Effect of PVP Concentration on the Crystalline Structure and Morphology of Hydroxyapatite via Microwave-Assisted Hydrothermal Synthesis
Highlights
- Rietveld refinement analysis confirms the formation of the crystalline Hexagonal Phase of the monoclinic structure.
- The use of PVP influences the formation of the crystalline phases of Hap.
- The addition of PVP at low concentrations (0.1 and 0.2%wt) induces dimensional and morphological instability of Hap. At a PVP concentration of 0.3%wt, dimensional and morphological stability is restored, with nanorods being the predominant morphology.
- The results indicate that PVP acts as an effective surfactant for achieving dimensional and morphological control of hydroxyapatite.
- The formation of well-defined nanorod morphologies at 0.3%wt PVP establishes a valuable reference for future studies on the controlled synthesis of Hap nanostructures.
- The proposed model provides insight into the interactions between PVP and Hap, contributing to the advancement of research on the dimensional and morphological control of nanomaterials. This understanding supports the design of materials with optimized properties for targeted applications, including biomaterials.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydroxyapatite-Polyvinylpyrrolidone Synthesis
2.3. Characterization
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. X-Ray Diffraction
3.3. Fourier Transform Infrared Spectroscopy
3.4. Transmission Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Hap | Hydroxyapatite |
| PVP | Polyvinylpyrrolidone |
| TEM | Transmission Electron Microscopy |
| SEM | Scanning Electron Microscopy |
| XRD | X-ray Diffraction |
| FTIR | Fourier Transform Infrared Spectroscopy |
| nm | Nanometer |
References
- Szcześ, A.; Hołysz, L.; Chibowski, E. Synthesis of Hydroxyapatite for Biomedical Applications. Adv. Colloid Interface Sci. 2017, 249, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, H.; Sakamaki, T.; Nihei, K.; Oyama, Y.; Yanagimoto, S.; Ichimiya, M.; Kimura, J.; Toyama, Y. Osseointegration of a Hydroxyapatite-Coated Multilayered Mesh Stem. Biomaterials 2004, 25, 2957–2969. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Jiang, G.; Bauer, J. The Effect of Structural Characteristics on the in Vitro Bioactivity of Hydroxyapatite. J. Biomed. Mater. Res. 2002, 63, 71–78. [Google Scholar] [CrossRef]
- Chetty, A.S.; Wepener, I.; Marei, M.K.; Kamary, Y.E.; Moussa, R.M. Synthesis, Properties, and Applications of Hydroxyapatite. In Hydroxyapatite: Synthesis, Properties and Applications; Gshalaev, V.S., Demirchan, A.C., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 91–134. ISBN 978-1-62081-934-0. [Google Scholar]
- Mendoza, A.; Gonzalez, P.R.; Lobato, M.; Rubio, E.; Rodriguez, L.; Custodio, E. Analysis of the Thermoluminescent Signal in the Hydroxyapatite Synthesized by the Sol-Gel Method; No. INIS-MX–1572; Universidad Autonoma Metropolitana, Unidad Iztapalapa: Mexico City, Mexico, 2004. [Google Scholar]
- Dorozhkin, S.V. Amorphous Calcium Orthophosphates: Nature, Chemistry and Biomedical Applications. Int. J. Mater. Chem. 2012, 2, 19–46. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphates in Nature, Biology and Medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef]
- Buyé Marí, N. MOOC Biomateriales: 9.1.3 Biomateriales Cerámicos—YouTube. Available online: https://www.youtube.com/watch?v=RIrV9no03MU&ab_channel=UPM (accessed on 30 January 2022).
- Kantharia, N.; Naik, S.; Apte, S.; Kheur, M.; Kheur, S.; Kale, B. Nano-Hydroxyapatite and Its Contemporary Applications. J. Dent. Res. Sci. Dev. 2014, 34, 1–71. [Google Scholar] [CrossRef]
- Villaseñor-Cerón, L.S.; Sánchez-Campos, D.; Reyes-Valderrama, M.I.; Anaya, D.M.; Rodríguez-Lugo, V. Effect of Polyethylene Glycol on the Synthesis of Hydroxyapatite Obtained via Microwave-Assisted Hydrothermal Method. MRS Commun. 2024, 14, 1351–1358. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Bioceramics of Calcium Orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef]
- LeGeros, R.Z. Calcium Phosphate-Based Osteoinductive Materials. Chem. Rev. 2008, 108, 4742–4753. [Google Scholar] [CrossRef]
- Bohner, M. Resorbable Biomaterials as Bone Graft Substitutes. Mater. Today 2010, 13, 24–30. [Google Scholar] [CrossRef]
- Zhang, X.; Vecchio, K.S. Hydrothermal Synthesis of Hydroxyapatite Rods. J. Cryst. Growth 2007, 308, 133–140. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomater. 2013, 9, 7591–7621. [Google Scholar] [CrossRef]
- de las Nieves Zavala, M. Síntesis Asistida Por Microondas. Available online: http://www.cciqs.unam.mx/index.php?option=com_content&view=article&id=85&Itemi%20d=87 (accessed on 6 September 2017).
