Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = microwave dielectric ceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2553 KiB  
Article
Effect of Ni2+ Doping on the Crystal Structure and Properties of LiAl5O8 Low-Permittivity Microwave Dielectric Ceramics
by Xuekai Lan, Huatao Tang, Bairui Chen and Bin Tian
Ceramics 2025, 8(3), 85; https://doi.org/10.3390/ceramics8030085 - 4 Jul 2025
Viewed by 230
Abstract
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized [...] Read more.
Low-permittivity microwave dielectric ceramics are essential for high-frequency communication and radar systems, as they minimize signal delay and interference, thereby enabling compact and high-performance devices. In this study, LiAl5−xNixO8−0.5x (x = 0.1–0.5) ceramics were synthesized via a solid-state reaction method to investigate the effects of Ni2+ substitution on crystal structure, microstructure, and dielectric properties. X-ray diffraction and Rietveld refinement reveal a phase transition from the P4332 to the Fd3m spinel structure at x ≈ 0.3, accompanied by a systematic increase in the lattice parameter (7.909–7.975 Å), attributed to the larger ionic radius of Ni2+ compared to Al3+. SEM analysis confirms dense microstructures with relative densities exceeding 95% and grain size increases from less than 1 μm at x = 0.1 to approximately 2 μm at x = 0.5. Dielectric measurements show a decrease in permittivity (εr) from 8.24 to 7.77 and in quality factor (Q × f) from 34,605 GHz to 20,529 GHz with increasing Ni content, while the temperature coefficient of the resonant frequency (τf) shifts negatively from −44.8 to −69.1 ppm/°C. Impedance spectroscopy indicates increased conduction losses and reduced activation energy with higher Ni2+ concentrations. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

9 pages, 1701 KiB  
Article
Effects of [Zn0.5Si0.5]3+ Substitution on Microwave Dielectric Properties of ZnAl2-x(Zn0.5Si0.5)xO4 Ceramics
by Xuekai Lan, Bairui Chen, Huatao Tang, Changzhi Yin, Bin Tian and Wen Lei
Crystals 2025, 15(7), 623; https://doi.org/10.3390/cryst15070623 - 4 Jul 2025
Viewed by 213
Abstract
Microwave dielectric ceramics are indispensable in modern communication technologies, playing a pivotal role in components such as filters, oscillators, and antennas. Among these materials, ZnAl2O4 ceramics have garnered attention for their excellent quality factor (Q × f) and [...] Read more.
Microwave dielectric ceramics are indispensable in modern communication technologies, playing a pivotal role in components such as filters, oscillators, and antennas. Among these materials, ZnAl2O4 ceramics have garnered attention for their excellent quality factor (Q × f) and low dielectric constant (εr). However, their high sintering temperature (~1650 °C) limits practical applications. This study investigates ZnAl2-x(Zn0.5Si0.5)xO4 (ZAZS) (x = 0.1–0.9) ceramics, where [Zn0.5Si0.5]3+ substitutes Al3+, to reduce sintering temperature while maintaining high-performance microwave dielectric properties. ZAZS ceramics were synthesized via the solid-state reaction method and characterized for their structural, morphological, and dielectric properties. X-ray diffraction analysis confirmed the formation of a single-phase solid solution up to x = 0.8, with minor secondary phases appearing at x = 0.9. The substitution increased lattice parameters and enhanced material densification, as observed through SEM and relative density calculations. Microwave dielectric measurements showed that ZAZS ceramics achieved a maximum Q × f of 20,200 GHz and a τf value reduced to −62 ppm/°C at x = 0.8, while εr decreased from 7.90 to 6.98. Bond-valence calculations reveal that the reduction of the average Al/Zn/Si–O bond valence weakens octahedral rigidity, systematically tuning τf toward zero. These results demonstrate that ZAZS ceramics, with a reduced sintering temperature of 1400 °C, exhibit excellent potential for application in low-loss microwave devices. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

