Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = microneedle method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 902 KB  
Article
Comparative Study of Azelaic Acid Peeling vs. Tranexamic Acid Microneedling for the Treatment of Melasma
by Guilherme dos Anjos Camargo, Daniella Woinarovicz Menegheti, Leticia Simeoni Avais, Evelyn Assis de Andrade, Patrícia Mathias Döll Boscardin and Giovani Marino Favero
Dermato 2025, 5(3), 16; https://doi.org/10.3390/dermato5030016 - 4 Sep 2025
Abstract
Melasma is an acquired hyperpigmentation that is more common in women and mainly affects the face. It can significantly reduce quality of life due to its chronic nature and resistance to treatment. Objectives: This study aimed to compare the clinical efficacy of azelaic [...] Read more.
Melasma is an acquired hyperpigmentation that is more common in women and mainly affects the face. It can significantly reduce quality of life due to its chronic nature and resistance to treatment. Objectives: This study aimed to compare the clinical efficacy of azelaic acid peeling and combined tranexamic acid microneedling in patients with melasma, evaluating the impact of these therapies on skin depigmentation. Methods: This was a prospective clinical trial with a split-face design, using a convenience sample. Patients were recruited and divided into two groups for comparative treatment. Microneedling with 4 mg/mL tranexamic acid was applied to the right hemiface and 30% azelaic acid peeling to the left hemiface. The protocol included five sessions with a 15-day interval. Photographic records were taken before treatment, in the fifth session, and 15 days after the last session. The Melasma Area and Severity Index (MASI) and non-parametric tests were used to analyze the results. Results: The study included 10 patients, of whom 9 completed the treatment. The average age was 42 years. The most common skin phototype was type III (50%) and the predominant locations were the central facial area, forehead, and cheeks (55.6%). The photographic evaluation and MASI showed a significant improvement on both sides of the face, with the final values better than the initial ones. It was possible to observe that the azelaic acid peeling showed a significant whitening after the fourth session when compared to the other method. Conclusions: The clinical study of hemifaces concluded that both the azelaic acid peeling and microneedling with tranexamic acid are effective in the treatment of melasma, with the azelaic acid peeling showing results after the fourth session. Further studies with larger, randomized samples are recommended. Full article
Show Figures

Graphical abstract

19 pages, 4580 KB  
Article
Rapidly Dissolving Microneedles Incorporating Lidocaine Hydrochloride: A PVP/PVA-Based Approach for Local Anesthesia
by Su Young Jin, Eugene Jae-Jin Park, Sae Min Kwon, Hyoung-Seok Jung and Dong Wuk Kim
Pharmaceutics 2025, 17(9), 1100; https://doi.org/10.3390/pharmaceutics17091100 - 23 Aug 2025
Viewed by 506
Abstract
Background/Objectives: Lidocaine is a widely used local anesthetic, but injections and topical creams are often painful or slow in onset. This study aimed to develop dissolving microneedles incorporating lidocaine hydrochloride for rapid and convenient local anesthesia. Methods: Six formulations were prepared with polyvinylpyrrolidone [...] Read more.
Background/Objectives: Lidocaine is a widely used local anesthetic, but injections and topical creams are often painful or slow in onset. This study aimed to develop dissolving microneedles incorporating lidocaine hydrochloride for rapid and convenient local anesthesia. Methods: Six formulations were prepared with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) and evaluated for mechanical strength, skin insertion, drug release, and transdermal permeability. Results: Sharp pyramidal microneedles were successfully fabricated, with PVP–PVA mixtures producing stronger needles than single polymers. The optimized F5 formulation showed high strength (>32 N), efficient skin insertion (four parafilm layers), and rapid release (>80% within 15 min). In ex vivo studies, F5 delivered >600 µg/mL lidocaine in 15 min, over three times the therapeutic level and much faster than Emla cream (5%). Conclusions: PVP–PVA microneedles represent a promising platform for painless, rapid local anesthesia, combining the benefits of injections and topical creams while minimizing their drawbacks. Full article
Show Figures

