Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reaney, I.M.; Iddles, D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 2006, 89, 2063–2072. [Google Scholar] [CrossRef]
- Shehbaz, M.; Du, C.; Zhou, D.; Xia, S.; Xu, Z. Recent progress in dielectric resonator antenna: Materials, designs, fabrications, and their performance. Appl. Phys. Rev. 2023, 10, 021303. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Yang, H.; Wen, Q.; Yang, Q.; Gui, L.; Zhao, Q.; Li, E. The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 2021, 10, 885–932. [Google Scholar] [CrossRef]
- Luo, W.; Yan, S.; Zhou, J. Ceramic-based dielectric metamaterials. Interdiscip. Mater. 2022, 1, 11–27. [Google Scholar] [CrossRef]
- Wang, G.; Fu, Q.; Guo, P.; Hu, M.; Wang, H.; Yu, S.; Zheng, Z.; Luo, W. Crystal structure, spectra analysis and dielectric characteristics of Ba4M28/3Ti18O54 (M = La, Pr, Nd, and Sm) microwave ceramics. Ceram. Int. 2021, 47, 1750–1757. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Z.; Li, J. Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications. Coatings 2023, 13, 1732. [Google Scholar] [CrossRef]
- Liu, K.; Shi, L.; Wang, X.; Liu, C.; Li, J.; Liao, Y.; Jin, L.; Zhang, D.; Zhang, H. Li+ enrichment to improve the microwave dielectric properties of Li2ZnTi3O8 ceramics and the relationship between structure and properties. J. Eur. Ceram. Soc. 2023, 43, 1483–1491. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, H.; Peng, R.; Huang, F.; Wu, X.; Tang, X. Effect of phase, chemical bond and vibration characteristics on the microwave dielectric properties of temperature-stable Zn1−x(Li0.5Bi0.5)xMoxW1−xO4 ceramics. J. Eur. Ceram. Soc. 2022, 42, 2813–2819. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, D.; Du, C.; Xu, D.M.; Li, R.T.; Shi, Z.Q.; Darwish, M.A.; Zhou, T.; Jantunen, H. Design and Fabrication of a Satellite Communication Dielectric Resonator Antenna with Novel Low Loss and Temperature-Stabilized (Sm1−xCax)(Nb1−xMox)O4 (x = 0.15–0.7) Microwave Ceramics. Chem. Mater. 2023, 35, 104–115. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Z.; Yang, H.; Zhao, P.; Zhang, X.; Li, Y.; Xiong, Z.; Yang, H.; Zhang, S.; Tang, B. Lattice evolution, ordering transformation and microwave dielectric properties of rock-salt Li3+xMg2−2xNb1−xTi2xO6 solid-solution system: A newly developed pseudo ternary phase diagram. Acta Mater. 2021, 206, 116636. [Google Scholar] [CrossRef]
- Wang, G.; Fu, Q.; Zha, L.; Hu, M.; Huang, J.; Zheng, Z.; Luo, W. Microwave dielectric characteristics of tungsten bronze-type Ba4Nd28/3Ti18−yGa4y/3O54 ceramics with temperature stable and ultra-low loss. J. Eur. Ceram. Soc. 2022, 42, 154–161. [Google Scholar] [CrossRef]
