Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection
Abstract
:1. Introduction
2. Types of Microneedles for SERS Sensing
2.1. Metal Microneedles
2.2. Polymer Microneedles
2.3. Other Microneedles
3. Modification of Microneedles for SERS Sensing
3.1. AuNP-Based Modification
3.2. AgNP-Based Modification
3.3. Composite Metal-Based Modification
3.4. MOF-Based Modification
3.5. MXene-Based Modifications
4. Microneedle Sampling for SERS Detection
4.1. Microneedle Sampling Mode
4.1.1. Solid Microneedles
4.1.2. Hollow Microneedles
4.1.3. Hydrogel Microneedles
4.2. SERS Detection Mode
4.2.1. In Situ Detection
4.2.2. Ex Situ Detection
4.3. Accuracy and Reproducibility of MN-SERS System
4.3.1. Consistency and Accuracy of ISF Sampling Using Microneedles
4.3.2. Reproducibility of SERS Detection
5. Application of SERS Microneedle
5.1. Disease Diagnosis
5.2. Drug Monitoring
5.3. Food Safety Analysis
5.4. Other Application
6. Challenges of Translating from Lab to Clinical and Market Levels
7. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Walkey, C.D.; Chan, W.C.W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799. [Google Scholar] [CrossRef] [PubMed]
- Camden, J.P.; Dieringer, J.A.; Wang, Y.M.; Masiello, D.J.; Marks, L.D.; Schatz, G.C.; Van Duyne, R.P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Xia, Z.; Yan, F.; Feng, X.; Zhang, G.; Li, X. Inkjet Printing Patterned Plasmonic SERS Platform with Surface-Optimized Paper for Label-Free Detection of Illegal Drugs in Urine. Anal. Chem. 2024, 96, 16834–16841. [Google Scholar] [CrossRef]
- Yi, X.; Yuan, Z.; Yu, X.; Zheng, L.; Wang, C. Novel Microneedle Patch-Based Surface-Enhanced Raman Spectroscopy Sensor for the Detection of Pesticide Residues. ACS Appl. Mater. Interfaces 2023, 15, 4873–4882. [Google Scholar] [CrossRef]
- Cao, J.; Hu, S.; Tang, W.; Wang, Y.; Yang, Y.; Wang, F.; Guo, X.; Ying, Y.; Liu, X.; Wen, Y.; et al. Reactive Hydrogel Patch for SERS Detection of Environmental Formaldehyde. ACS Sens. 2023, 8, 1929–1938. [Google Scholar] [CrossRef]
- Ma, G.; Wu, C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release 2017, 251, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.; Douroumis, D. Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv. Transl. Res. 2015, 5, 311–312. [Google Scholar] [CrossRef]
- Kim, D.; Cao, Y.T.; Mariappan, D.; Bono, M.S.; Hart, A.J.; Marelli, B. A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply Chain. Adv. Funct. Mater. 2021, 31, 2005370. [Google Scholar] [CrossRef]
- Lee, K.; Lee, H.C.; Lee, D.S.; Jung, H. Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle. Adv. Mater. 2010, 22, 483–486. [Google Scholar] [CrossRef]
- Miranda-Muñoz, K.; Midkiff, K.; Woessner, A.; Afshar-Mohajer, M.; Zou, M.; Pollock, E.; Gonzalez-Nino, D.; Prinz, G.; Hutchinson, L.; Li, R.; et al. A Multicomponent Microneedle Patch for the Delivery of Meloxicam for Veterinary Applications. ACS Nano 2024, 18, 25716–25739. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Moore, J.S.; Edelhauser, H.F.; Prausnitz, M.R. Intrascleral Drug Delivery to the Eye Using Hollow Microneedles. Pharm. Res. 2008, 26, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhang, W.; Jiang, P.; Zhou, S.; Wang, C.; Qiu, L.; Shi, H.; Cui, P.; Wang, J. Progress in Intradermal and Transdermal Gene Therapy with Microneedles. Pharm. Res. 2022, 39, 2475–2486. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Antiochia, R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 2019, 123, 152–159. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Q.; Zhong, G.; Xu, T.; Zhang, X. Wearable Vertical Graphene-Based Microneedle Biosensor for Real-Time Ketogenic Diet Management. Anal. Chem. 2024, 96, 8713–8720. [Google Scholar] [CrossRef]
- Yue Jing, L.; Fan, Y.; Zhi Chen, B.; Li, D.; Ting He, Y.; Liang Zhang, G.; Liang, L.; Du, J.; Wang, Y.; Dong Guo, X. An aptamer-integrated conductive microneedle biosensor for real-time transdermal cortisol monitoring. Chem. Eng. J. 2024, 502, 157488. [Google Scholar] [CrossRef]
- Ventrelli, L.; Marsilio Strambini, L.; Barillaro, G. Microneedles for Transdermal Biosensing: Current Picture and Future Direction. Adv. Healthc. Mater. 2015, 4, 2606–2640. [Google Scholar] [CrossRef]
- Himawan, A.; Vora, L.K.; Permana, A.D.; Sudir, S.; Nurdin, A.R.; Nislawati, R.; Hasyim, R.; Scott, C.J.; Donnelly, R.F. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv. Healthc. Mater. 2022, 12, 2202066. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Elijah, E.O.; Vargas, F.; Bouslimani, A.; da Silva, R.R.; Ernst, M.; Wang, M.; del Rosario, K.K.; Dorrestein, P.C.; Tsunoda, S.M. Initial Development toward Non-Invasive Drug Monitoring via Untargeted Mass Spectrometric Analysis of Human Skin. Anal. Chem. 2019, 91, 8062–8069. [Google Scholar] [CrossRef]
- Zheng, H.; GhavamiNejad, A.; GhavamiNejad, P.; Samarikhalaj, M.; Giacca, A.; Poudineh, M. Hydrogel Microneedle-Assisted Assay Integrating Aptamer Probes and Fluorescence Detection for Reagentless Biomarker Quantification. ACS Sens. 2022, 7, 2387–2399. [Google Scholar] [CrossRef]
- Qu, F.; Geng, R.; Liu, Y.; Zhu, J. Advanced nanocarrier- and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics 2022, 12, 3372–3406. [Google Scholar] [CrossRef] [PubMed]
- Kar, A.; Ahamad, N.; Dewani, M.; Awasthi, L.; Patil, R.; Banerjee, R. Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022, 283, 121435. [Google Scholar] [CrossRef]
- Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. R Rep. 2016, 104, 1–32. [Google Scholar] [CrossRef]
- Rodgers, A.M.; Cordeiro, A.S.; Kissenpfennig, A.; Donnelly, R.F. Microneedle arrays for vaccine delivery: The possibilities, challenges and use of nanoparticles as a combinatorial approach for enhanced vaccine immunogenicity. Expert Opin. Drug Deliv. 2018, 15, 851–867. [Google Scholar] [CrossRef]
- Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm. 2021, 159, 44–76. [Google Scholar] [CrossRef] [PubMed]
- Sil, D.; Bhowmik, S.; Patel, P.; Kurmi, B.D. Promising role of microneedles in therapeutic and biomedical applications. J. Drug Delivery Sci. Technol. 2024, 91, 105273. [Google Scholar] [CrossRef]
- Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258. [Google Scholar] [CrossRef]
- Han, S.; Sun, J.; Wang, J.; Qian, W.; Dong, J. A built-in surface-enhanced Raman scattering-active microneedle for sampling in vivo and surface-enhanced Raman scattering detection ex vivo of NO. J. Raman Spectrosc. 2018, 49, 1747–1755. [Google Scholar] [CrossRef]
- Kolluru, C.; Gupta, R.; Jiang, Q.; Williams, M.; Gholami Derami, H.; Cao, S.; Noel, R.K.; Singamaneni, S.; Prausnitz, M.R. Plasmonic Paper Microneedle Patch for On-Patch Detection of Molecules in Dermal Interstitial Fluid. ACS Sens. 2019, 4, 1569–1576. [Google Scholar] [CrossRef]
- Hu, Y.; Chatzilakou, E.; Pan, Z.; Traverso, G.; Yetisen, A.K. Microneedle Sensors for Point-of-Care Diagnostics. Adv. Sci. 2024, 11, 2306560. [Google Scholar] [CrossRef]
- Bal, S.M.; Caussin, J.; Pavel, S.; Bouwstra, J.A. In vivo assessment of safety of microneedle arrays in human skin. Eur. J. Pharm. Sci. 2008, 35, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Corsini, E. Epidermal cytokines in experimental contact dermatitis. Toxicology 2000, 142, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.L.; Vinayakumar, K.B.; Sillankorva, S. Polymeric Microneedles for Health Care Monitoring: An Emerging Trend. ACS Sens. 2024, 9, 2294–2309. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, Y.; Gu, X.; Liu, X.; Zhang, J.; Song, C.; Wang, L. Flexible plasmonic microneedle array-based SERS sensor for pH monitoring of skin interstitial fluid. Microchem. J. 2024, 206, 111546. [Google Scholar] [CrossRef]
- Mei, R.; Wang, Y.; Zhao, X.; Shi, S.; Wang, X.; Zhou, N.; Shen, D.; Kang, Q.; Chen, L. Skin Interstitial Fluid-Based SERS Tags Labeled Microneedles for Tracking of Peritonitis Progression and Treatment Effect. ACS Sens. 2023, 8, 372–380. [Google Scholar] [CrossRef]
- He, M.; Jin, L.; Wang, F.; Wang, X.; You, Y.; He, H. Simple, ultrasensitive detection of superoxide anion radical mutations in melanoma mice with SERS microneedles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 316, 124292. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Deng, Z.; Liu, B.; Gao, B. Corn-inspired high-density plasmonic metal-organic frameworks microneedles for enhanced SERS detection of acetaminophen. Talanta 2024, 278, 126463. [Google Scholar] [CrossRef] [PubMed]
- Simas, M.V.; Olaniyan, P.O.; Hati, S.; Davis, G.A.; Anspach, G.; Goodpaster, J.V.; Manicke, N.E.; Sardar, R. Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma. ACS Appl. Mater. Inter. 2023, 15, 46681–46696. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, L.; Li, J.; Yao, L.; Chen, Y.; Liu, B.; Jiang, L. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018, 65, 283–291. [Google Scholar] [CrossRef]
- Zoratto, N.; Klein-Cerrejon, D.; Gao, D.; Inchiparambil, T.; Sachs, D.; Luo, Z.; Leroux, J.C. A Bioinspired and Cost-Effective Device for Minimally Invasive Blood Sampling. Adv. Sci. 2024, 11, 2308809. [Google Scholar] [CrossRef]
- Xue, P.; Zhang, L.; Xu, Z.; Yan, J.; Gu, Z.; Kang, Y. Blood sampling using microneedles as a minimally invasive platform for biomedical diagnostics. Appl. Mater. Today 2018, 13, 144–157. [Google Scholar] [CrossRef]
- Hoesly, F.J.; Borovicka, J.; Gordon, J.; Nardone, B.; Holbrook, J.S.; Pace, N.; Ibrahim, O.; Bolotin, D.; Warycha, M.; Kwasny, M.; et al. Safety of a Novel Microneedle Device Applied to Facial Skin. Arch. Dermatol. 2012, 148, 711–717. [Google Scholar] [CrossRef]