Graphical abstract

20 pages, 3766 KB  
Review
Challenges, Unmet Needs, and Future Directions for Nanocrystals in Dermal Drug Delivery
by Muzn Alkhaldi and Cornelia M. Keck
Molecules 2025, 30(15), 3308; https://doi.org/10.3390/molecules30153308 - 7 Aug 2025
Viewed by 666
Abstract
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical [...] Read more.
Nanocrystals, defined as crystalline particles with dimensions in the nanometer range (<1000 nm), exhibit unique properties that enhance the efficacy of poorly soluble active compounds. This review explores the fundamental aspects of nanocrystals, including their characteristics and various preparation methods, while addressing critical factors that influence their stability and incorporation into final products. A key focus of the review is the advantages offered by nanocrystals in dermal applications. It also highlights their ability to enhance passive diffusion into the skin and facilitate penetration via particle-assisted dermal penetration. Additionally, the review discusses their capacity to penetrate into hair follicles, enabling targeted drug delivery, and their synergistic potential when combined with microneedles, which further enhance the dermal absorption of active compounds. The review also addresses several commercial products that successfully employ nanocrystal technology, showcasing its practical applications. Summary: Nanocrystals with their special properties are an emerging trend for dermal applications, particularly the development of plantCrystals—natural nanocrystals sourced from plant materials—which represent a promising path for future research and formulation strategies. These advancements could lead to more sustainable and effective dermal products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

49 pages, 8322 KB  
Review
Research Progress on the Application of Novel Wound Healing Dressings in Different Stages of Wound Healing
by Lihong Wang, Xinying Lu, Yikun Wang, Lina Sun, Xiaoyu Fan, Xinran Wang and Jie Bai
Pharmaceutics 2025, 17(8), 976; https://doi.org/10.3390/pharmaceutics17080976 - 28 Jul 2025
Viewed by 941
Abstract
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have [...] Read more.
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have become a focal point in current clinical research. In recent years, hydrogels, microneedles, and electrospun nanofibers have emerged as three novel types of wound dressings. By influencing various stages of healing, they have notably enhanced chronic wound healing outcomes and hold considerable potential for wound repair applications. This review describes the preparation methods, classification, and applications of hydrogels, microneedles, and electrospun nanofibers around the various stages of wound healing, clarifying the healing-promoting mechanisms and characteristics of the three methods in different stages of wound healing. Building upon this foundation, we further introduce smart responsiveness, highlighting the application of stimuli-responsive wound dressings in dynamic wound management, aiming to provide insights for future research. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

38 pages, 12524 KB  
Article
Therapeutic Efficacy of Plant-Derived Exosomes for Advanced Scar Treatment: Quantitative Analysis Using Standardized Assessment Scales
by Lidia Majewska, Agnieszka Kondraciuk, Iwona Paciepnik, Agnieszka Budzyńska and Karolina Dorosz
Pharmaceuticals 2025, 18(8), 1103; https://doi.org/10.3390/ph18081103 - 25 Jul 2025
Viewed by 1715
Abstract
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose [...] Read more.
Background: Wound healing and scar management remain significant challenges in dermatology and aesthetic medicine. Recent advances in regenerative medicine have introduced plant-derived exosome-like nanoparticles (PDENs) as potential therapeutic agents due to their bioactive properties. This study examines the clinical application of rose stem cell exosomes (RSCEs) in combination with established treatments for managing different types of scars. Methods: A case series of four patients with different scar etiologies (dog bite, hot oil burn, forehead trauma, and facial laser treatment complications) was treated with RSCEs in combination with microneedling (Dermapen 4.0, 0.2–0.4 mm depth) and/or thulium laser therapy (Lutronic Ultra MD, 8–14 J), or as a standalone topical treatment. All cases underwent sequential treatments over periods ranging from two to four months, with comprehensive photographic documentation of the progression. The efficacy was assessed through clinical photography and objective evaluation using the modified Vancouver Scar Scale (mVSS) and the Patient and Observer Scar Assessment Scale (POSAS), along with assessment of scar appearance, texture, and coloration. Results: All cases demonstrated progressive improvement throughout the treatment course. The dog bite scar showed significant objective improvement, with a 71% reduction in modified Vancouver Scar Scale score (from 7/13 to 2/13) and a 61% improvement in Patient and Observer Scar Assessment Scale scores after four combined treatments. The forehead trauma case exhibited similar outcomes, with a 71% improvement in mVSS score and 55–57% improvement in POSAS scores. The hot oil burn case displayed the most dramatic improvement, with a 78% reduction in mVSS score and over 70% improvement in POSAS scores, resulting in near-complete resolution without visible scarring. The facial laser complication case showed a 75% reduction in mVSS score and ~70% improvement in POSAS scores using only topical exosome application without device-based treatments. Clinical improvements across all cases included reduction in elevation, improved texture, decreased erythema, and better integration with surrounding skin. No adverse effects were reported in any of the cases. Conclusions: This preliminary case series suggests that plant-derived exosome-like nanoparticles, specifically rose stem cell exosomes (RSCEs), may enhance scar treatment outcomes when combined with microneedling and laser therapy, or even as a standalone topical treatment. The documented objective improvements, measured by standardized scar assessment scales, along with clinical enhancements in scar appearance, texture, and coloration across different scar etiologies—dog bite, burn, traumatic injury, and iatrogenic laser damage—suggest that this approach may offer a valuable addition to the current armamentarium of scar management strategies. Notably, the successful treatment of laser-induced complications using only topical exosome application demonstrates the versatility and potential of this therapeutic modality. Full article
Show Figures