20 pages, 4362 KiB  
Article
Ultra-Low Dielectric Constant Ca3(BO3)2 Microwave Ceramics and Their Performance Simulation in 5G Microstrip Patch Antennas
by Fangyuan Liu, Fuzhou Song, Wanghuai Zhu, Zhengpu Zhang, Zhonghua Yao, Hanxing Liu, Huaao Sun, Guangran Lin, Yue Xu, Lingcui Zhang, Yan Shen, Jinbo Zhao, Zeming Qi, Feng Shi and Jinghui Li
Crystals 2025, 15(7), 599; https://doi.org/10.3390/cryst15070599 - 25 Jun 2025
Viewed by 273
Abstract
Ca3(BO3)2 microwave dielectric ceramics with space group R-3c (#167) were prepared by cold sintering, and their properties were systematically investigated. Phonon density of state diagrams for the Ca3(BO3)2 lattice were obtained based on [...] Read more.
Ca3(BO3)2 microwave dielectric ceramics with space group R-3c (#167) were prepared by cold sintering, and their properties were systematically investigated. Phonon density of state diagrams for the Ca3(BO3)2 lattice were obtained based on first-principles calculations to provide a more comprehensive understanding of the lattice vibrational properties of the material. Raman scattering and infrared reflectance spectroscopy were employed to investigate the lattice vibrational characteristics, identifying two types of vibrational modes: internal modes associated with the planar bending and symmetric stretching vibrations of the [BO3] group, and external modes linked to the vibrations of the [CaO6] octahedron. The intrinsic dielectric properties were determined by fitting the experimental data using a four-parameter semi-quantum model. The results demonstrate that the dielectric properties of Ca3(BO3)2 ceramics are primarily influenced by the external vibrational modes. The sample under 800 MPa exhibits optimal dielectric performance, with a dielectric constant (εr) of 5.95, a quality factor (Q × f) of 11,836 GHz, and a temperature coefficient of resonant frequency (τf) of −39.89 ppm/°C. A simulation of this Ca3(BO3)2 sample as a dielectric substrate was conducted using HFSS to fabricate a microstrip patch antenna operating at 14.97 GHz, which exhibits a return loss (S11) of −25.5 dB and a gain of 7.15 dBi. Full article
Show Figures

Graphical abstract

12 pages, 11039 KiB  
Article
Microwave Dielectric Behavior of CoTiTa2O8-MgNb2O6 Composite Ceramics: A Focus on Temperature Stability and Compositional Effects
by Jun Zuo, Haodong Wang, Xiuli Fu and Zhijian Peng
Metals 2025, 15(4), 407; https://doi.org/10.3390/met15040407 - 4 Apr 2025
Viewed by 321
Abstract
Microwave dielectric (1 − x)CoTiTa2O8-xMgNb2O6 composite ceramics (x = 0.625–0.725) were fabricated through a two-step method and sintering techniques. The applied CoTiTa2O8 and MgNb2O6 powders were both synthesized by calcining [...] Read more.
Microwave dielectric (1 − x)CoTiTa2O8-xMgNb2O6 composite ceramics (x = 0.625–0.725) were fabricated through a two-step method and sintering techniques. The applied CoTiTa2O8 and MgNb2O6 powders were both synthesized by calcining stoichiometric mixtures of their respective metal oxides at 1000 °C for 3 h. The optimal sintering parameters were determined using visual high-temperature deformation analysis. The influence of the MgNb2O6 content on the phase composition, microstructure, and microwave dielectric properties of the obtained composite ceramics was comprehensively investigated. It was observed that an increase in the MgNb2O6 content resulted in a reduction in the dielectric constant (εr) and a significant enhancement in the quality factor (Q × f). The ceramics with a compositional value of x = 0.675, sintered at 1193 °C for 4.5 h, demonstrated a near-zero temperature coefficient of the resonant frequency (τf), exhibiting optimal microwave dielectric properties: εr = 28.4, Q × f = 33,055 GHz, and τf = −3.1 ppm/°C. These findings underscore the potential of the present CoTiTa2O8-MgNb2O6 composite ceramics for advanced microwave applications. Full article
Show Figures

