to enhance the fluorescence quantum yield (QY) of CDs, and a set of reaction conditions, including additive/TW mass ratio (0.04–0.32), dwell time (15–60 min), and temperature (200–230 °C) of the HTC process, were scrutinized. The structural analysis of the tomato waste carbon dots (TWCDs) was undertaken by FTIR and 1H NMR techniques, revealing their most relevant features. In solid state, transmission electron microscopy (TEM) analysis showed the presence of nearly spherical nanoparticles with an average lateral size of 8.1 nm. Likewise, the topographical assessment by atomic force microscopy (AFM) also indicated particles’ heights between 3 and 10 nm. Their photophysical properties, revealed by UV–Vis, steady-state, and time-resolved fluorescence spectroscopies, are fully discussed. Higher photoluminescent quantum yields (up to 0.08) were attained when the biomass residues were mixed with organic aliphatic amines during the Mw-HTC process. Emission tunability is a characteristic feature of these CDs, which display an intensity average fluorescence lifetime of 8 ns. The new TWCDs demonstrated good antioxidant properties by the ABTS radical cation method (75% inhibition at TWCDs’ concentration of 5 mg/mL), which proved to be related to the dwell time used in the CDs synthesis. Moreover, the synthesized TWCDs suppressed the growth of Escherichia coli and Staphylococcus aureus at concentrations higher than 2000 μg/mL, encouraging future antibacterial applications. Full article
Show Figures

Figure 1

24 pages, 5386 KB  
Article
Study of the Electrical Conduction Mechanism in Low-Frequency Field for CuMnO2 Crednerite-Type Materials Obtained by Microwave-Assisted Hydrothermal Synthesis
by Catalin N. Marin, Maria Poienar, Antoanetta Lungu, Cristian Casut, Paula Sfirloaga and Iosif Malaescu
Crystals 2025, 15(6), 497; https://doi.org/10.3390/cryst15060497 - 23 May 2025
Cited by 1 | Viewed by 762
Abstract
The electrical conductivity of nanocrystalline CuMnO2 samples, obtained by microwave-assisted hydrothermal synthesis (MWH), is studied by impedance spectroscopy over a frequency range of 30 Hz to 2 MHz and a temperature range from 30 to 120 °C. Three samples are prepared to [...] Read more.
The electrical conductivity of nanocrystalline CuMnO2 samples, obtained by microwave-assisted hydrothermal synthesis (MWH), is studied by impedance spectroscopy over a frequency range of 30 Hz to 2 MHz and a temperature range from 30 to 120 °C. Three samples are prepared to start from a mixture of sulphate reactants, at two synthesis temperatures and different reaction times (of applying microwaves): sample S1 at 80 °C for 5 min; sample S2 at 120 °C for 5 min and sample S3 at 120 °C for one hour. The static conductivity values, σDC of samples S2 and S3, are approximately equal but larger than those of sample S1. This result suggests that using MWH synthesis at 120 °C, with different reaction times (samples S2 and S3), is sufficient for microwaves to be applied for at least 5 min to obtain samples with similar electrical properties. The experimental data were analysed based on three theoretical models, demonstrating that the most appropriate theoretical model to explain the electrical conduction mechanism in the samples is Mott’s variable range hopping (VRH) model. Using this model, the activation energy of conduction, (EA,cond), the density of localized states near the Fermi level, N(EF), the hopping distance, Rh(T), the hopping energy, Wh(T) and the charge carrier mobility (μ) were determined for the first time, for microwave-assisted hydrothermally synthesized crednerite. Additionally, the band gap energy (Wm) and hopping frequency (ωh) were evaluated at various temperatures T. Understanding the electrical conduction mechanism in the polycrystalline CuMnO2 materials is important for their use in photo-electrochemical and photocatalytic applications, photovoltaic devices, and, more recently, in environmental protection. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop