Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = microfluidic organic synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8987 KB  
Article
Microfluidic Synthesis of Magnetic Silica Aerogels for Efficient Pesticide Removal from Water
by Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Alexandra-Cătălina Bîrcă, Denisa Alexandra Florea, Marius Rădulescu, Bogdan-Ștefan Vasile, Roxana Trușcă, Dan-Eduard Mihaiescu, Tony Hadibarata and Alexandru-Mihai Grumezescu
Gels 2025, 11(6), 463; https://doi.org/10.3390/gels11060463 - 17 Jun 2025
Cited by 1 | Viewed by 1145
Abstract
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly [...] Read more.
Aerogels have gained much interest in the last decades due to their specific properties, such as high porosity, high surface area, and low density, which have caused them to be used in multiple and varied fields. As the applicability of aerogels is tightly correlated to their morpho-structural features, special consideration must be allocated to the fabrication method. An emerging technique for producing nanostructured materials with tailored morphology and dimensions is represented by continuous-flow microfluidics. In this context, this work explores the synergic combination of aerogel-based materials with microfluidic synthesis platforms to generate advanced nanocomposite adsorbents for water decontamination. Specifically, this study presents the novel synthesis of a magnetic silica-based aerogel using a custom-designed 3D microfluidic platform, offering enhanced control over nanoparticle incorporation and gelation compared to conventional sol–gel techniques. The resulting gel was further dried via supercritical CO2 extraction to preserve its unique nanostructure. The multi-faceted physicochemical investigations (XRD, DLS, FT-IR, RAMAN, SEM, and TEM) confirmed the material’s uniform morphology, high porosity, and surface functionalization. The HR-MS FT-ICR analysis has also demonstrated the advanced material’s adsorption capacity for various pesticides, suggesting its adequacy for further environmental applications. An exceptional 93.7% extraction efficiency was registered for triazophos, underscoring the potential of microfluidic synthesis approaches in engineering advanced, eco-friendly adsorbent materials for water decontamination of relevant organic pollutants. Full article
(This article belongs to the Special Issue Silica Aerogel: Synthesis, Properties and Characterization)
Show Figures

Figure 1

33 pages, 2401 KB  
Review
Recent Advances in Enzyme Immobilization: The Role of Artificial Intelligence, Novel Nanomaterials, and Dynamic Carrier Systems
by Melesse Tadesse and Yun Liu
Catalysts 2025, 15(6), 571; https://doi.org/10.3390/catal15060571 - 9 Jun 2025
Cited by 4 | Viewed by 6812
Abstract
Enzymes, as nature’s precision biocatalysts, hold transformative potential across industrial, environmental, and biomedical sectors. However, their instability, solvent sensitivity, and limited reusability in their free form necessitate advanced immobilization strategies to enhance their robustness and scalability. This review critically examines cutting-edge advancements in [...] Read more.
Enzymes, as nature’s precision biocatalysts, hold transformative potential across industrial, environmental, and biomedical sectors. However, their instability, solvent sensitivity, and limited reusability in their free form necessitate advanced immobilization strategies to enhance their robustness and scalability. This review critically examines cutting-edge advancements in enzyme immobilization, focusing on the integration of artificial intelligence (AI), novel nanomaterials, and dynamic carrier systems to overcome the traditional limitations of mass transfer, enzyme leakage, and cost inefficiency. Key innovations such as metal–organic frameworks (MOFs), magnetic nanoparticles, self-healing hydrogels, and 3D-printed scaffolds are highlighted for their ability to optimize enzyme orientation, stability, and catalytic efficiency under extreme conditions. Moreover, AI-driven predictive modeling and machine learning emerge as pivotal tools for rationalizing nanomaterial synthesis, multi-enzyme cascade design, and toxicity assessment, while microfluidic systems enable precise biocatalyst fabrication. This review also explores emerging carrier-free strategies, including cross-linked enzyme aggregates (CLEAs) and DNA-directed immobilization, which minimize diffusion barriers and enhance substrate affinity. Despite progress, challenges persist in regards to eco-friendly nanomaterial production, industrial scalability, and real-world application viability. Future directions emphasize sustainable hybrid material design, AI-aided lifecycle assessments, and interdisciplinary synergies between synthetic biology, nanotechnology, and data analytics. By connecting laboratory innovation with industrial needs, this work provides a forward-thinking framework to harness immobilized enzymes for achieving global sustainability goals, particularly in bioremediation, bioenergy, and precision medicine. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