Figure 1

25 pages, 14457 KiB  
Article
New Mcconnellite Ceramic Pigment as a Selective Solar Absorber: Effects of Microwave Firing and Rare Earth Doping
by Guillermo Monrós, José Antonio Badenes, Carolina Delgado, Guillem Monrós-Andreu and Mario Llusar
Materials 2025, 18(7), 1520; https://doi.org/10.3390/ma18071520 - 28 Mar 2025
Cited by 1 | Viewed by 385
Abstract
CuCrO2 (mcconnellite) was synthesized using both the solid-state method and microwave dielectric firing. It was characterized as a novel black ceramic pigment for use in various industrial glazes. For the first time, the application of mcconnellite (CuCrO2) and its coloured [...] Read more.
CuCrO2 (mcconnellite) was synthesized using both the solid-state method and microwave dielectric firing. It was characterized as a novel black ceramic pigment for use in various industrial glazes. For the first time, the application of mcconnellite (CuCrO2) and its coloured glazes as selective solar absorbers (SSA) for integral ceramic solar collectors has been reported. The addition of quartz or anatase as colour modifiers was investigated to prevent the bluing of the pigment in Zn-containing glazes, a phenomenon associated with the exsolution of copper. Furthermore, doping with lanthanide oxides was explored to address two key challenges: controlling the formation of pinhole defects in porcelain glazes, which are linked to the destabilization of Cu+, and adjusting the IR cut-off wavelength to improve its performance as SSA. Full article
Show Figures

Graphical abstract

9 pages, 2407 KiB  
Proceeding Paper
Investigation of Structural, Optical, and Frequency-Dependent Dielectric Properties of Barium Zirconate (BaZrO3) Ceramic Prepared via Wet Chemical Auto-Combustion Technique
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Eng. Proc. 2025, 87(1), 22; https://doi.org/10.3390/engproc2025087022 - 19 Mar 2025
Cited by 1 | Viewed by 339
Abstract
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray [...] Read more.
The wet chemical auto-combustion technique was used to synthesize barium zirconate ceramic (BaZrO3). Many strategies were applied to regulate the functional properties of the perovskite-structured sample which was calcinated at 800 °C for 9 h. A Fourier-transform IR spectrometer, an X-ray diffractometer, a scanning electron microscope (SEM)-EDAX, an LCR meter, and a UV–visible spectrometer were employed to study the structural, morphological, optical, and electrical properties of the prepared barium zirconate sample. Using data derived from XRD, the perovskite phase was confirmed, and the average value of the crystallite size was found to be 17.68 nm. The lattice constant, crystallinity, unit cell volume, tolerance factor, and X-ray density were also calculated. SEM-EDAX confirmed the elemental composition of the product and verified that it contained only the major constituents (Ba, Zr, and O). The vibrational modes of the prepared sample were investigated using FTIR in wavelengths ranging from 400 to 4000 cm−1. Energy bandgap was observed using Tauc’s plot, where a graph was prepared for photon energy (hυ) and (αhυ)2. The powder sample was blended with PVA and made into pellets of 13 mm diameter using a pelletizer to explore dielectric parameters like the dielectric constant, while the loss factor was recorded at a frequency ranging from 100 Hz to 4 MHz at room temperature. With its high dielectric constant and low dielectric loss factor, barium zirconate ceramic stands as an excellent material for several microwave applications. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

14 pages, 10628 KiB  
Article
AlN/FeNi Microwave-Attenuating Ceramics with High-Efficiency Thermal Conductivity and Microwave Absorption
by Yuanwei Lin, Hetuo Chen, Longfei Wang, Liqiong An, Xianpeng Qin and Guohong Zhou
Materials 2025, 18(2), 367; https://doi.org/10.3390/ma18020367 - 15 Jan 2025
Cited by 1 | Viewed by 1022
Abstract
The integration, miniaturization, and high frequency of microwave vacuum electronics put forward higher requirements for heat-conducting and wave-absorbing integrated materials. However, these materials must balance the dispersion and isolation of wave-absorbing components to optimize absorption while maintaining the continuity of thermal conductivity pathways [...] Read more.
The integration, miniaturization, and high frequency of microwave vacuum electronics put forward higher requirements for heat-conducting and wave-absorbing integrated materials. However, these materials must balance the dispersion and isolation of wave-absorbing components to optimize absorption while maintaining the continuity of thermal conductivity pathways with low defect rates and minimal interfaces. This presents a significant challenge in achieving both high thermal conductivity and efficient wave absorption simultaneously. Here, AlN/FeNi microwave-attenuating ceramics were synthesized via non–pressure sintering in a nitrogen atmosphere. The influence of FeNi content (0–20 wt%) on the density, phase composition, microstructure, microwave-absorption properties and thermal conductivity of the composites was investigated. AlN/FeNi composites consist primarily of an AlN phase with FeNi0.0578, Fe, AlYO3, and Al5Y3O12 as secondary phases, and the microstructure is uniform and dense. As the FeNi content rises from 0 to 20 wt%, the density of the composites sintered at 1800 °C × 2 h increases from 3.3 to 3.7 g/cm3. Their X-band (2–18 GHz) dielectric constant goes up from 6.5 to 8.5, the dielectric loss factor rises from 0.1 to 0.9, and thermal conductivity diminishes from 130 to 123 W/m·K. Upon reaching an FeNi content of 20 wt%, the composite achieves a minimum reflection loss of −39.1 dB at 9.5 GHz, with over 90% absorption across an effective absorption bandwidth covering 2.5 GHz. It exhibits excellent impedance matching, electromagnetic wave-attenuation properties, a relative density of 98.6%, and a thermal conductivity of 123 W m−1 K−1. The prepared AlN/FeNi composites, with integrated outstanding microwave-absorption capabilities and thermal conductivity, holds great promise for applications in 5G communications, aerospace, and artificial intelligence. Full article
(This article belongs to the Special Issue Preparation and Characterization of Functional Composite Materials)
Show Figures