- Yao, G.; Zhao, J.; Lu, Y.; Liu, H.; Pei, C.; Ding, Q.; Chen, M.; Zhang, Y.; Li, D.; Wang, F. Microwave dielectric properties of Li3TiO3F oxyfluorides ceramics. Crystals 2023, 13, 897. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; She, X.; Jia, Q.; Li, J. Improved microstructure and high quality factor of Li2Ti0.9(Zn1/3Ta2/3)0.1O3 microwave ceramics with LiF additive for LTCC applications. J. Eur. Ceram. Soc. 2023, 43, 1469–1476. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhou, D.; Du, C.; Sun, S.K.; Pang, L.X.; Jin, B.B.; Qi, Z.M.; Varghese, J.; Li, Q.; Zhang, X.Q. Temperature stable Sm(Nb1−xVx)O4 (0.0≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C 2021, 9, 9962–9971. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhou, D.; Du, C.; Jin, B.B.; Li, C.; Qi, Z.M.; Sun, S.; Zhou, T.; Li, Q.; Zhang, X.Q. Design of a Sub-6 GHz Dielectric Resonator Antenna with Novel Temperature-Stabilized (Sm1−xBix)NbO4 (x = 0–0.15) Microwave Dielectric Ceramics. ACS Appl. Mater. Interfaces 2022, 14, 7030–7038. [Google Scholar] [CrossRef]
- Zhou, D.; Pang, L.X.; Wang, D.W.; Reaney, I.M. BiVO4 based high k microwave dielectric materials: A review. J. Mater. Chem. C 2018, 6, 9290–9313. [Google Scholar] [CrossRef]
- Zhou, D.; Pang, L.X.; Wang, D.W.; Li, C.; Jin, B.B.; Reaney, I.M. High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 2017, 5, 10094–10098. [Google Scholar] [CrossRef]
- Hu, X.; Chen, X.; Wu, S. Preparation, properties and characterization of CaTiO3-modified Pb (Fe1/2Nb1/2)O3 dielectrics. J. Eur. Ceram. Soc. 2003, 23, 1919–1924. [Google Scholar] [CrossRef]
- Luo, T.; Shan, X.; Zhao, J.; Feng, H.; Zhang, Q.; Yu, H.; Liu, J. Improvement of quality factor of SrTiO3 dielectric ceramics with high dielectric constant using Sm2O3. J. Am. Ceram. Soc. 2019, 102, 3849–3853. [Google Scholar] [CrossRef]
- Ma, F.S.; Zeng, Q.; Feng, Y.Z.; Yao, C.F.; Guo, C.C. Crystal structure and microwave dielectric properties of LiNb0.6Ti0.5O3 ceramics with Zn and Nb co-doped. Mater. Sci. Eng. B 2022, 285, 115919. [Google Scholar] [CrossRef]
- Fang, Z.X.; Tang, B.; Li, E.; Zhang, S.R. High-Q microwave dielectric properties in the Na0.5Sm0.5TiO3+Cr2O3 ceramics by one synthetic process. J. Alloys Compd. 2017, 705, 456–461. [Google Scholar] [CrossRef]
- Yu, T.; Yang, Q.; Feng, H.; Yu, H. Phase composition and microwave dielectric properties of Ca0.128Ba0.032Sm0.46Li0.3TiO3 ceramics with alumina addition. J. Eur. Ceram. Soc. 2022, 42, 1480–1485. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, X.; Tang, B.; Yang, C.; Fang, Z.; Zhang, S. Characterization of structure and properties in CaO-Nd2O3-TiO2 microwave dielectric ceramic modified by Al2O3. Mater. Charact. 2021, 176, 111108. [Google Scholar] [CrossRef]
- Ma, Z.; Guo, W.; Yue, Z. Microwave dielectric properties of Al-doped Ba4(Sm, Nd)9.33Ti18O54 ceramics added with TiO2 and sintered in oxygen. Ceram. Int. 2022, 48, 12906–12913. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Luo, W.; Wang, S.; Yang, T.; Zhou, J. Internal-strain-controlled tungsten bronze structural ceramics for 5G millimeter-wave metamaterials. J. Mater. Chem. C 2021, 9, 14359–14370. [Google Scholar] [CrossRef]
- Ohsato, H. Science of tungstenbronze-type like Ba6−3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J. Eur. Ceram. Soc. 2001, 21, 2703–2711. [Google Scholar] [CrossRef]
- Chen, X.M.; Li, Y. A-and B Site Cosubstituted Ba6−3xSm8+2xTi18O54 Microwave Dielectric Ceramics. J. Am. Ceram. Soc. 2002, 85, 579–584. [Google Scholar] [CrossRef]