26 pages, 26551 KB  
Article
Antimicrobial Coatings Based on Hybrid Iron Oxide Nanoparticles
by Doina-Antonia Mercan, Dana-Ionela Tudorache (Trifa), Adelina-Gabriela Niculescu, Laurenţiu Mogoantă, George Dan Mogoşanu, Alexandra Cătălina Bîrcă, Bogdan Ștefan Vasile, Ariana Hudiță, Ionela Cristina Voinea, Miruna S. Stan, Tony Hadibarata, Dan Eduard Mihaiescu, Alexandru Mihai Grumezescu and Adina Alberts
Nanomaterials 2025, 15(9), 637; https://doi.org/10.3390/nano15090637 - 22 Apr 2025
Cited by 4 | Viewed by 1447
Abstract
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and [...] Read more.
This study presents the preparation of hybrid iron oxide nanocomposites through a two-step process combining microfluidic-assisted synthesis and post-synthetic surface modification. Fe3O4 nanoparticles were synthesized and simultaneously functionalized with salicylic acid using a three-dimensional vortex-type microfluidic chip, enabling rapid and uniform particle formation. The resulting Fe3O4/SA nanostructures were further modified with either silver or copper oxide to form iron oxide nanocomposites with enhanced antimicrobial functionality. These nanocomposites were subsequently integrated into silica aerogel matrices using a dip-coating approach to improve surface dispersion, structural stability, and biocompatibility. The structural and morphological properties of the samples were investigated using XRD, FT-IR, TEM with SAED analysis, and Raman microscopy. In vitro cytotoxicity and antimicrobial assays demonstrated that Fe3O4/SA–Ag and Fe3O4/SA–CuO exhibit potent antibacterial activity and cell type-dependent biocompatibility. In vivo biodistribution studies showed no accumulation in major organs and selective clearance via the spleen, validating the systemic safety of the platform. These findings highlight the potential of the synthesized nanocomposites as biocompatible, antimicrobial coatings for advanced biomedical surfaces. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 7332 KB  
Article
Synthesis of Curcumin Derivatives via Knoevenagel Reaction Within a Continuously Driven Microfluidic Reactor Using Polymeric Networks Containing Piperidine as a Catalyst
by Naresh Killi, Katja Rumpke and Dirk Kuckling
Gels 2025, 11(4), 278; https://doi.org/10.3390/gels11040278 - 8 Apr 2025
Viewed by 1932
Abstract
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as [...] Read more.
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as catalysts. Piperidine methacrylate and piperidine acrylate were synthesized and subsequently copolymerized with complementary monomers (MMA or DMAA) and crosslinkers (EGDMA or MBAM) via photopolymerization, yielding different polymeric networks. Initially, batch reactions were optimized for the organo-catalytic Knoevenagel condensation between CUM and 4-nitrobenzaldehyde, under various conditions, in the presence of polymer networks. Conversion was assessed using offline 1H NMR spectroscopy, revealing an increase in conversion with enhanced swelling properties of the polymer networks, which facilitated greater accessibility of catalytic sites. In continuous-flow MFR experiments, optimized polymer gel dots exhibited superior catalytic performance, achieving a conversion of up to 72%, compared to other compositions. This improvement was attributed to the enhanced swelling in the reaction mixture (DMSO/methanol, 7:3 v/v) at 40 °C over 72 h. Furthermore, the MFR system enabled the efficient synthesis of a series of CUM derivatives, demonstrating significantly higher conversion rates than traditional batch reactions. Notably, while batch reactions required 90% catalyst loading in the gel, the MFR system achieved a comparable or superior performance with only 50% catalyst, resulting in a higher turnover number. These findings underscore the advantages of continuous-flow organo-catalysis in enhancing catalytic efficiency and sustainability in organic synthesis. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