Figure 1

13 pages, 13370 KiB  
Article
Low-Temperature Sintering and Microwave Dielectric Properties of CuxZn1−xTi0.2Zr0.8Nb2O8 Ceramics with the Aid of LiF
by Xing-Hua Ma, Qi Qu, Haitao Wu, Zhenlu Zhang and Xingyi Ma
Materials 2024, 17(24), 6251; https://doi.org/10.3390/ma17246251 - 20 Dec 2024
Cited by 1 | Viewed by 951
Abstract
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) [...] Read more.
M2+N4+Nb2O8-type ceramics (where M = Mg, Ca, Mn, Co, Ni, Zn and N = Ti, Zr) are essential for satellite communication and mobile base stations due to their medium relative permittivity (εr) and high quality factor (Q × f). Although ZnTi0.2Zr0.8Nb2O8 ceramic exhibits impressive microwave dielectric properties, including an εr of 29.75, a Q × f of 107,303 GHz, and a τf of −24.41 ppm/°C, its sintering temperature of 1150 °C remains a significant barrier for integration into low-temperature co-fired ceramic (LTCC) technologies. To overcome this limitation, a strategy involving the partial substitution of Zn2+ with Cu2+ and the addition of LiF as a sintering aid was devised for ZnTi0.2Zr0.8Nb2O8. The dual impact of Cu2+ partial substitution and LiF as a sintering enhancer facilitated the successful sintering of Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramics at a reduced temperature of 950 °C using the conventional solid-state reaction method. These ceramics exhibited excellent microwave dielectric properties. Notably, Cu0.3Zn0.7Ti0.2Zr0.8Nb2O8 ceramic with 40 mol% LiF addition demonstrated optimal microwave dielectric properties without any reaction with a silver electrode at a sintering temperature of 950 °C, yielding εr = 32, Q × f = 45,543 GHz, and τf = −43.5 ppm/°C. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