- Rouphael, N.G.; Paine, M.; Mosley, R.; Henry, S.; McAllister, D.V.; Kalluri, H.; Pewin, W.; Frew, P.M.; Yu, T.; Thornburg, N.J.; et al. The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 2017, 390, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.I.; Smith, E.; John, D.N.; Kalavala, M.; Edwards, C.; Anstey, A.; Morrissey, A.; Birchall, J.C. Clinical administration of microneedles: Skin puncture, pain and sensation. Biomed. Microdevices 2008, 11, 35–47. [Google Scholar] [CrossRef]
- Henry, S.; McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 1998, 87, 922–925. [Google Scholar] [CrossRef]
- Anbazhagan, G.; Suseela, S.B.; Sankararajan, R. Design, analysis and fabrication of solid polymer microneedle patch using CO2 laser and polymer molding. Drug Deliv. Transl. Res. 2023, 13, 1813–1827. [Google Scholar] [CrossRef]
- Matthaei, M.; Meng, H.; Bhutto, I.; Xu, Q.; Boelke, E.; Hanes, J.; Jun, A.S. Systematic assessment of microneedle injection into the mouse cornea. Eur. J. Med. Res. 2012, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, K.S.; Cheng, Y.-C.N.; McAllister, J.P.; Shen, Y.; Li, J.; Deren, K.; Haacke, E.M.; Auner, G.W. Biocompatibilities of sapphire and borosilicate glass as cortical neuroprostheses. Magn. Reson. Imaging 2007, 25, 1333–1340. [Google Scholar] [CrossRef]
- Ita, K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: Two decades of research. J. Drug Deliv. Sci. Technol. 2018, 44, 314–322. [Google Scholar] [CrossRef]
- Zhang, X.P.; He, Y.T.; Li, W.X.; Chen, B.Z.; Zhang, C.Y.; Cui, Y.; Guo, X.D. An update on biomaterials as microneedle matrixes for biomedical applications. J. Mater. Chem. B 2022, 10, 6059–6077. [Google Scholar] [CrossRef]
- Hartmann, X.; Van der Linde, P.; Homburg, E.; Van Breemen, L.; De Jong, A.; Luttge, R. Insertion Process of Ceramic Nanoporous Microneedles by Means of a Novel Mechanical Applicator Design. Pharmaceutics 2015, 7, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Boks, M.A.; Unger, W.W.J.; Engels, S.; Ambrosini, M.; Kooyk, Y.v.; Luttge, R. Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int. J. Pharm. 2015, 491, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Tamura, J.; Kawanabe, K.; Nawa, M.; Oka, M.; Uchida, M.; Kokubo, T.; Nakamura, T. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. J. Biomed. Mater. Res. 2002, 63, 262–270. [Google Scholar] [CrossRef]
- Cai, B.; Xia, W.; Bredenberg, S.; Engqvist, H. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2014, 2, 5992–5998. [Google Scholar] [CrossRef] [PubMed]
- Ovsianikov, A.; Chichkov, B.; Mente, P.; Monteiro-Riviere, N.A.; Doraiswamy, A.; Narayan, R.J. Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery. Int. J. Appl. Ceram. Technol. 2007, 4, 22–29. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, T.; Han, X.; Gu, H.; Zhang, X. A needle-like reusable surface-enhanced Raman scattering substrate, and its application to the determination of acetamiprid by combining SERS and thin-layer chromatography. Microchim. Acta 2018, 185, 504. [Google Scholar] [CrossRef]
- Park, M.; Hwang, C.S.H.; Jeong, K.-H. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS Appl. Mater. Inter. 2017, 10, 290–295. [Google Scholar] [CrossRef]
- Kim, G.-H.; Son, J.; Nam, J.-M. Advances, Challenges, and Opportunities in Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. ACS Nano 2025, 19, 2992–3007. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B. Chem. 2020, 311, 127909. [Google Scholar] [CrossRef]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Falamas, A.; Cuibus, D.; Tosa, N.; Brezestean, I.; Muntean, C.M.; Milenko, K.; Vereshchagina, E.; Moldovan, R.; Bodoki, E.; Farcau, C. Toward microfluidic SERS and EC-SERS applications via tunable gold films over nanospheres. Discov. Nano. 2023, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Kuttner, C.; Mayer, M.; Dulle, M.; Moscoso, A.; López-Romero, J.M.; Förster, S.; Fery, A.; Pérez-Juste, J.; Contreras-Cáceres, R. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance. ACS Appl. Mater. Inter. 2018, 10, 11152–11163. [Google Scholar] [CrossRef] [PubMed]
- Alsammarraie, F.K.; Lin, M.; Mustapha, A.; Lin, H.; Chen, X.; Chen, Y.; Wang, H.; Huang, M. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem. 2018, 259, 219–225. [Google Scholar] [CrossRef]
- Park, J.-E.; Lee, Y.; Nam, J.-M. Precisely Shaped, Uniformly Formed Gold Nanocubes with Ultrahigh Reproducibility in Single-Particle Scattering and Surface-Enhanced Raman Scattering. Nano Lett. 2018, 18, 6475–6482. [Google Scholar] [CrossRef]
- Van Vu, S.; Nguyen, A.-T.; Cao Tran, A.-T.; Thi Le, V.-H.; Lo, T.N.H.; Ho, T.H.; Pham, N.N.T.; Park, I.; Vo, K.Q. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance. Nanoscale Adv. 2023, 5, 5543–5561. [Google Scholar] [CrossRef]
- Sakir, M.; Torun, N.; Kayaci, N.; Torun, I.; Kalay, M.; Onses, M.S. Silver nanoflowers with SERS activity and unclonable morphology. Mater. Today Chem. 2023, 29, 101423. [Google Scholar] [CrossRef]