- Okudera, H.; Nakamura, H.; Toraya, H.; Ohsato, H. Tungsten Bronze-Type Solid Solutions Ba6−3xSm8+2xTi18O54 (x = 0.3, 0.5, 0.67, 0.71) with Superstructure. J. Solid State Chem. 1999, 142, 336–343. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Chen, X. Raman spectra of Ba6−3xSm8+2xTi18O54 solid solution. J. Phys. Chem. Solids 2003, 64, 2365–2368. [Google Scholar] [CrossRef]
- Xiong, Z.; Tang, B.; Yang, C.; Zhang, S. Correlation between structures and microwave dielectric properties of Ba3.75Nd9.5−xSmxTi17.5(Cr1/2Nb1/2)0.5O54 ceramics. J. Alloys Compd. 2018, 740, 492–499. [Google Scholar] [CrossRef]
- Chen, X.; Qin, N.; Li, Y. Microstructures and Microwave Dielectric Characteristics of Ba6−3x(Sm1−yLay)8+2xTi18O54 Solid Solutions (x = 2/3 and 0.75). J. Electroceram. 2002, 9, 31–35. [Google Scholar] [CrossRef]
- Wang, G.; Fu, Q.; Shi, H.; Tian, F.; Wang, M.; Yan, L.; Zheng, Z.; Luo, W. Suppression of oxygen vacancies generation in Ba6−3xSm8+2xTi18O54 (x = 2/3) microwave dielectric ceramics through Pr substitution. Ceram. Int. 2019, 45, 22148–22155. [Google Scholar] [CrossRef]
- Santha, N.; Sebastian, M. Low temperature sintering and microwave dielectric properties of Ba4Sm9.33Ti18O54 ceramics. Mater. Res. Bull. 2008, 43, 2278–2284. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, G.; He, Y. Sol-gel preparation of Ba6−3xSm8+2xTi18O54 microwave dielectric ceramics. Ceram. Int. 2005, 31, 21–25. [Google Scholar] [CrossRef]
- Guo, Y.; Kakimoto, K.I.; Ohsato, H. Microwave dielectric properties of Ba6−3xSm8+2xTi18O54 (x = 2/3) ceramics produced by spark plasma sintering. Jpn. J. Appl. Phys. 2003, 42, 7410. [Google Scholar] [CrossRef]
- Du, W.; Lu, K.; He, B.; Zhou, X.; Huang, X.; Qi, J.; Lu, T. Direct tape casting of Al2O3/AlN slurry for AlON transparent ceramic wafers via one-step reaction sintering. J. Eur. Ceram. Soc. 2023, 43, 3538–3543. [Google Scholar] [CrossRef]
- Liang, Z.; Huang, R.; Xie, T.; Zhang, Y.; Lin, H.T.; Dai, Y. Improvement of piezoelectric properties of Bi4Ti3O12 ceramics by Mn/Ta co-doping and direct reaction sintering. Ceram. Int. 2023, 49, 20920–20928. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Chen, Y.; Li, K.; Yao, X. Microwave Dielectric Properties of BaTi5O11 Ceramics Prepared by Reaction-Sintering Process with the Addition of CuO. J. Am. Ceram. Soc. 2008, 91, 3444–3447. [Google Scholar] [CrossRef]
- Luo, T.; Yang, Q.; Yu, H.; Liu, J. Formation mechanism and microstructure evolution of Ba2Ti9O20 ceramics by reaction sintering method. J. Am. Ceram. Soc. 2020, 103, 1079–1087. [Google Scholar] [CrossRef]
- Yao, G.; Liu, P.; Zhang, H. Microwave dielectric properties of Li2MgTi3O8 ceramics produced by reaction-sintering method. J. Mater. Sci. Mater. Electron. 2013, 24, 1128–1131. [Google Scholar] [CrossRef]
- Li, J.; Xu, P.; Qiu, T.; Yao, L. Sintering characteristics and microwave dielectric properties of 0.5Ca0.6La0.267TiO3-0.5Ca(Mg1/3Nb2/3)O3 ceramics prepared by reaction-sintering process. J. Rare Earths 2018, 36, 404–408. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Gan, G.; Yang, Y.; Rao, Y.; Xu, F.; Huang, X.; Liao, Y.; Li, J.; Liu, C. Synthesis, crystal structure and low loss of Li3Mg2NbO6 ceramics by reaction sintering process. Ceram. Int. 2019, 45, 19766–19770. [Google Scholar] [CrossRef]