Figure 1

39 pages, 1536 KB  
Review
Transdermal Drug Delivery Systems: Methods for Enhancing Skin Permeability and Their Evaluation
by Elena O. Bakhrushina, Marina M. Shumkova, Yana V. Avdonina, Arsen A. Ananian, Mina Babazadeh, Ghazaleh Pouya, Viktoria V. Grikh, Irina M. Zubareva, Svetlana I. Kosenkova, Ivan I. Krasnyuk and Ivan I. Krasnyuk
Pharmaceutics 2025, 17(7), 936; https://doi.org/10.3390/pharmaceutics17070936 - 20 Jul 2025
Cited by 1 | Viewed by 2455
Abstract
Transdermal drug delivery (TDD) is an increasingly important non-invasive method for administering active pharmaceutical ingredients (APIs) through the skin barrier, offering advantages such as improved therapeutic efficacy and reduced systemic side effects. As demand increases for patient-friendly and minimally invasive treatment options, TDD [...] Read more.
Transdermal drug delivery (TDD) is an increasingly important non-invasive method for administering active pharmaceutical ingredients (APIs) through the skin barrier, offering advantages such as improved therapeutic efficacy and reduced systemic side effects. As demand increases for patient-friendly and minimally invasive treatment options, TDD has attracted substantial attention in research and clinical practice. This review summarizes recent advances enhancing skin permeability through chemical enhancers (e.g., ethanol, fatty acids, terpenes), physical (e.g., iontophoresis, microneedles, sonophoresis), and nanotechnological methods (e.g., liposomes, ethosomes, solid lipid nanoparticles, and transferosomes). A comprehensive literature analysis, including scientific publications, regulatory guidelines, and patents, was conducted to identify innovative methods and materials used to overcome the barrier properties of the stratum corneum. Special emphasis was placed on in vitro, ex vivo, and in vivo evaluation techniques for such as Franz diffusion cells for assessing drug permeation and skin interactions. The findings highlight the importance of active physical methods, passive nanostructured systems, and chemical penetration enhancers. In conclusion, integrating multiple analytical techniques is essential for the rational design and optimization of effective transdermal drug delivery systems. Full article
(This article belongs to the Special Issue Dermal and Transdermal Drug Delivery Systems)
Show Figures