104 pages, 6379 KiB  
Review
Quasi-Classical Models of Nonlinear Relaxation Polarization and Conductivity in Electric, Optoelectric, and Fiber Optic Elements Based on Materials with Ionic–Molecular Chemical Bonds
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aliya Alkina, Yelena Senina, Arkadiy Bilichenko, Yelena Sidorina, Akylbek Beissekov, Galina Tatkeyeva and Yermek Sarsikeyev
Appl. Sci. 2024, 14(24), 11830; https://doi.org/10.3390/app142411830 - 18 Dec 2024
Viewed by 1310
Abstract
A generalized scientific review with elements of additions and clarifications has been carried out on the methods of theoretical research on the electrophysical properties of crystals with ionic–molecular chemical bonds (CIMBs). The main theoretical tools adopted are the methods of quasi-classical kinetic theory [...] Read more.
A generalized scientific review with elements of additions and clarifications has been carried out on the methods of theoretical research on the electrophysical properties of crystals with ionic–molecular chemical bonds (CIMBs). The main theoretical tools adopted are the methods of quasi-classical kinetic theory as applied to ionic subsystems relaxing in layered dielectrics (natural silicates, crystal hydrates, various types of ceramics, and perovskites) in an electric field. A universal (applicable for any CIMBs class crystals) nonlinear quasi-classical kinetic equation of theoretical and practical importance has been constructed. This equation describes, in complex with the Poisson equation, the mechanism of ion-relaxation polarization and conductivity in a wide range of polarizing field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). The physical model is based on a system of non-interacting ions (due to the low concentration in the crystal) moving in a one-dimensional, spatially periodic crystalline potential field, perturbed by an external electric field. The energy spectrum of ions is assumed to be continuous. Elements of quantum mechanical theory in a quasi-classical model are used to mathematically describe the influence of tunnel transitions of hydrogen ions (protons) during the interaction of proton and anion subsystems in hydrogen-bonded crystals (HBC) on the polarization of the dielectric in the region of nitrogen (50–100 K) and helium (1–10 K) temperatures. The mathematical model is based on the solution of a system of nonlinear Fokker-Planck and Poisson equations, solved by perturbation theory methods (via expanding solutions into infinite power series in a small dimensionless parameter). Theoretical frequency and temperature spectra of the dielectric loss tangent were constructed and analyzed, the molecular parameters of relaxers were calculated, and the physical nature of the maxima of the experimental temperature spectra of dielectric losses for a number of HBC crystals was discovered. The low-temperature maximum, which is caused by the quantum tunneling of protons and is absent in the experimental spectra, was theoretically calculated and investigated. The most effective areas of scientific and technical application of the theoretical results obtained were identified. The application of the equations and recurrent formulas of the constructed model to the study of nonlinear optical effects in elements of laser technologies and nonlinear radio wave effects in elements of microwave signal control systems is of the greatest interest. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

10 pages, 3744 KiB  
Article
Enhancement of Microwave Dielectric Properties in Mixed-Phase Ceramics Through CuB2O4 Doping: Achieving Ultra-Low Loss and High Dielectric Constant
by Yuan-Bin Chen, Siyi Xiong and Jie Peng
Ceramics 2024, 7(4), 1895-1904; https://doi.org/10.3390/ceramics7040119 - 11 Dec 2024
Viewed by 1139
Abstract
The microwave dielectric properties of (1−x)Ca0.6(La0.9Y0.1)0.2667TiO3-x(Nd1/2La1/2)(Mg(1+δ)1/2Ti1/2)O3 ((1−x)CYTO-xNLMTO) ceramics were investigated in this study. It was discovered that the addition of 1 wt% CuB2 [...] Read more.
The microwave dielectric properties of (1−x)Ca0.6(La0.9Y0.1)0.2667TiO3-x(Nd1/2La1/2)(Mg(1+δ)1/2Ti1/2)O3 ((1−x)CYTO-xNLMTO) ceramics were investigated in this study. It was discovered that the addition of 1 wt% CuB2O4 effectively enhanced the densification and improved the microwave dielectric properties of (1−x)CYTO-xNLMTO, where δ = 0.02. The new ceramic systems of (1−x)CYTO-xNLMTO could achieve ultra-low loss and a high dielectric constant. The novel ceramic systems comprising (1−x)CYTO-xNLMTO exhibited remarkably low loss and a significantly high dielectric constant. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

10 pages, 2302 KiB  
Article
Study on Microwave Dielectric Materials an Adjustable Temperature Drift Coefficient and a High Dielectric Constant
by Yuan-Bin Chen, Yu Fan, Shiuan-Ho Chang and Shaobing Shen
Ceramics 2024, 7(3), 1227-1236; https://doi.org/10.3390/ceramics7030081 - 13 Sep 2024
Cited by 1 | Viewed by 1268
Abstract
This paper reports the dielectric characterizations of (Ca0.95Sr0.05)(Ti1−xSnx)O3 ceramics prepared using a solid-state reaction method with various x values. X-ray diffraction spectroscopy analyses showed that the crystal structure of these pure samples was orthorhombic [...] Read more.
This paper reports the dielectric characterizations of (Ca0.95Sr0.05)(Ti1−xSnx)O3 ceramics prepared using a solid-state reaction method with various x values. X-ray diffraction spectroscopy analyses showed that the crystal structure of these pure samples was orthorhombic perovskite. With increasing Sn4+ content, the lattice constant and unit cell volume increased, while the dielectric constant decreased because of the ionic polarizability decreasing. Moreover, a maximum Q × f value of 5242 (GHz), a dielectric constant (εr) of 91.23, and a temperature coefficient (τf) of +810 ppm/°C were achieved for samples sintered at 1350 °C for 4 h. The microwave dielectric characterization was found to be strongly correlated with the sintering temperature, and the best performance was achieved for the sample sintered at 1350 °C. (Ca0.95Sr0.05)(Ti1−xSnx)O3 possesses a promising potential to be a τf compensator for a near-zero τf dielectric ceramic applied in wireless communication systems. Full article
Show Figures