- Qu, X.; He, S.; Li, Q.; Deng, S.; Xiao, Y.; Liu, K.; Chen, X.; Liang, J.; Zhou, H. Microwave dielectric properties of Ca1.15RE0.85Al0.85Ti0.15O4 (RE = Nd, La, Y) ceramics prepared by the reaction sintering method. Ceram. Int. 2023, 49, 716–721. [Google Scholar] [CrossRef]
- Zhou, S.; Wu, Q.; Xu, H.; Luan, X.; Hu, S.; Zhou, X.; He, S.; Wang, X.; Zhang, H.; Chen, X. Synthesis and characterization of reaction sintered CaTiO3-LnAlO3 (Ln = La, Nd) ceramics. Ceram. Int. 2021, 47, 32433–32437. [Google Scholar] [CrossRef]
- Yang, T.; Han, Z.; Liu, P.; Guo, B. Microwave dielectric properties of Mg4Nb2O9 ceramics with excess Mg(OH)2 produced by a reaction-sintering process. Ceram. Int. 2015, 41, S572–S575. [Google Scholar] [CrossRef]
- Tsai, W.C.; Liou, Y.H.; Liou, Y.C. Microwave dielectric properties of MgAl2O4-CoAl2O4 spinel compounds prepared by reaction-sintering process. Mater. Sci. Eng. B 2012, 177, 1133–1137. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P. Preparation for ultra-low loss dielectric ceramics of ZnZrNb2O8 by reaction-sintering process. J. Alloys Compd. 2016, 672, 630–635. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, Y.; Tao, B.; Wu, H.; Zhou, Y. Crystal structure, infrared spectra and microwave dielectric properties of low-firing La2Zr3(MoO4)9 ceramics prepared by reaction-sintering process. Ceram. Int. 2019, 45, 22376–22382. [Google Scholar] [CrossRef]
- Templeton, A.; Wang, X.; Penn, S.J.; Webb, S.J.; Cohen, L.F.; Alford, N.M. Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 2000, 83, 95–100. [Google Scholar] [CrossRef]
- Pullar, R.C.; Penn, S.J.; Wang, X.; Reaney, I.M.; Alford, N.M. Dielectric loss caused by oxygen vacancies in titania ceramics. J. Eur. Ceram. Soc. 2009, 29, 419–424. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Eglitis, R.; Popov, A.I. Charge distribution and optical properties of and F centres in crystals. J. Phys. Condens. Matter 1997, 9, L315. [Google Scholar] [CrossRef]
- Popov, A.; Kotomin, E.; Maier, J. Basic properties of the F-type centers in halides, oxides and perovskites. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 3084–3089. [Google Scholar] [CrossRef]
- He, L.; Yu, H.; Zeng, M.; Luo, T.; Liu, J. 0.73ZrTi2O6-0.27MgNb2O6 microwave dielectric ceramics modified by Al2O3 addition. J. Am. Ceram. Soc. 2018, 101, 5110–5119. [Google Scholar] [CrossRef]
- Negas, T. BaTi4O9/Ba2Ti9O20-Based Ceramics Resurrected for Modern Microwave Applications. Am. Ceram. Soc. Bull. 1993, 72, 80–89. [Google Scholar]
- Nomura, S.; Tomaya, K.; Kaneta, K. Effect of Mn doping on the dielectric properties of Ba2Ti9O20 ceramics at microwave frequency. Jpn. J. Appl. Phys. 1983, 22, 1125. [Google Scholar] [CrossRef]
- Yao, X.; Lin, H.; Chen, W.; Luo, L. Anti-reduction of Ti4+ in Ba4.2Sm9.2Ti18O54 ceramics by doping with MgO, Al2O3 and MnO2. Ceram. Int. 2012, 38, 3011–3016. [Google Scholar] [CrossRef]