Graphical abstract

23 pages, 6291 KB  
Article
Application of Standardized Rosa damascena Stem Cell-Derived Exosomes in Dermatological Wound Healing and Scar Management: A Retrospective Case-Series Study with Long-Term Outcome Assessment
by Lidia Majewska, Agnieszka Kondraciuk, Karolina Dorosz and Agnieszka Budzyńska
Pharmaceutics 2025, 17(7), 910; https://doi.org/10.3390/pharmaceutics17070910 - 14 Jul 2025
Cited by 2 | Viewed by 1305
Abstract
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of [...] Read more.
Background: Scar formation and impaired wound healing represent significant challenges in dermatology and aesthetic medicine, with limited effective treatment options currently available. Objectives: To evaluate the efficacy and long-term outcomes of Damask rose stem-cell-derived exosome (RSCE) therapy in the management of diverse dermatological conditions, including traumatic wounds, surgical scars, and atrophic acne scars. Methods: We conducted a case series study from June 2023 to November 2024, documenting four cases with different types of skin damage treated with lyophilized RSCE products. Treatment protocols included a variety of delivery methods such as topical application, microneedling, and post-procedure care. Follow-up assessments were performed at intervals ranging from 7 days to 10 months. Results: All patients demonstrated significant improvements in scar appearance, skin elasticity, hydration, and overall tissue quality. In traumatic facial injury, RSCE therapy facilitated reduction in scar contracture and improved functional outcomes. For atrophic acne scars, comparative treatment of facial sides showed enhanced results with RSCE addition. Acute wounds exhibited accelerated healing with reduced inflammation, while chronic wounds demonstrated improved epithelialization and long-term scar quality. Conclusions: This case series provides preliminary evidence suggesting that RSCE therapy may offer significant benefits in wound healing and scar management. The observed improvements in tissue regeneration, inflammatory modulation, and long-term aesthetic outcomes warrant further investigation through controlled clinical trials. Full article
Show Figures

Figure 1

25 pages, 1263 KB  
Review
Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy
by Fatma Julide Akbuğa, Muhammet Davut Arpa and Emine Şalva
Int. J. Mol. Sci. 2025, 26(13), 6235; https://doi.org/10.3390/ijms26136235 - 27 Jun 2025
Cited by 1 | Viewed by 695
Abstract
Transdermal drug delivery systems have recently been explored as an alternative to oral systems, which have many challenges. Due to the limitations of first-generation transdermal systems, second- and third-generation systems have been developed, among which microneedles have been the most remarkable products. Building [...] Read more.
Transdermal drug delivery systems have recently been explored as an alternative to oral systems, which have many challenges. Due to the limitations of first-generation transdermal systems, second- and third-generation systems have been developed, among which microneedles have been the most remarkable products. Building on the advancements of nanotechnology, nanoneedles have recently been developed. Gene therapy molecules—such as DNA, RNA, siRNA, miRNA, and other nucleic acids—are typically delivered using viral or chemical carriers, but these methods face several challenges. In this context, nanoneedles offer a promising and efficient solution for delivering these large molecules. Nanoneedles are a biocompatible and reliable physical method for gene delivery, enabling transdermal administration by penetrating the skin barrier and delivering nucleic acids directly into cells. Their ability to penetrate cellular barriers with minimal invasiveness makes them advantageous for delivering genetic materials. This review will focus on the potential applications of nanoneedles in pharmaceutical contexts, especially in gene therapy. In addition, information on the properties, structure, and fabrication of nanoneedles is also provided. Full article
(This article belongs to the Special Issue Nanomedicine in Gene Therapy and Immunotherapy)
Show Figures