- Xia, H.; Xiahou, Y.; Zhang, P.; Ding, W.; Wang, D. Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm. Langmuir 2016, 32, 5870–5880. [Google Scholar] [CrossRef]
- Linh, V.T.N.; Yim, S.-G.; Mun, C.; Yang, J.-Y.; Lee, S.; Yoo, Y.W.; Sung, D.K.; Lee, Y.-I.; Kim, D.-H.; Park, S.-G.; et al. Bioinspired plasmonic nanoflower-decorated microneedle for label-free intradermal sensing. Appl. Surf. Sci. 2021, 551, 149411. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, H.; Li, H.; Chen, J.; Zhang, D.; Fu, L. Plasmonic microneedle arrays for rapid extraction, SERS detection, and inactivation of bacteria. Chem. Eng. J. 2022, 442, 136140. [Google Scholar] [CrossRef]
- Chia, Z.-C.; Chen, Y.-L.; Chuang, C.-H.; Hsieh, C.-H.; Chen, Y.-J.; Chen, K.-H.; Huang, T.-C.; Chen, M.-C.; Huang, C.-C. Polyphenol-assisted assembly of Au-deposited polylactic acid microneedles for SERS sensing and antibacterial photodynamic therapy. Chem. Commun. 2023, 59, 6339–6342. [Google Scholar] [CrossRef]
- Peng, C.; Jin, L.; Wang, F.; Yang, H.; He, H. Laser transparent multiplexed SERS microneedles for in situ and real-time detection of inflammation. Biosens. Bioelectron. 2023, 225, 115079. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.Q.; Mei, R.C.; Lv, B.Q.; Zhao, X.Z.; Bi, L.Y.; Xu, H.; Chen, L.X. Hydrogel-Coated SERS Microneedles for Drug Monitoring in Dermal Interstitial Fluid. ACS Sens. 2024, 9, 2567–2574. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.; Tang, Z.; Liu, Y. Material design, development, and trend for surface-enhanced Raman scattering substrates. Nanoscale 2023, 15, 10860–10881. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Ju, J.; Hsieh, C.-M.; Tian, Y.; Kang, J.; Chia, R.; Chang, H.; Bai, Y.; Xu, C.; Wang, X.; Liu, Q. Surface Enhanced Raman Spectroscopy Based Biosensor with a Microneedle Array for Minimally Invasive In Vivo Glucose Measurements. ACS Sens. 2020, 5, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhao, D.; He, H.; Wang, Z. SERS-Based Microneedle Biosensor for In Situ and Sensitive Detection of Tyrosinase. Biosensors 2024, 14, 202. [Google Scholar] [CrossRef]
- Yuen, C.; Liu, Q. Towardsin vivointradermal surface enhanced Raman scattering (SERS) measurements: Silver coated microneedle based SERS probe. J. Biophotonics 2013, 7, 683–689. [Google Scholar] [CrossRef]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.-C.; An, Q.; Ling, X.Y. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: Emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef]
- Lu, J.; Cai, Z.; Zou, Y.; Wu, D.; Wang, A.; Chang, J.; Wang, F.; Tian, Z.; Liu, G. Silver Nanoparticle-Based Surface-Enhanced Raman Spectroscopy for the Rapid and Selective Detection of Trace Tropane Alkaloids in Food. ACS Appl. Energy Mater. 2019, 2, 6592–6601. [Google Scholar] [CrossRef]
- Huang, X.; Chen, L.; Sha, T.; Lin, Y.; Zeng, R.; Xu, J.; Chen, S.; Cai, H.-H.; Zhang, J.; Zhou, H.; et al. In Situ Tyrosinase Monitoring by Wearable Microneedle Patch toward Clinical Melanoma Screening. ACS Nano 2023, 17, 20073–20086. [Google Scholar] [CrossRef]
- Mohan, A.M.V.; Windmiller, J.R.; Mishra, R.K.; Wang, J. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosens. Bioelectron. 2017, 91, 574–579. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Li, J.; Hu, Y.; Ge, K.; Li, G.; Liu, S. Bifunctional Mo2N Nanoparticles with Nanozyme and SERS Activity: A Versatile Platform for Sensitive Detection of Biomarkers in Serum Samples. Anal. Chem. 2024, 96, 2998–3007. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Li, Y.; Li, G.; Hu, Y. Bifunctional MoO3–x/CuS Heterojunction Nanozyme-Driven “Turn-On” SERS Signal for the Sensitive Detection of Cerebral Infarction Biomarker S100B. Anal. Chem. 2024, 96, 17711–17719. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lv, X.; Yang, Q.; Zhang, S.; Su, J.; Cheng, S.-B.; Lai, Y.; Chen, J.; Zhan, J. Dynamic SPME–SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Anal. Chem. 2022, 94, 9270–9277. [Google Scholar] [CrossRef]
- Yan, M.; Hao, Q.; Diao, S.; Zhou, F.; Yichen, C.; Jiang, N.; Zhao, C.; Ren, X.-R.; Yu, F.; Tong, J.; et al. Smart Home Sleep Respiratory Monitoring System Based on a Breath-Responsive Covalent Organic Framework. ACS Nano 2023, 18, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Ren, X.-R.; Chen, Y.; Zhao, C.; Xu, J.; Wang, D.; Liu, H. A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis. Nat. Commun. 2023, 14, 578. [Google Scholar] [CrossRef] [PubMed]
- Chandio, I.; Ai, Y.; Wu, L.; Liang, Q. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2023, 17, 39–64. [Google Scholar] [CrossRef]
- Ma, L.; Liu, M.; Zhou, X.; Li, C.; Wang, T. Metal–organic framework-based SERS sensing platforms for life and health detection. Mater. Chem. Front. 2023, 7, 4880–4899. [Google Scholar] [CrossRef]