- Huang, B.; Yan, Z.; Lu, X.; Wang, L.; Fu, Z.; Zhang, Q. “Dark hole” cure in Ba4.2Nd9.2Ti18O54 microwave dielectric ceramics. Ceram. Int. 2016, 42, 10758–10763. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, J.; Luo, Y.; Yue, Z.; Li, L. Microwave dielectric properties and thermally stimulated depolarization of Al-doped Ba4(Sm, Nd)9.33Ti18O54 ceramics. J. Am. Ceram. Soc. 2019, 102, 5494–5502. [Google Scholar] [CrossRef]
- Hakki, B.; Coleman, P.D. A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Guo, H.H.; Zhou, D.; Liu, W.F.; Pang, L.X.; Wang, D.W.; Su, J.Z.; Qi, Z.M. Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics. J. Am. Ceram. Soc. 2020, 103, 423–431. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, P.; Ma, J.; Zhao, X.; Zhang, H. Novel series of ultra-low loss microwave dielectric ceramics: Li2Mg3BO6 (B = Ti, Sn, Zr). J. Eur. Ceram. Soc. 2016, 36, 625–629. [Google Scholar] [CrossRef]
- Song, X.Q.; Yin, C.Z.; Zou, Z.Y.; Yang, J.Q.; Zeng, F.F.; Wu, J.M.; Shi, Y.S.; Lu, W.Z.; Lei, W. Structural evolution and microwave dielectric properties of CaTiO3-La(Mg2/3Nb1/3)O3 ceramics. J. Am. Ceram. Soc. 2022, 105, 7415–7425. [Google Scholar] [CrossRef]
- Tang, Y.; Shen, S.; Li, J.; Zhao, X.; Xiang, H.; Su, H.; Zhou, D.; Fang, L. Characterization of structure and chemical bond in high-Q microwave dielectric ceramics LiM2GaTi2O8 (M = Mg, Zn). J. Eur. Ceram. Soc. 2022, 42, 4573–4579. [Google Scholar] [CrossRef]
- Kim, E.S.; Chun, B.S.; Freer, R.; Cernik, R.J. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 2010, 30, 1731–1736. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Xiong, Z.; Yang, C.; Tang, B.; Fang, Z.; Chen, H.; Zhang, S. Structure-property relationships of perovskite-structured Ca0.61Nd0.26Ti1−x(Cr0.5Nb0.5)xO3 ceramics. Ceram. Int. 2018, 44, 7384–7392. [Google Scholar] [CrossRef]
- Ubic, R.; Reaney, I.; Lee, W. Microwave dielectric solid–solution phase in system BaO-Ln2O3-TiO2 (Ln = lanthanide cation). Int. Mater. Rev. 1998, 43, 205–219. [Google Scholar] [CrossRef]
- Pang, L.X.; Zhou, D. Modification of NdNbO4 microwave dielectric ceramic by Bi substitutions. J. Am. Ceram. Soc. 2019, 102, 2278–2282. [Google Scholar] [CrossRef]
Method | RS | CS | ||||||
---|---|---|---|---|---|---|---|---|
S.T. | 1300 °C | 1350 °C | 1400 °C | 1450 °C | 1300 °C | 1350 °C | 1400 °C | 1450 °C |
a (Å) | 12.1524 | 12.548 | 12.1476 | 12.1513 | 12.156 | 12.1548 | 12.1596 | 12.1601 |
b (Å) | 22.298 | 22.3001 | 22.2878 | 22.2946 | 22.307 | 22.3037 | 22.312 | 22.3134 |
c (Å) | 7.6636 | 7.6637 | 7.659 | 7.6614 | 7.6612 | 7.6608 | 7.6633 | 7.6637 |
V (Å3) | 2076.983 | 2077.279 | 2073.65 | 2075.567 | 2077.456 | 2076.841 | 2079.12 | 2079.458 |
α = β = γ | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
Rp (%) | 5.86 | 6.26 | 6.03 | 6.37 | 5.79 | 5.94 | 6.00 | 6.14 |
Rwp (%) | 7.58 | 8.04 | 7.62 | 8.23 | 7.44 | 7.69 | 8.01 | 8.37 |
χ2 (%) | 1.38 | 1.6 | 1.45 | 1.71 | 1.55 | 1.59 | 1.81 | 2.04 |
ρth (g/cm3) | 5.883 | 5.882 | 5.893 | 5.886 | 5.88 | 5.884 | 5.875 | 5.876 |
Method | Measured | Calculated | ||||||
---|---|---|---|---|---|---|---|---|