Figure 1

14 pages, 1059 KB  
Systematic Review
Role of Hyaluronic Acid in Post-Blepharoplasty Volume Restoration and Complication Management: A Systematic Review
by Alaa Safia, Uday Abd Elhadi, Shlomo Merchavy, Ramzy Batheesh and Naji Bathish
J. Clin. Med. 2025, 14(13), 4572; https://doi.org/10.3390/jcm14134572 - 27 Jun 2025
Viewed by 734
Abstract
Background: Hyaluronic acid (HA) has emerged as a favored adjunct to restore volume after blepharoplasty and is very effective in the treatment of postoperative hollowness, sagging, and asymmetry. Its efficacy, rate of complications, and optimal injection technique are different in different clinical studies. [...] Read more.
Background: Hyaluronic acid (HA) has emerged as a favored adjunct to restore volume after blepharoplasty and is very effective in the treatment of postoperative hollowness, sagging, and asymmetry. Its efficacy, rate of complications, and optimal injection technique are different in different clinical studies. Hyaluronidase has been studied by diverse methods in the treatment of HA complications, including chronic edema and surgical distortion. This study critically evaluated the efficacy, safety, and technical aspects of HA in the context of blepharoplasty outcomes. Methods: A systematic review was performed to evaluate the use of HA and hyaluronidase for post-blepharoplasty volume rejuvenation and the treatment of complications. Studies describing HA injection technique, time interval between blepharoplasty and injection, volumetric maintenance, complication rates, esthetic and functional results, and patient satisfaction scores were considered. Risk of bias was estimated with the ROBINS-I tool. Results: Sample sizes across the five included studies ranged from 5 to 109 patients, and follow-up intervals ranged from 1 month to 7 years. The age of patients ranged from 31 to 76 years, and females accounted for 86% of the participants in some studies. Injection of HA successfully restored meaningful volume, with retention persisting for over 12 months in the majority of cases. HA preoperative injection caused significant patient satisfaction in a short duration and was not associated with severe complications; delayed injection caused slight distortions in some revision operations. Lipofilling showed a reduced rate of complications (12%) compared with isolated blepharoplasty (20%), suggesting its utility as an adjuvant procedure of volume restoration. Hyaluronidase successfully treated recalcitrant edema, with improvements ranging from 50% to 100%, while the application of adjuvant RF microneedling caused complete remission (100%) in subjects with multiple treatments. The application of ultrasound imaging made measurements more precise, although methods of clinical assessment were significantly heterogeneous among the studies. Conclusions: HA displayed efficacy in terms of efficient volume restoration after blepharoplasty, especially when technique, time, and filler selection are meticulously optimized. In comparison to lipofilling, HA is seen as somewhat safer because of its reversibility and lower likelihood of adverse vascular events. Nonetheless, considerable variability in filler type, amount, timing of administration, and result evaluation constrains conclusive clinical recommendations. The use of hyaluronidase is an effective remedial approach for overcorrection or ongoing edema. Full article
Show Figures

Figure 1

18 pages, 664 KB  
Review
Hydrogels in Veterinary Vaccine Development: Types, Mechanisms, and Applications
by Peisen Zhao, Yuwei Yang, Lingxue Yu, Guoxin Li and Dandan Zhu
Gels 2025, 11(6), 468; https://doi.org/10.3390/gels11060468 - 18 Jun 2025
Viewed by 754
Abstract
This review examines the potential and challenges of using hydrogel vaccine delivery systems in animal immunization. Traditional methods face issues like low immunogenicity, reliance on cold chains, and inefficient delivery, limiting their use in modern animal husbandry. Hydrogels offer a promising solution due [...] Read more.
This review examines the potential and challenges of using hydrogel vaccine delivery systems in animal immunization. Traditional methods face issues like low immunogenicity, reliance on cold chains, and inefficient delivery, limiting their use in modern animal husbandry. Hydrogels offer a promising solution due to their biocompatibility, controlled drug release, and immune regulation. This paper highlights hydrogels’ benefits, such as mimicking natural infection through sustained antigen release, boosting antigen-presenting cell activity, activating immune responses, and forming barriers at mucosal sites to prevent pathogen invasion. Additionally, innovative delivery methods like microneedle patches and nasal sprays show promise in enhancing convenience and compliance in animal vaccination. By combining interdisciplinary efforts and technological advancements, the hydrogel vaccine delivery system is anticipated to be crucial in preventing animal diseases, supporting sustainable animal husbandry, and ensuring global animal health and food safety. Full article
(This article belongs to the Special Issue Recent Advances in Multi-Functional Polymer-Based Hydrogels)
Show Figures

Graphical abstract

36 pages, 3955 KB  
Review
Electrochemical Microneedles for Real-Time Monitoring in Interstitial Fluid: Emerging Technologies and Future Directions
by Suhyeon Cha, Min Yu Choi, Min Jung Kim, Sang Baek Sim, Izzati Haizan and Jin-Ha Choi
Biosensors 2025, 15(6), 380; https://doi.org/10.3390/bios15060380 - 12 Jun 2025
Viewed by 2359
Abstract
Conventional blood-based detection methods for biomarkers and analytes face significant limitations, including complex processing, variability in blood components, and the inability to provide continuous monitoring. These challenges hinder the early diagnosis and effective management of various health conditions. Electrochemical microneedles (MNs) have emerged [...] Read more.
Conventional blood-based detection methods for biomarkers and analytes face significant limitations, including complex processing, variability in blood components, and the inability to provide continuous monitoring. These challenges hinder the early diagnosis and effective management of various health conditions. Electrochemical microneedles (MNs) have emerged as a minimally invasive and highly efficient platform to overcome these barriers, enabling continuous molecular monitoring by directly accessing the interstitial fluid. Electrochemical MNs offer several advantages, including reduced patient discomfort, real-time data acquisition, enhanced specificity, and potential applications in wearable, long-term monitoring. In this review, we first analyze material selection and fabrication techniques to optimize sensor performance, stability, and biocompatibility. We then examine diverse detection strategies utilized in electrochemical MNs, including enzyme-based, aptamer-based, and antibody-based sensing mechanisms, each offering unique benefits in sensitivity and selectivity. Finally, we highlight the integration of electrochemical MN technology with multi-target detection, AI-driven analytics, and theragnostic capabilities. This convergence offers strong potential for smart healthcare and precision medicine. Through these technological innovations, electrochemical MNs are expected to play an important role in advancing continuous, noninvasive health monitoring and personalized medical care. Full article
Show Figures