28 pages, 7839 KB  
Review
Progress in Continuous Flow Synthesis of Hydrogen-Bonded Organic Framework Material Synthons
by Xingjun Yao, Sanmiao Wen, Ningning Ji, Qiulin Deng, Zhiliang Li, Hongbing Wang and Qianqian Shang
Molecules 2025, 30(1), 41; https://doi.org/10.3390/molecules30010041 - 26 Dec 2024
Cited by 2 | Viewed by 3055
Abstract
Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange [...] Read more.
Hydrogen-bonded organic framework (HOF) materials are typically formed by the self-assembly of small organic units (synthons) with specific functional groups through hydrogen bonding or other interactions. HOF is commonly used as an electrolyte for batteries. Well-designed HOF materials can enhance the proton exchange rate, thereby boosting battery performance. This paper reviews recent advancements in the continuous synthesis of HOF synthons, in the continuous synthesis of HOF’s unit small molecules enabling the multi-step, rapid, and in situ synthesis of synthons, such as carboxylic acid, diaminotriazine (DAT), urea, guanidine, imidazole, pyrazole, pyridine, thiazole, triazole, and tetrazole, with online monitoring. Continuous flow reactors facilitate fast chemical reactions and precise microfluidic control, offering superior reaction speed, product yield, and selectivity compared to batch processes. Integrating the continuous synthesis of synthons with the construction of HOF materials on a single platform is essential for achieving low-cost, safe, and efficient processing, especially for reactions involving toxic, flammable, or explosive substances. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 11685 KB  
Article
Vortex-Mixing Microfluidic Fabrication of Micafungin-Loaded Magnetite–Salicylic Acid–Silica Nanocomposite with Sustained-Release Capacity
by Doina-Antonia Mercan, Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, Diana-Elena Cristea, Alina Moroșan, Dana-Ionela Tudorache, Bogdan Purcăreanu, Bogdan Ștefan Vasile, Dana Radu, Mihai Alexandru Grigoroscuta, Tony Hadibarata, Dan Eduard Mihaiescu and Alexandru Mihai Grumezescu
Materials 2024, 17(23), 5816; https://doi.org/10.3390/ma17235816 - 27 Nov 2024
Cited by 4 | Viewed by 1416
Abstract
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in [...] Read more.
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO). The resulting nanocomposite system was characterized using various techniques, including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET) analysis, UV-Vis spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The synthesis method produced nanoparticles with dimensions of 5–7 nm, highlighting the advantages of the chosen approach. A desorption profile was established using a continuous-flow, UV-Vis analysis system, indicating that the bioactive compound was released slowly; after two hours, approximately 50% of the loaded micafungin was detected in the release medium. Furthermore, the results obtained from the FT-ICR MS analysis provided molecular-level confirmation, thereby supporting the release mechanism of micafungin from the nanosystem. Full article
Show Figures

Figure 1

30 pages, 3572 KB  
Review
Advances in Microfluidic Systems and Numerical Modeling in Biomedical Applications: A Review
by Mariana Ferreira, Violeta Carvalho, João Ribeiro, Rui A. Lima, Senhorinha Teixeira and Diana Pinho
Micromachines 2024, 15(7), 873; https://doi.org/10.3390/mi15070873 - 30 Jun 2024
Cited by 14 | Viewed by 7360
Abstract
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale [...] Read more.
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale devices. This review explores fabrication techniques and common materials of microfluidic devices, focusing on soft lithography and additive manufacturing. Microfluidic systems applications, including nucleic acid amplification and protein synthesis, as well as point-of-care diagnostics, DNA analysis, cell cultures, and organ-on-a-chip models (e.g., lung-, brain-, liver-, and tumor-on-a-chip), are discussed. Recent studies have applied computational tools such as ANSYS Fluent 2024 software to numerically simulate the flow behavior. Outside of the study cases, this work reports fundamental aspects of microfluidic simulations, including fluid flow, mass transport, mixing, and diffusion, and highlights the emergent field of organ-on-a-chip simulations. Additionally, it takes into account the application of geometries to improve the mixing of samples, as well as surface wettability modification. In conclusion, the present review summarizes the most relevant contributions of microfluidic systems and their numerical modeling to biomedical engineering. Full article
Show Figures

Figure 1

15 pages, 6567 KB  
Article
Molecular Orientation Behavior of Lyotropic Liquid Crystal–Carbon Dot Hybrids in Microfluidic Confinement
by Artem Bezrukov, Aliya Galeeva, Aleksandr Krupin and Yuriy Galyametdinov
Int. J. Mol. Sci. 2024, 25(10), 5520; https://doi.org/10.3390/ijms25105520 - 18 May 2024
Cited by 6 | Viewed by 1855
Abstract
Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented [...] Read more.
Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented by tetraethylene glycol monododecyl ether and nanoscale carbon dots in microfluidic channels. Microfluidic confinement allows for simultaneously applying multiple factors, such as flow dynamics, wall effects, and temperature, for the precise control of the molecular arrangement in such composites and their resulting optical properties. The microfluidic behavior of composites was characterized by a set of analytical and modeling tools such as polarized and fluorescent microscopy, dynamic light scattering, and fluorescent spectroscopy, as well as image processing in Matlab. The composites were shown to form tunable anisotropic intermolecular structures in microchannels with several levels of molecular ordering. A predominant lamellar structure of the composites was found to undergo additional ordering with respect to the microchannel axis and walls. Such an alignment was controlled by applying shear and temperature factors to the microfluidic environment. The revealed molecular behavior of the composite may contribute to the synthesis of hybrid organized media capable of polarized luminescence for on-chip diagnostics and biomimetics. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