εr | Q × f (GHz) | f (GHz) | tanδ | TCF (ppm/°C) | εthe | P.F. (%) | VTi (v.u.) | |
RS (1400 °C) | 80.26 ± 0.5 | 9519 ± 100 | 5.882 | 6.18 × 10−4 ± 0.07 × 10−4 | −7.9 ± 1 | 43.27 | 71.88 | 4.136 |
CS (1400 °C) | 79.38 ± 0.5 | 8230 ± 100 | 6.211 | 7.55 × 10−4 ± 0.09 × 10−4 | −12.1 ± 1 | 41.65 | 71.69 | 4.109 |
Method | Binding Energy (eV) | Binding Energy (eV) | Relative Peak Area Ratio (%) | ||
---|---|---|---|---|---|
Ti2p1/2 | Ti2p3/2 | Ti3+/(Ti3+ + Ti4+) | |||
IV | III | IV | III | ||
RS (1400 °C) | 464 | 463.5 | 458.3 | 457.8 | 11.87% |
CS (1400 °C) | 464 | 463.5 | 458.3 | 457.8 | 27.63% |
No | Method | S.T. | C.T. | εr | Q × f | TCF | Ref. |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (GHz) | (ppm/°C) | ||||
1 | Sol–gel | 1360 °C for 3 h | 1000 °C for 3 h | 80.8 | 10,099 | [34] | |
2 | Spark plasma sintering (SPS) | 1200 °C for 5 min | 1100 °C for 2 h | 81.2 | 10,099 | −17.2 | [35] |
3 | Conventional solid-state (CS) | 1360 °C for 3 h | 1200 °C for 3 h | 81 | 9240 | −10.6 | [27] |
4 | Conventional solid-state (CS) | 1350 °C for 4 h | 1175 °C for 4 h | 76 | 10,025 | −12 | [33] |
5 | Conventional solid-state (CS) | 1400 °C for 4 h | 1150 °C for 3 h | 79.38 ± 0.5 | 8230 ± 100 | −12.1 ± 1 | This work |
6 | Reaction sintering (RS) | 1400 °C for 4 h | No calcining | 80.26 ± 0.5 | 9519 ± 100 | −7.9 ± 1 | This work |
Mode | ωoj | ωpj | γj | ∆εj |
---|---|---|---|---|
1 | 59.372 | 150.39 | 12.98 | 6.42 |
2 | 77.686 | 215.05 | 15.459 | 7.66 |
3 | 94.164 | 265.45 | 12.737 | 7.95 |
4 | 110.92 | 170.5 | 11.841 | 2.36 |
5 | 119.79 | 143.96 | 9.8071 | 1.44 |
6 | 136.27 | 549.38 | 20.392 | 16.3 |
7 | 180.78 | 608.44 | 47.303 | 11.3 |
8 | 220.41 | 651.18 | 40.424 | 8.73 |
9 | 254 | 397.26 | 33.883 | 2.45 |
10 | 276.38 | 393.1 | 29.563 | 2.02 |
11 | 321.14 | 233.55 | 25.539 | 0.529 |
12 | 342.62 | 193.1 | 25.398 | 0.318 |
13 | 364.24 | 135.29 | 24.327 | 0.138 |
14 | 389.39 | 158.91 | 22.899 | 0.167 |
15 | 415.22 | 210.92 | 44.179 | 0.258 |
16 | 455.19 | 129.34 | 31.593 | 0.0807 |
17 | 473.33 | 121.35 | 44.58 | 0.0657 |
18 | 533.19 | 212.21 | 39.59 | 0.158 |
19 | 559.52 | 378.82 | 41.725 | 0.458 |
20 | 584.43 | 267.57 | 42.129 | 0.21 |
21 | 617.56 | 238 | 43.317 | 0.149 |
22 | 732.06 | 95.576 | 42.165 | 0.017 |
23 | 776.86 | 82.733 | 65.188 | 0.0113 |
24 | 829.14 | 158.21 | 50.895 | 0.0364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhou, H.; Xiong, G.; Wang, H.; Wang, G. Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering. Materials 2024, 17, 3477. https://doi.org/10.3390/ma17143477
Li Z, Zhou H, Xiong G, Wang H, Wang G. Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering. Materials. 2024; 17(14):3477. https://doi.org/10.3390/ma17143477
Chicago/Turabian StyleLi, Zeping, Huajian Zhou, Gang Xiong, Huifeng Wang, and Geng Wang. 2024. "Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering" Materials 17, no. 14: 3477. https://doi.org/10.3390/ma17143477
APA StyleLi, Z., Zhou, H., Xiong, G., Wang, H., & Wang, G. (2024). Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering. Materials, 17(14), 3477. https://doi.org/10.3390/ma17143477