Figure 1

10 pages, 1787 KB  
Article
Functionalized Polymeric Microneedles for Transdermal Delivery of Ovalbumin Protein Antigen
by Yi Liu, Feng Tan, Decheng Zhao, Liwen Zhang, Nianni Zhang, Chengwei Bai, Ziyang Guo, Xiongjian Guan and Guanyu Chen
Pharmaceutics 2025, 17(6), 737; https://doi.org/10.3390/pharmaceutics17060737 - 4 Jun 2025
Cited by 1 | Viewed by 645
Abstract
Background/Objectives: Microneedles represent an innovative transdermal drug delivery approach, especially for protein antigens. This study aimed to develop a dual-functional, dissolvable microneedle system loaded with β-glucan and fucoidan in a hyaluronic acid matrix to achieve transdermal immunomodulation and reactive oxygen species (ROS) regulation, [...] Read more.
Background/Objectives: Microneedles represent an innovative transdermal drug delivery approach, especially for protein antigens. This study aimed to develop a dual-functional, dissolvable microneedle system loaded with β-glucan and fucoidan in a hyaluronic acid matrix to achieve transdermal immunomodulation and reactive oxygen species (ROS) regulation, exploring its potential in inflammatory disease management and antigen delivery. Methods: The microneedles were fabricated using a two-step casting method. Their morphology, mechanical strength, and dissolution kinetics were characterized. In vitro experiments evaluated the ROS-modulating effects on human dermal fibroblasts, while in vivo studies on C57 mice investigated immune activation and lymph node accumulation of ovalbumin antigen. Results: The microneedles exhibited a mechanical strength exceeding 7.45 N/needle and dissolved within 50 s. β-glucan transiently reduced ROS levels at 6 h followed by a rebound, whereas fucoidan sustained ROS suppression after 12 h. In mice, β-glucan-loaded microneedles triggered local immune activation, and fucoidan-incorporated microneedles enhanced ovalbumin accumulation in lymph nodes by 2.1-fold compared to controls. Conclusions: Integrating β-glucan’s immunostimulatory and fucoidan’s ROS-scavenging/lymphatic-targeting properties within a single microneedle platform offers a promising multifunctional strategy for treating inflammatory diseases and delivering protein antigens. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Figure 1

29 pages, 7096 KB  
Review
Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection
by Weiqing Yang, Ying Chen, Xingliang Cheng, Shuojiang Liu, Huiqi Zhu and Yuling Hu
Biosensors 2025, 15(6), 350; https://doi.org/10.3390/bios15060350 - 1 Jun 2025
Cited by 1 | Viewed by 1254
Abstract
The efficient and non-invasive collection of biological samples has become a critical challenge for the continued development of surface-enhanced Raman scattering (SERS). When integrated with minimally invasive microneedle (MN) sampling technology, SERS enhances its applicability in real-time, non-invasive molecular detection. This review focuses [...] Read more.
The efficient and non-invasive collection of biological samples has become a critical challenge for the continued development of surface-enhanced Raman scattering (SERS). When integrated with minimally invasive microneedle (MN) sampling technology, SERS enhances its applicability in real-time, non-invasive molecular detection. This review focuses on the latest advances in MN-based SERS sensors. Firstly, a comprehensive summary is presented of MN types and research progress in the design and engineering of SERS-active MNs. Then, the sampling method of SERS MNs and the MN-based SERS detection mode are also described in detail. Finally, the applications of SERS MNs in fields such as disease diagnosis, drug monitoring, and food safety are highlighted. Additionally, current challenges are discussed and future development prospects are prospected with the aim of contributing to the design of MN-based SERS sensors for diverse applications. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