- Reza Rezaie, H.; Bakhtiari, L.; Öchsner, A. Biomaterials and Their Applications; SpringerBriefs in Materials; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-17845-5. [Google Scholar]
- Prado-Gonjal, J. Microwave—Assisted Synthesis and Characterization of Inorganic Materials. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2014. [Google Scholar]
- Lewis, J.J. An Introduction to Surfactants; Springer: Dordrecht, The Netherlands, 1995; ISBN 978-3-11-031212-6. [Google Scholar]
- Guesmi, Y.; Agougui, H.; Jabli, M.; Alsharabasy, A.M. Bioactive Composites of Hydroxyapatite/Polyvinylpyrrolidone for Bone Regeneration Applications. Chem. Eng. Commun. 2019, 206, 279–288. [Google Scholar] [CrossRef]
- Malina, D.; Sobczak-Kupiec, A.; Wzorek, Z.; Kowalski, Z. Silver Nanoparticles Synthesis with Different Concentrations of Polyvinylpyrrolidone. Dig. J. Nanomater. Biostruct. 2012, 7, 1527–1534. [Google Scholar]
- Xu, X.; Wang, Q.; Choi, H.C.; Kim, Y.H. Encapsulation of Iron Nanoparticles with PVP Nanofibrous Membranes to Maintain Their Catalytic Activity. J. Memb. Sci. 2010, 348, 231–237. [Google Scholar] [CrossRef]
- Kumar, G.S.; Karunakaran, G.; Girija, E.K.; Kolesnikov, E.; Van Minh, N.; Gorshenkov, M.V.; Kuznetsov, D. Size and Morphology-Controlled Synthesis of Mesoporous Hydroxyapatite Nanocrystals by Microwave-Assisted Hydrothermal Method. Ceram. Int. 2018, 44, 11257–11264. [Google Scholar] [CrossRef]
- Qiu, C.F.; Xiao, X.F.; Liu, R.F.; She, H.D. Biomimetic Synthesis of Spherical Nano-Hydroxyapatite with Polyvinylpyrrolidone as Template. Mater. Sci. Technol. 2008, 24, 612–617. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, J. A Mild and Efficient Biomimetic Synthesis of Rodlike Hydroxyapatite Particles with a High Aspect Ratio Using Polyvinylpyrrolidone As Capping Agent. Cryst. Growth Des. 2008, 8, 2101–2107. [Google Scholar] [CrossRef]
- Du, X.; Chu, Y.; Xing, S.; Dong, L. Hydrothermal Synthesis of Calcium Hydroxyapatite Nanorods in the Presence of PVP. J. Mater. Sci. 2009, 44, 6273–6279. [Google Scholar] [CrossRef]
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A.; Keck, W.M. Additive Manufacturing of Biomaterials. Prog. Mater. Sci. 2017, 93, 45–111. [Google Scholar] [CrossRef] [PubMed]
- Terrasse, V.; Gaudin, N. OMS|La Batalla Mundial Contra El Cáncer No Se Ganará Únicamente Con Tratamiento; Organización Mundial de la Salud: Geneva, Switzerland, 2014. [Google Scholar]
- Liu, X.; Xu, Y.; Wu, Z.; Chen, H. Poly(N-Vinylpyrrolidone)-Modified Surfaces for Biomedical Applications. Macromol. Biosci. 2013, 13, 147–154. [Google Scholar] [CrossRef]
- Saha, N.; Saarai, A.; Roy, N.; Kitano, T.; Saha, P. Polymeric Biomaterial Based Hydrogels for Biomedical Applications. J. Biomater. Nanobiotechnol. 2011, 2, 85–90. [Google Scholar] [CrossRef]
- Langroudi, M.M.; Saravani, M.G.; Nouri, A. Surfactant-Assisted Synthesis of Polyvinylpyrrolidone-Hydroxyapatite Composites as a Bone Filler. J. Appl. Biomater. Funct. Mater. 2017, 15, e334–e340. [Google Scholar] [CrossRef]
- Reyes Gasga, J.; Martínez Piñeiro, E.L.; Brès, É.F. Crystallographic Structure of Human Tooth Enamel by Electron Microscopy and X-Ray Diffraction: Hexagonal or Monoclinic? J. Microsc. 2012, 248, 102–109. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, L.; Gbureck, U.; Bhaduri, S.B.; Sikder, P. Monetite, an Important Calcium Phosphate Compound–Its Synthesis, Properties and Applications in Orthopedics. Acta Biomater. 2021, 127, 41–55. [Google Scholar] [CrossRef]