- Sun, H.; Cong, S.; Zheng, Z.; Wang, Z.; Chen, Z.; Zhao, Z. Metal–Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. J. Am. Chem. Soc. 2018, 141, 870–878. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y.; Li, G. A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection. Chemosensors 2023, 11, 427. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Du, X.; Lo, K.H.; Wang, S.; Zhou, B.; Pan, H. 2D materials: Excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing and biosensing. Trends Anal. Chem. 2020, 130, 115983. [Google Scholar] [CrossRef]
- Zheng, T.; Zhou, Y.; Feng, E.; Tian, Y. Surface-enhanced Raman Scattering on 2D Nanomaterials: Recent Developments and Applications. Chin. J. Chem. 2021, 39, 745–756. [Google Scholar] [CrossRef]
- Sarycheva, A.; Makaryan, T.; Maleski, K.; Satheeshkumar, E.; Melikyan, A.; Minassian, H.; Yoshimura, M.; Gogotsi, Y. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. C 2017, 121, 19983–19988. [Google Scholar] [CrossRef]
- Soundiraraju, B.; George, B.K. Two-Dimensional Titanium Nitride (Ti2N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate. ACS Nano 2017, 11, 8892–8900. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhu, K.; Wang, Y.; Qian, Z.; Zhang, Y.; Yang, Z.; Wang, Z.; Wu, L.; Zong, S.; Cui, Y. Ti3C2Tx MXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout. ACS Nano 2021, 15, 12996–13006. [Google Scholar] [CrossRef]
- Tehrani, F.; Teymourian, H.; Wuerstle, B.; Kavner, J.; Patel, R.; Furmidge, A.; Aghavali, R.; Hosseini-Toudeshki, H.; Brown, C.; Zhang, F.; et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid. Nat. Biomed. Eng. 2022, 6, 1214–1224. [Google Scholar] [CrossRef]
- Aroche, A.F.; Nissan, H.E.; Daniele, M.A. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv. Healthc. Mater. 2024, 14, 2401782. [Google Scholar] [CrossRef]
- Jain, A.K.; Lee, C.H.; Gill, H.S. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release 2016, 239, 72–81. [Google Scholar] [CrossRef]
- Hu, Z.; Shan, J.; Cui, Y.; Cheng, L.; Chen, X.L.; Wang, X. Nanozyme-Incorporated Microneedles for the Treatment of Chronic Wounds. Adv. Healthc. Mater. 2024, 13, 2400101. [Google Scholar] [CrossRef]
- Omidian, H.; Dey Chowdhury, S. Swellable Microneedles in Drug Delivery and Diagnostics. Pharmaceuticals 2024, 17, 791. [Google Scholar] [CrossRef]
- Omidian, H.; Dey Chowdhury, S. Multifunctional Hydrogel Microneedles (HMNs) in Drug Delivery and Diagnostics. Gels 2025, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Liu, C.; Lu, Y.; Mo, X.; Dong, J.; Xu, K.; Huang, Y.; Chen, C.; Lv, X.; Yang, X.; et al. Porous SERS Microneedles Integrating Sampling and Sensing for Interstitial Glucose Detection. ACS Appl. Nano Mater. 2025, 8, 7867–7875. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Fu, Y.; Song, Y. Recent advances of microneedles for biomedical applications: Drug delivery and beyond. Acta Pharm. Sin. B 2019, 9, 469–483. [Google Scholar] [CrossRef]
- Kashaninejad, N.; Munaz, A.; Moghadas, H.; Yadav, S.; Umer, M.; Nguyen, N.-T. Microneedle Arrays for Sampling and Sensing Skin Interstitial Fluid. Chemosensors 2021, 9, 83. [Google Scholar] [CrossRef]
- Mukerjee, E.V.; Collins, S.D.; Isseroff, R.R.; Smith, R.L. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens. Actuator Phys. 2004, 114, 267–275. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Park, J.-H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, K.; Takama, N.; Kinoshita, R.; Okitsu, T.; Kim, B. Flexible and porous microneedles of PDMS for continuous glucose monitoring. Biomed. Microdevices 2020, 22, 79. [Google Scholar] [CrossRef]
- Al Sulaiman, D.; Chang, J.Y.H.; Bennett, N.R.; Topouzi, H.; Higgins, C.A.; Irvine, D.J.; Ladame, S. Hydrogel-Coated Microneedle Arrays for Minimally Invasive Sampling and Sensing of Specific Circulating Nucleic Acids from Skin Interstitial Fluid. ACS Nano 2019, 13, 9620–9628. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, G.; Bian, F.; Cai, L.; Zhao, Y. Encoded Microneedle Arrays for Detection of Skin Interstitial Fluid Biomarkers. Adv. Mater. 2019, 31, 1902825. [Google Scholar] [CrossRef]
- Wang, Z.; Luan, J.; Seth, A.; Liu, L.; You, M.; Gupta, P.; Rathi, P.; Wang, Y.; Cao, S.; Jiang, Q.; et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 2021, 5, 64–76. [Google Scholar] [CrossRef]