17 pages, 3934 KB  
Article
Efficacy of Dissolvable Microneedle Patches with Skincare Actives in Acne Management: A Monocentric Clinical Trial
by Muhammet Avcil, Jens Klokkers, Dohyeon Jeong and Ayhan Celik
Biologics 2025, 5(2), 15; https://doi.org/10.3390/biologics5020015 - 27 May 2025
Viewed by 3410
Abstract
Background: Dissolvable Microneedle Patches (DMP) have emerged as a promising approach for improved topical delivery of skincare agents with dermatological values (dermo-cosmetics), effectively addressing the various skin concerns. These patches enable minimally invasive penetration of the skin’s outer layer, facilitating efficient transdermal delivery [...] Read more.
Background: Dissolvable Microneedle Patches (DMP) have emerged as a promising approach for improved topical delivery of skincare agents with dermatological values (dermo-cosmetics), effectively addressing the various skin concerns. These patches enable minimally invasive penetration of the skin’s outer layer, facilitating efficient transdermal delivery of actives by overcoming skin barrier for successful outcomes. Objectives: The aim of this work was to assess the efficacy and safety of hyaluronic acid-based microneedle patches (HA-MNP) with agents for the managements of an inflammatory disorder of acne. A particular focus was on helping individuals with moderate inflammatory acne. Methods: A single-center clinical trial was conducted over a period of four weeks on acne patients. Measurable skin properties, including sebum content, redness, and severity of inflammation, were evaluated to gauge the overall usefulness of the MN patches. Results: The application of the patches resulted in a significant decrease in sebum content, with reductions of −4.9% and −36.8% observed after two and four weeks of use, respectively. The redness of localized acne lesions also showed a marked decline, with reductions of −47.2% and −65.5% observed after two and four weeks of use, respectively. Additionally, the severity of inflammatory signs in acne lesions showed significant improvements, with reductions of −68.8% and −83.3% observed for the application periods. The patches utilized in this investigation exhibited highly encouraging results, displaying a notable synergistic effect in the context of combating acne without adverse effects. Conclusions: The patches have the potential to be broadly applied as a modular and adaptable approach for therapeutic delivery of actives for various skin diseases and concerns. Full article
Show Figures

Figure 1

30 pages, 5171 KB  
Review
Recent Insights into the Potential and Challenges of Sericin as a Drug Delivery Platform for Multiple Biomedical Applications
by Qisan Ma, Saniya Salathia, Maria Rosa Gigliobianco, Cristina Casadidio, Piera Di Martino and Roberta Censi
Pharmaceutics 2025, 17(6), 695; https://doi.org/10.3390/pharmaceutics17060695 - 26 May 2025
Cited by 2 | Viewed by 1186
Abstract
Sericin, a glycoprotein derived from silk cocoons, has gained significant attention as a versatile biomaterial for drug delivery due to its biocompatibility, biodegradability, and amphipathic nature. This review explores recent advancements in sericin-based drug delivery systems across three key therapeutic domains: antimicrobial applications, [...] Read more.
Sericin, a glycoprotein derived from silk cocoons, has gained significant attention as a versatile biomaterial for drug delivery due to its biocompatibility, biodegradability, and amphipathic nature. This review explores recent advancements in sericin-based drug delivery systems across three key therapeutic domains: antimicrobial applications, anticancer treatments, and neurodegenerative diseases. Various fabrication techniques, including nanoparticles, hydrogels, and microneedles, have been investigated to optimize drug encapsulation, targeted release, and bioavailability. While sericin holds great promise for overcoming challenges associated with synthetic polymers, issues such as molecular variability, formulation stability, and regulatory considerations remain critical hurdles. Future research should focus on optimizing sericin extraction methods, enhancing structural stability, and integrating it with cutting-edge biomedical technologies to maximize its therapeutic efficacy. Full article
(This article belongs to the Special Issue Proteases and Serpins: Therapeutic Targets for Various Diseases)
Show Figures

Graphical abstract

Back to TopTop