- Al-Sanabani, J.S.; Madfa, A.A.; Al-Sanabani, F.A. Application of Calcium Phosphate Materials in Dentistry. Int. J. Biomater. 2013, 2013, 876132. [Google Scholar] [CrossRef]
- Ma, Y.; Bai, T.; Wang, F. The Physical and Chemical Properties of the Polyvinylalcohol/Polyvinylpyrrolidone/Hydroxyapatite Composite Hydrogel. Mater. Sci. Eng. C 2016, 59, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Faridi-Majidi, R.; Nezafati, N.; Pazouki, M.; Hesaraki, S. Evaluation of Morphology and Cell Behaviour of a Novel Synthesized Electrospun Poly(Vinyl Pyrrolidone)/Poly(Vinyl Alcohol)/Hydroxyapatite Nanofibers. Nanomed. J. 2017, 4, 107–114. [Google Scholar] [CrossRef]
- Oudadesse, H.; Mostafa, A.; Bui, X.-V.; le Gal, Y.; Cathelineau, G. Studies of Doped Biomimetic Nano-Hydroxyapatite/Polymer Matrix Composites for Applications in Biomedical Field; WSEAS Press: Athens, Greece, 2011. [Google Scholar]
- Arsad, M.S.; Lee, P.M.; Hung, L.K. Synthesis and Characterization of Hydroxyapatite Nanoparticles and β-TCP Particles. In Proceedings of the 2nd International Conference on Biotechnology and Food Science, Bali Island, Indonesia, 1–3 April 2011; Volume 7, pp. 184–188. [Google Scholar]
- Mendes, L.C.; Rodrigues, R.C.; Silva, E.P. Thermal, Structural and Morphological Assessment of PVP/HA Composites. J. Therm. Anal. Calorim. 2010, 101, 899–905. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Fu, Y. Microwave-Hydrothermal Synthesis and Characterization of Hydroxyapatite Nanocrystallites. Mater. Lett. 2011, 65, 3388–3390. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, X.; Zhang, Z.; Han, Y.; Luo, J.; Huang, M.; Zhang, B.; Hou, Y. Large-Scale and Fast Synthesis of Nano-Hydroxyapatite Powder by a Microwave-Hydrothermal Method. RSC Adv. 2019, 9, 13623–13630. [Google Scholar] [CrossRef]
- Amer, W.; Abdelouahdi, K.; Ramananarivo, H.R.; Zahouily, M.; Fihri, A.; Djessas, K.; Zahouily, K.; Varma, R.S.; Solhy, A. Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates. CrystEngComm 2014, 16, 543–549. [Google Scholar] [CrossRef]
- Rivera, J.A.; Fetter, G.; Bosch, P. Efecto Del PH En La Síntesis de Hidroxiapatita En Presencia de Microondas. Rev. Mater. 2010, 15, 506–515. [Google Scholar] [CrossRef]
- Zhang, X.; Lang, W.Z.; Xu, H.P.; Yan, X.; Guo, Y.J. The Effects of Hydroxyapatite Nano Whiskers and Its Synergism with Polyvinylpyrrolidone on Poly(Vinylidene Fluoride) Hollow Fiber Ultrafiltration Membranes. RSC Adv. 2015, 5, 21532–21543. [Google Scholar] [CrossRef]
- Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing; Noyes Publications; William Andrew Publisher: Norwich, NY, USA, 2001; ISBN 081551445X. [Google Scholar]
- Destainville, A.; Champion, E.; Bernache-Assollant, D.; Laborde, E. Synthesis, Characterization and Thermal Behavior of Apatitic Tricalcium Phosphate. Mater. Chem. Phys. 2003, 80, 269–277. [Google Scholar] [CrossRef]






| Samples | Crystallite Size (nm) | Rietveld Refinement | |||
|---|---|---|---|---|---|
| Hap | Calcium Phosphate | Monetite | Hexagonal (%) | Monoclinic (%) | |