- Skoog, S.A.; Miller, P.R.; Boehm, R.D.; Sumant, A.V.; Polsky, R.; Narayan, R.J. Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing. Diamond Relat. Mater. 2015, 54, 39–46. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Peng, L.; Liu, Q.; Wang, D.; Jing, X.; Hu, Y.; Lin, J.; Fu, H.; Ji, X.; et al. A Plasmonic Fluor-Lightened Microneedle Array Enables Ultrasensitive Multitarget Whole Blood Diagnosis of Anemia in A Paper Origami-Based Device. Small 2023, 19, 2300464. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, S.; Liu, Q.; Xu, T.; Zhang, X. Microfluidic-based plasmonic microneedle biosensor for uric acid ultrasensitive monitoring. Sens. Actuators B Chem. 2024, 398, 134685. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, Z.; Chang, H.; Wang, L.; Chew, S.W.T.; Lio, D.C.S.; Cui, M.; Liu, L.; Tee, B.C.K.; Xu, C. Osmosis-Powered Hydrogel Microneedles for Microliters of Skin Interstitial Fluid Extraction within Minutes. Adv. Healthc. Mater. 2020, 9, 1901683. [Google Scholar] [CrossRef]
- Turner, J.G.; Lay, E.; Jungwirth, U.; Varenko, V.; Gill, H.S.; Estrela, P.; Leese, H.S. 3D-Printed Hollow Microneedle-Lateral Flow Devices for Rapid Blood-Free Detection of C-Reactive Protein and Procalcitonin. Adv. Mater. Technol. 2023, 8, 2300259. [Google Scholar] [CrossRef]
- Wang, P.M.; Cornwell, M.; Prausnitz, M.R.J.D.T. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 2005, 7, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.R.; Taylor, R.M.; Tran, B.Q.; Boyd, G.; Glaros, T.; Chavez, V.H.; Krishnakumar, R.; Sinha, A.; Poorey, K.; Williams, K.P.; et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun. Biol. 2018, 1, 173. [Google Scholar] [CrossRef]
- Dixon, R.V.; Skaria, E.; Lau, W.M.; Manning, P.; Birch-Machin, M.A.; Moghimi, S.M.; Ng, K.W. Microneedle-based devices for point-of-care infectious disease diagnostics. Acta Pharm. Sin. B 2021, 11, 2344–2361. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, X.; Liu, X.; Sun, B.; Li, L.; Zhao, Y. Responsive Hydrogel Microcarrier-Integrated Microneedles for Versatile and Controllable Drug Delivery. Adv. Healthc. Mater. 2021, 10, 2002249. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, H.; Yu, Z.; Yu, H.; Meng, D.; Zhu, L.; Li, H. Direct 3D printing of triple-responsive nanocomposite hydrogel microneedles for controllable drug delivery. J. Colloid Interface Sci. 2024, 670, 1–11. [Google Scholar] [CrossRef]
- Sim, D.; Brothers, M.C.; Slocik, J.M.; Islam, A.E.; Maruyama, B.; Grigsby, C.C.; Naik, R.R.; Kim, S.S. Biomarkers and Detection Platforms for Human Health and Performance Monitoring: A Review. Adv. Sci. 2022, 9, 2104426. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Yonet-Tanyeri, N.; Vander Ende, E.; Henry, A.-I.; Perez White, B.E.; Mrksich, M.; Van Duyne, R.P. Plasmonic Microneedle Arrays for in Situ Sensing with Surface-Enhanced Raman Spectroscopy (SERS). Nano Lett. 2019, 19, 6862–6868. [Google Scholar] [CrossRef]
- Xu, Q.; Zou, C.; Sun, C.; Zhang, X.; Yu, H.; Li, D. A Miniaturized Optofluidic Glucose Monitoring System Based on Enzyme Colorimetry. IEEE Sens. J. 2022, 22, 9246–9254. [Google Scholar] [CrossRef]
- Mei, R.; Wang, Y.; Shi, S.; Zhao, X.; Zhang, Z.; Wang, X.; Shen, D.; Kang, Q.; Chen, L. Highly Sensitive and Reliable Internal-Standard Surface-Enhanced Raman Scattering Microneedles for Determination of Bacterial Metabolites as Infection Biomarkers in Skin Interstitial Fluid. Anal. Chem. 2022, 94, 16069–16078. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Zhong, X.; Liu, J.; Xiao, X.; Jiang, C. Rapid and sensitive detection of 4-ethylbenzaldehyde by a plasmonic nose. J. Phys. D: Appl. Phys. 2021, 54, 255306. [Google Scholar] [CrossRef]
- Zhang, M.; You, Y.; Zhang, H.; Zhang, J.; Yang, F.; Wang, X.; Lin, C.; Wang, B.; Chen, L.; Wang, Z.; et al. Rapid Glutathione Analysis with SERS Microneedles for Deep Glioblastoma Tissue Differentiation. Anal. Chem. 2024, 96, 10200–10209. [Google Scholar] [CrossRef]
- Pan, C.; Li, X.; Sun, J.; Li, Z.; Zhang, L.; Qian, W.; Wang, P.; Dong, J. A Multiplexed SERS-Active Microneedle for Simultaneous Redox Potential and pH Measurements in Rat Joints. ACS Appl. Bio Mater 2019, 2, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Tao, Q.; Guo, M.; Yan, T.; Qian, W. Glucose-responsive multifunctional acupuncture needle: A universal SERS detection strategy of small biomolecules in vivo. Anal. Methods 2012, 4, 3879. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Hu, Y.; Liu, Z.; Ma, X.; Feng, F.; Zheng, F.; Guo, X.; Liu, W.; Liao, W.; et al. Rapid enrichment and SERS differentiation of various bacteria in skin interstitial fluid by 4-MPBA-AuNPs-functionalized hydrogel microneedles. J. Pharm. Anal. 2025, 15, 101152. [Google Scholar] [CrossRef]
- Wang, L.; Li, C.; Cao, C.; Lei, F.; Zhao, X.; Li, Z.; Zhang, C.; Jiao, Y.; Yu, J. Multifunctional Polymeric Nanoneedles with “Full-Spectrum Intrinsic Internal Standard” for Precise SERS Biosensing. Adv. Funct. Mater 2024, 35, 2416789. [Google Scholar] [CrossRef]