Figure 1

17 pages, 7553 KiB  
Article
Microwave-Assisted Fabrication and Characterization of Carbon Fiber-Sodium Bismuth Titanate Composites
by Fareeha Azam, Muhammad Asif Rafiq, Furqan Ahmed, Adnan Moqbool, Osama Fayyaz, Zerfishan Imran, Muhammad Salman Habib and Rana Abdul Shakoor
Crystals 2024, 14(9), 798; https://doi.org/10.3390/cryst14090798 - 10 Sep 2024
Cited by 2 | Viewed by 1256
Abstract
Lead-based piezoelectric materials cause many environmental problems, regardless of their exceptional performance. To overcome this issue, a lead-free piezoelectric composite material was developed by incorporating different percentages of carbon fiber (CF) into the ceramic matrix of Bismuth Sodium Titanate (BNT) by employing the [...] Read more.
Lead-based piezoelectric materials cause many environmental problems, regardless of their exceptional performance. To overcome this issue, a lead-free piezoelectric composite material was developed by incorporating different percentages of carbon fiber (CF) into the ceramic matrix of Bismuth Sodium Titanate (BNT) by employing the microwave sintering technique. The aim of this study was also to evaluate the impact of microwave sintering on the microstructure and the electrical behavior of the carbon-fiber-reinforced Bi0.5Na0.5TiO3 composite (BNT-CF). A uniform distribution of the CF and increased densification of the BNT-CF was achieved, leading to improved piezoelectric properties. X-ray diffraction (XRD) showed the formation of a phase-pure crystalline perovskite structure consisting of CF and BNT. A Field Emission Scanning electron microscope (FESEM) revealed that utilizing microwave sintering at lower temperatures and shorter dwell times results in a superior densification of the BNT-CF. Raman Spectroscopy confirmed the perovskite structure of the BNT-CF and the presence of a Morphotropic Phase Boundary (MPB). An analysis of nanohardness indicated that the hardness of the BNT-CF increases with the increasing amount of CF. It is also revealed that the electrical conductivity of the BNT-CF at a low frequency is significantly influenced by the amount of CF and the temperature. Moreover, an increase in the carbon fiber concentration resulted in a decrease in dielectric properties. Finally, a lead-free piezoelectric BNT-CF showing dense and uniform microstructure was developed by the microwave sintering process. The promising properties of the BNT-CF make it attractive for many industrial applications. Full article
(This article belongs to the Special Issue Structural and Characterization of Composite Materials)
Show Figures

Figure 1

15 pages, 3542 KiB  
Article
Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics
by Huamin Gao, Xiangyu Xu, Xinwei Liu, Xiaoyu Zhang, Mingling Li, Jialun Du and Haitao Wu
Ceramics 2024, 7(3), 1172-1186; https://doi.org/10.3390/ceramics7030077 - 29 Aug 2024
Viewed by 964
Abstract
In this study, Ce2[Zr1−x(Ba1/3Nb2/3)x]3(MoO4)9 (0.02 ≤ x ≤ 0.1, CZ1−xNx) ceramics were sintered at 600 °C and 700 °C using the traditional [...] Read more.
In this study, Ce2[Zr1−x(Ba1/3Nb2/3)x]3(MoO4)9 (0.02 ≤ x ≤ 0.1, CZ1−xNx) ceramics were sintered at 600 °C and 700 °C using the traditional solid-state method. An analysis conducted through XRD and Rietveld refinement confirmed that all the CZ1−xNx ceramics displayed a single phase with a trigonal structure (space group R-3c). The observed increases in cell volume with increasing x values indicate the successful substitution of (Ba1/3Nb2/3)4+. The high densification of the synthesized phase was validated by the density and SEM results. Additionally, the P-V-L theory demonstrates a strong correlation between the Ce-O bond and εr, as well as τf, and between the Mo-O bond and Q×f. Notably, the CZ0.98N0.02 ceramics demonstrated superior performance at 675 °C, exhibiting εr = 10.41, Q×f = 53,296 GHz, and τf = −23.45 ppm/°C. Finally, leveraging CZ0.98N0.02 ceramics as substrate materials enabled the design of a patch antenna suitable for the 5G communication band, demonstrating its significant potential in this field. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