| M0 | 18.22 | ------- | ------- | 15.50 | 84.60 |
| M1 | 21.08 | 21.20 | ------- | 88.90 | 11.10 |
| M2 | 18.66 | 21.00 | ------- | 74.10 | 25.90 |
| M3 | 22.49 | ------- | 28.87 | 88.80 | 11.20 |
| Sample | Average Value | |
|---|---|---|
| Width (nm) | Length (nm) | |
| M0 | 24.94 ± 6.31 | 64.82 ± 24.89 |
| M1 | 80.78 ± 36.36 | 119.36 ± 52.31 |
| M2 | 104.24 ± 89.73 | 222.32 ± 180.90 |
| M3 | 11.23 ± 9.50 | 47.21 ± 28.30 |
| Synthesis Method | Conditions | Precursors | Surfactant Concentration PVP | Crystalline Phase | Morphology and Size | Ref. |
|---|---|---|---|---|---|---|
| Biomimetic Method | 2–7 days to 60 °C, pH 3 (HNO3) | Ca(NO3)2·4H2O H3PO4 | 0.011 and 0.14 mmol | Hexagonal | Nanobars Diameter: 10–20 nm Longitude: 250–300 nm | [25] |
| Biomimetic method | pH 10.5 | Ca(NO3)2·4H2O (NH4)3PO4·3H2O | 0–5% | Hexagonal | Spheres 30–50 nm | [24] |
| Wet chemistry | room temperature for 72 h to a pH 10 | CaCl2 Na2HPO4 | 3.33 g | Hexagonal | Regular morphologies 59–280 nm | [20] |
| Hydrothermal method | 180 °C 24 h | Na2HPO4·12H2O Ca(NO3)2·4H2O | 2.5, 9 y 10−4 mol/L | Hexagonal | Nanobars Diameter: 20 a 25 nm | [26] |
| Microwave-assisted hydrothermal | 100–140 °C 30 min | Ca(NO3)2·4H2O H3PO4 | --- | Hexagonal | Agglomerated and nanorods | [40] |
| Microwave-assisted hydrothermal | 60–180 °C 50 min | CaCl2·2H2O Na2HPO4·12H2O | --- | --- | Diameter: 19–30 nm Longitude: 50–700 nm | [41] |
| Microwave-assisted hydrothermal | 80 °C 30 min | Ca(NO3)2·4H2O (NH4)3PO4·3H2O | --- | Hexagonal | Nanobars Diameter: 18 a 80 nm | [42] |
| Microwave-assisted hydrothermal | 80 °C 10 min | Ca(OH)2 H3PO4 | --- | Hexagonal | Agglomerated | [43] |
| Microwave-assisted hydrothermal | 200 °C 20 min pH 10 | Ca(NO3)2·4H2O K2HPO4 | 1 g | Hexagonal | Nanofibers 10 nm (Diameter) | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Villaseñor-Cerón, L.S.; Mendoza-Anaya, D.; Galdámez-Martínez, A.; Gutiérrez-Wing, C.E.; Domínguez-Ramírez, O.A.; Muñoz-Pérez, J.E.; Rodríguez-Lugo, V. Effect of PVP Concentration on the Crystalline Structure and Morphology of Hydroxyapatite via Microwave-Assisted Hydrothermal Synthesis. Materials 2026, 19, 223. https://doi.org/10.3390/ma19020223
Villaseñor-Cerón LS, Mendoza-Anaya D, Galdámez-Martínez A, Gutiérrez-Wing CE, Domínguez-Ramírez OA, Muñoz-Pérez JE, Rodríguez-Lugo V. Effect of PVP Concentration on the Crystalline Structure and Morphology of Hydroxyapatite via Microwave-Assisted Hydrothermal Synthesis. Materials. 2026; 19(2):223. https://doi.org/10.3390/ma19020223
Chicago/Turabian StyleVillaseñor-Cerón, Lesly S., Demetrio Mendoza-Anaya, Andres Galdámez-Martínez, Claudia E. Gutiérrez-Wing, Omar A. Domínguez-Ramírez, Josué E. Muñoz-Pérez, and Ventura Rodríguez-Lugo. 2026. "Effect of PVP Concentration on the Crystalline Structure and Morphology of Hydroxyapatite via Microwave-Assisted Hydrothermal Synthesis" Materials 19, no. 2: 223. https://doi.org/10.3390/ma19020223
APA StyleVillaseñor-Cerón, L. S., Mendoza-Anaya, D., Galdámez-Martínez, A., Gutiérrez-Wing, C. E., Domínguez-Ramírez, O. A., Muñoz-Pérez, J. E., & Rodríguez-Lugo, V. (2026). Effect of PVP Concentration on the Crystalline Structure and Morphology of Hydroxyapatite via Microwave-Assisted Hydrothermal Synthesis. Materials, 19(2), 223. https://doi.org/10.3390/ma19020223