- Yang, K.; Zhong, F.; Peng, C.; Wang, F.; Yang, H. Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication. ACS Sens. 2025, 10, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Shen, J.; Li, P.; Ge, M.; Lin, D.; Li, Y.Y.; Lu, J.; Yang, L. Gold Nanoparticle-Decorated Silver Needle for Surface-Enhanced Raman Spectroscopy Screening of Residual Malachite Green in Aquaculture Products. ACS Appl. Nano Mater. 2019, 2, 2752–2757. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, N.; Choi, Y.; Kim, J.; Hwang, H.; Kim, C.; Lee, H.-Y.; Kim, S.; Kim, J.S.; Lee, H.H.; et al. Peptide-Decorated Microneedles for the Detection of Microplastics. Biosensors 2024, 14, 140. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, Y.; Zhang, S.; Xiong, X.; Meng, D.; Qian, W.; Dong, J. An antioxidation-responsive SERS-active microneedle for detecting the antioxidant capacity in living organisms. Anal. Chim. Acta 2024, 1287, 342138. [Google Scholar] [CrossRef]
- Cui, S.; Tian, C.; Su, Y.; Tian, J.; Fu, Y. Micro-cones Array-Based Plasmonic Metasurface for Sensitive and Enhanced Raman Detection. Plasmonics 2020, 15, 2003–2009. [Google Scholar] [CrossRef]
- Khan, S.; Hasan, A.; Attar, F.; Babadaei, M.M.N.; Zeinabad, H.A.; Salehi, M.; Alizadeh, M.; Hassan, M.; Derakhshankhah, H.; Hamblin, M.R.; et al. Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J. Control. Release 2021, 338, 341–357. [Google Scholar] [CrossRef]
- Seo, J.W.; Fu, K.Y.; Correa, S.; Eisenstein, M.; Appel, E.A.; Soh, H.T. Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals. Sci. Adv. 2022, 8, 1–10. [Google Scholar] [CrossRef]
- Rao, A.R.; Sindhuja, H.N.; Dharmesh, S.M.; Sankar, K.U.; Sarada, R.; Ravishankar, G.A. Effective Inhibition of Skin Cancer, Tyrosinase, and Antioxidative Properties by Astaxanthin and Astaxanthin Esters from the Green Alga Haematococcus pluvialis. J. Agric. Food. Chem. 2013, 61, 3842–3851. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, C.; Xiao, J.; You, J.; Zhang, W.; Liu, Y.; Xu, L.; Liu, A.; Xin, H.; Wang, X. Local extraction and detection of early stage breast cancers through a microneedle and nano-Ag/MBL film based painless and blood-free strategy. Mater. Sci. Eng. C 2020, 109, 110402. [Google Scholar] [CrossRef]
- Erdem, Ö.; Eş, I.; Akceoglu, G.A.; Saylan, Y.; Inci, F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. Biosensors 2021, 11, 296. [Google Scholar] [CrossRef]
- Zhi, D.; Yang, T.; Zhang, T.; Yang, M.; Zhang, S.; Donnelly, R.F. Microneedles for gene and drug delivery in skin cancer therapy. J. Control. Release 2021, 335, 158–177. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Li, Q.; Fang, L.; Cai, X.; Liu, Y.; Duo, Y.; Li, B.; Wu, Z.; Shen, B.; Bai, Y.; et al. Microorganism microneedle micro-engine depth drug delivery. Nat. Commun. 2024, 15, 8947. [Google Scholar] [CrossRef]
- Fu, J.J.; Li, C.W.; Liu, Y.; Chen, M.Y.; Zhang, Q.; Yu, X.Y.; Wu, B.; Li, J.X.; Du, L.R.; Dang, Y.Y.; et al. The microneedles carrying cisplatin and IR820 to perform synergistic chemo-photodynamic therapy against breast cancer. J. Nanobiotechnol. 2020, 18, 146. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, Y.; Mei, R.; Zhao, X.; Liu, X.; Chen, L. Revealing drug release and diffusion behavior in skin interstitial fluid by surface-enhanced Raman scattering microneedles. J. Mater. Chem. B 2023, 11, 3097–3105. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhao, B.; Kinchla, A.J.; Clark, J.M.; He, L. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping. J. Agric. Food. Chem. 2017, 65, 3541–3550. [Google Scholar] [CrossRef]
- Zhang, C.-H.; Zhu, J.; Li, J.-J.; Zhao, J.-W. Small and Sharp Triangular Silver Nanoplates Synthesized Utilizing Tiny Triangular Nuclei and Their Excellent SERS Activity for Selective Detection of Thiram Residue in Soil. ACS Appl. Mater. Interfaces 2017, 9, 17387–17398. [Google Scholar] [CrossRef]
- Li, Z.; Pan, C.; Sun, J.; Qian, W.; Dong, J. Detection of Redox Status and pH of Fruits and Vegetables Using a Multiplexed SERS-Active Microneedle. ACS Food Sci. Technol. 2021, 1, 1787–1791. [Google Scholar] [CrossRef]
- Sharma, S.; Hatware, K.; Bhadane, P.; Sindhikar, S.; Mishra, D.K. Recent advances in microneedle composites for biomedical applications: Advanced drug delivery technologies. Mater. Sci. Eng. C 2019, 103, 109717. [Google Scholar] [CrossRef]
- Sitohang, I.B.S.; Sirait, S.A.P.; Suryanegara, J. Microneedling in the treatment of atrophic scars: A systematic review of randomised controlled trials. Int. Wound J. 2021, 18, 577–585. [Google Scholar] [CrossRef]
- Teymourian, H.; Tehrani, F.; Mahato, K.; Wang, J. Lab under the Skin: Microneedle Based Wearable Devices. Adv. Healthcare Mater. 2021, 10, 2002255. [Google Scholar] [CrossRef]
- Abbasiasl, T.; Mirlou, F.; Mirzajani, H.; Bathaei, M.J.; Istif, E.; Shomalizadeh, N.; Cebecioğlu, R.E.; Özkahraman, E.E.; Yener, U.C.; Beker, L. A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid. Adv. Mater. 2023, 36, 2304704. [Google Scholar] [CrossRef] [PubMed]