12 pages, 6711 KiB  
Article
Crystal Structure and Microwave Dielectric Characteristics of Novel Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 High-Entropy Ceramic
by Qing Wan, Zeping Li, Huifeng Wang, Gang Xiong and Geng Wang
Crystals 2024, 14(9), 754; https://doi.org/10.3390/cryst14090754 - 25 Aug 2024
Cited by 2 | Viewed by 1326
Abstract
High-permittivity Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 (BESNPLT) high-entropy ceramics (HECs) were synthesized via a solid-state route. The microstructure, sintering behavior, phase structure, vibration modes, and microwave dielectric characteristics of the BESNPLT HECs [...] Read more.
High-permittivity Ba(Eu1/5Sm1/5Nd1/5Pr1/5La1/5)2Ti4O12 (BESNPLT) high-entropy ceramics (HECs) were synthesized via a solid-state route. The microstructure, sintering behavior, phase structure, vibration modes, and microwave dielectric characteristics of the BESNPLT HECs were thoroughly investigated. The phase structure of the BESNPLT HECs was confirmed to be a single-phase orthorhombic tungsten-bronze-type structure of Pnma space group. Permittivity (εr) was primarily influenced by polarizability and relative density. The quality factor (Q×f) exhibited a significant correlation with packing fraction, whereas the temperature coefficient (TCF) of the BESNPLT HECs closely depended on the tolerance factor and bond valence of B-site. The BESNPLT HECs sintered at 1400 °C, demonstrating high relative density (>97%) and optimum microwave dielectric characteristics with TCF = +38.9 ppm/°C, Q×f = 8069 GHz (@6.1 GHz), and εr = 87.26. This study indicates that high-entropy strategy was an efficient route in modifying the dielectric characteristics of tungsten-bronze-type microwave ceramics. Full article
(This article belongs to the Special Issue Crystal Structure and Dielectric Properties of Ceramics)
Show Figures

Figure 1

15 pages, 14021 KiB  
Article
Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering
by Zeping Li, Huajian Zhou, Gang Xiong, Huifeng Wang and Geng Wang
Materials 2024, 17(14), 3477; https://doi.org/10.3390/ma17143477 - 13 Jul 2024
Cited by 1 | Viewed by 1356
Abstract
High-k Ba4Sm28/3Ti18O54 ceramics with improved microwave dielectric characteristics were successfully fabricated using the one-step reaction sintering (RS) route. The sintering characteristics, microstructure, crystal structure, infrared reflection spectrum, and microwave dielectric characteristics of Ba4Sm28/3 [...] Read more.
High-k Ba4Sm28/3Ti18O54 ceramics with improved microwave dielectric characteristics were successfully fabricated using the one-step reaction sintering (RS) route. The sintering characteristics, microstructure, crystal structure, infrared reflection spectrum, and microwave dielectric characteristics of Ba4Sm28/3Ti18O54 ceramics prepared by the RS route were systematically investigated. Samples prepared by the RS route exhibited single-phase orthorhombic tungsten–bronze structure and dense microstructure at optimum sintering temperature. Compared with the conventional solid-state (CS) process, the Ba4Sm28/3Ti18O54 ceramics fabricated by the RS route presented a smaller temperature coefficient (TCF), a higher quality factor (Q × f), and a higher permittivity (εr). The improved microwave dielectric characteristics were highly dependent on the theoretical permittivity, atomic packing fraction, suppression of Ti3+, and Ti-site bond valence. Excellent combined microwave dielectric characteristics (TCF = −7.9 ppm/°C, Q × f = 9519 GHz, εr = 80.26) were achieved for Ba4Sm28/3Ti18O54 ceramics prepared by RS route sintered at 1400 °C, suggesting the RS route was a straightforward, economical and effective route to prepare high-performance Ba4Sm28/3Ti18O54 ceramics with promising application potential. Full article
(This article belongs to the Special Issue Structures, Properties, and Phase Transition in Dielectric Ceramics)
Show Figures

Figure 1

Back to TopTop