- Junaid, S.B.; Imam, A.A.; Abdulkarim, M.; Surakat, Y.A.; Balogun, A.O.; Kumar, G.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; Mohammed, A.; et al. Recent Advances in Artificial Intelligence and Wearable Sensors in Healthcare Delivery. Appl. Sci. 2022, 12, 10271. [Google Scholar] [CrossRef]
- Ashraf, G.; Ahmed, K.; Aziz, A.; Asif, M.; Kong, J.; Fang, X. Microneedle wearables in advanced microsystems: Unlocking next-generation biosensing with AI. Trends Anal. Chem. 2025, 187, 118208. [Google Scholar] [CrossRef]
- Kadian, S.; Kumari, P.; Shukla, S.; Narayan, R. Recent advancements in machine learning enabled portable and wearable biosensors. Talanta Open 2023, 8, 100267. [Google Scholar] [CrossRef]
- Chen, B.; Gao, J.; Sun, H.; Chen, Z.; Qiu, X. Wearable SERS devices in health management: Challenges and prospects. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 334, 125957. [Google Scholar] [CrossRef] [PubMed]
Application | Microneedle | Material Modification | Detection Mode | Analyte | Linear Range | LOD | Ref. |
---|---|---|---|---|---|---|---|
Disease diagnosis | PMMA | AgNPs@PDA | in situ | pH | 4.0–8.0 | / | [71] |
Redox potential | 417.0–599.8 mV | / | |||||
ROS | 0–480 ng/mL | / | |||||
NOA 65 | AuNRs | in situ | pH | 2.0–12.0 | / | [122] | |
PMMA | Au-Ag | ex situ | Tyrosinase | 0.05–200 U/mL | 0.05 U/mL | [76] | |
PMMA | AuNPs | in situ | H2O2 | 3–100 μmol/L | 3 μmol/L | [35] | |
NOA 65 | AgNPs | ex situ | pH | 5.0–9.0 | / | [34] | |
NOA 61 | AuNPs | in situ | O2·− | 0–480 ng/mL | / | [36] | |
PMMA | AuNPs | in situ | Pyocyanin | 1–10 μmol/L | 3.58 μmol/L | [124] | |
PDMS | AuNPs | in situ | Uric acid | 0.01–1 μmol/L | 0.51 μmol/L | [113] | |
PMMA | AgNPs | in situ | Glucose | 0–20 mmol/L | / | [75] | |
NOA | Au@Ag-Pt NPs | ex situ | Tyrosinase | 0.05–200 U/mL | 0.01 U/mL | [80] | |
Silicon | AgNPs | ex situ | Gaseous 4-ethylbenzaldehyde | / | 10 ppb | [125] | |
Ag | Au@Ag | ex situ | Glutathione | 0.1–15 mmol/L | 0.037 mmol/L | [126] | |
Stainless-steel | Gold nanoshells | ex situ | pH | 4.0–8.0 | / | [127] | |
Redox potential | / | / | |||||
Stainless-steel | Gold nanoshells | ex situ | Glucose | 0.5–1.5 g/L | / | [128] | |
TMA/CAA/HEMA | AuNPs | in situ | Escherichia coli | 0–1.0 × 1010 CFU/mL | 5.5 × 104 CFU/mL | [129] | |
Staphylococcus aureus | 0–5.2 × 109 CFU/mL | 1.2 × 104 CFU/mL | |||||
Acinetobacter baumannii | 0–5.0 × 109 CFU/mL | 1.4 × 104 CFU/mL | |||||
Pseudomonas aeruginosa | 0–8.3 × 109 CFU/mL | 5.5 × 102 CFU/mL | |||||
Drug monitoring | PMMA | Au@Ag | ex situ | Methylene blue | 0–1 μmol/L | 193.8 nmol/L | [72] |
Mitoxantrone | 0–70 μmol/L | 2.9 nmol/L | |||||
HDPM/PU/SF | AuNPs@MOF | in situ | Acetaminophen | 1–100 μmol/L | 0.45 μmol/L | [37] | |
PVDF | Au-Ag | in situ | Levofloxacin | 0–8 mmol/L | 0.45 mmol/L | [130] | |
PDMS | AuNRs | ex situ | Rhodamine 6G | 0.05–100 μmol/L | / | [38] | |
Plasmonic paper | AuNRs | ex situ | Fentanyl | 10 fmol/L–1.0 μmo/L | 68.5 fmol/L | [29] | |
Alprazolam | 1.0 pmol/L–100 μmol/L | 5.6 pmol/L | |||||
Food safety analysis | TMA/CAA/HEMA | Gold nanopopcorns | ex situ | Escherichia coli | 2.4 × 102–2.4 × 106 CFU/g | 143 CFU/g | [69] |
Putrescine | 10−7–10−3 mol/L | 2.43 × 10−7 mol/L | |||||
PMMA | AuNPs@PDA | in situ | Cadaverine | 10−7–10−3 mol/L | 9.93 × 10−8 mol/L | [131] | |
HA/PVA | AgNPs | ex situ | Thiram | 0–10−7 mol/L | 10−7 mol/L | [5] | |
Thiabendazole | 0–10−8 mol/L | 10−8 mol/L | |||||
Carbon fiber | Dendrite-like gold | ex situ | Acetamiprid | 0.1–10 μg/mL | 0.05 μg/mL | [56] | |
Ag | AuNPs | ex situ | Malachite green | 10−8–10−5 mol/L | 0.1 nmol/L | [132] | |
Other analysis | PLA | AuNPs | in situ | S. aureus | 102–108 CFU/cm2 | 100 CFU/cm2 | [70] |
in situ | Purines | / | 200 ppb | ||||
PLGA | Gold nanoflower | ex situ | Methylene blue | 0.05–1.0 μmol/L | 1.0 nmol/L | [68] | |
NOA 63 | AuNR | ex situ | Microplastics | / | 0.5 μg/mL | [133] | |
Stainless-steel | Gold nanoshells | ex situ | Lipopolysaccharide | / | / | [134] | |
Au | Au thin film | in situ | Benzenethiol | 10−8–10−2 mol/L | 10−8 mol/L | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Chen, Y.; Cheng, X.; Liu, S.; Zhu, H.; Hu, Y. Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection. Biosensors 2025, 15, 350. https://doi.org/10.3390/bios15060350
Yang W, Chen Y, Cheng X, Liu S, Zhu H, Hu Y. Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection. Biosensors. 2025; 15(6):350. https://doi.org/10.3390/bios15060350
Chicago/Turabian StyleYang, Weiqing, Ying Chen, Xingliang Cheng, Shuojiang Liu, Huiqi Zhu, and Yuling Hu. 2025. "Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection" Biosensors 15, no. 6: 350. https://doi.org/10.3390/bios15060350
APA StyleYang, W., Chen, Y., Cheng, X., Liu, S., Zhu, H., & Hu, Y. (2025). Recent Progress on the Application of Microneedles for In Situ Sampling in Surface-Enhanced Raman Scattering Detection. Biosensors, 15(6), 350. https://doi.org/10.3390/bios15060350