10 pages, 3302 KB  
Article
Prednisolone Nanoprecipitation with Dean Instability Microfluidics Mixer
by Yu Ching Wong, Siyu Yang and Weijia Wen
Nanomaterials 2024, 14(8), 652; https://doi.org/10.3390/nano14080652 - 9 Apr 2024
Cited by 1 | Viewed by 1510
Abstract
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles [...] Read more.
Dean flow and Dean instability play an important role in inertial microfluidics, with a wide application in mixing and sorting. However, most studies are limited to Dean flow in the microscale. This work first reports the application of Dean instability on organic nanoparticles synthesis at De up to 198. The channel geometry (the tortuous channel) is optimized by simulation, in which the mixing efficiency is considered. With the optimized design, prednisolone nanoparticles are synthesized, and the size of the most abundant prednisolone nanoparticles is down to 100 nm with an increase in the Re and De and smallest size down to 46 nm. This work serves as an ice-breaker to the real application of Dean instability by demonstrating its ability in mixing and nanomaterials like nanoparticle synthesis. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

25 pages, 7644 KB  
Review
Towards Industrially Important Applications of Enhanced Organic Reactions by Microfluidic Systems
by Ayesha Zafar, China Takeda, Asif Manzoor, Daiki Tanaka, Masashi Kobayashi, Yoshitora Wadayama, Daisuke Nakane, Adnan Majeed, Muhammad Adnan Iqbal and Takashiro Akitsu
Molecules 2024, 29(2), 398; https://doi.org/10.3390/molecules29020398 - 13 Jan 2024
Cited by 14 | Viewed by 3133
Abstract
This review presents a comprehensive evaluation for the manufacture of organic molecules via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic methods. Microfluidic synthesis has become a crucial technique for [...] Read more.
This review presents a comprehensive evaluation for the manufacture of organic molecules via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic methods. Microfluidic synthesis has become a crucial technique for the quick, affordable, and efficient manufacture of organic and organometallic compounds with complicated characteristics and functions. Therefore, a unique, straightforward flow synthetic methodology can be developed to conduct organic syntheses and improve their efficiency. Full article
Show Figures

Graphical abstract

37 pages, 2476 KB  
Review
Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases
by Gordana Velikic, Dusan M. Maric, Dusica L. Maric, Gordana Supic, Miljan Puletic, Oliver Dulic and Danilo Vojvodic
Int. J. Mol. Sci. 2024, 25(2), 993; https://doi.org/10.3390/ijms25020993 - 12 Jan 2024
Cited by 26 | Viewed by 7200
Abstract
Regenerative medicine harnesses the body’s innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical [...] Read more.
Regenerative medicine harnesses the body’s innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer’s and Parkinson’s. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases. Full article
Show Figures

Figure 1

18 pages, 5330 KB  
Article
Tuning Molecular Orientation Responses of Microfluidic Liquid Crystal Dispersions to Colloid and Polymer Flows
by Artem Bezrukov and Yury Galyametdinov
Int. J. Mol. Sci. 2023, 24(17), 13555; https://doi.org/10.3390/ijms241713555 - 31 Aug 2023
Cited by 2 | Viewed by 2062
Abstract
An important approach to molecular diagnostics is integrating organized substances that provide complex molecular level responses to introduced chemical and biological agents with conditions that optimize and distinguish such responses. In this respect, liquid crystal dispersions are attractive components of molecular diagnostic tools. [...] Read more.
An important approach to molecular diagnostics is integrating organized substances that provide complex molecular level responses to introduced chemical and biological agents with conditions that optimize and distinguish such responses. In this respect, liquid crystal dispersions are attractive components of molecular diagnostic tools. This paper analyzes a colloid system, containing a nematic liquid crystal as a dispersed phase, and aqueous surfactant and polymer solutions as the continuous phases. We applied a microfluidic approach for tuning orientation of liquid crystal molecules in picoliter droplets immobilized on microchannel walls. Introduction of surfactant to the aqueous phase was found to proportionally increase the order parameter of liquid crystal molecules in microdroplets. Infusion of polymer solutions into surfactant-mediated microfluidic liquid crystal dispersions increased the order parameter at much lower surfactant concentrations, while further infusion of surfactant solutions randomized the orientation of liquid crystal molecules. These effects were correlated with the adsorption of surfactant molecules on surfaces of microdroplets, stabilizing the effect of a polymer matrix on bound surfactant ions and the formation of insoluble polymer–colloid aggregates, respectively. The revealed molecular behavior of liquid crystal dispersions may contribute to optimized synthesis of responsive liquid crystal dispersions for in-flow molecular diagnostics of polymers and colloids, and the development of functional laboratory-on-chip prototypes. Full article
(This article belongs to the Special Issue New Prospects of Colloid Chemistry – Molecular Perspectives)
Show Figures

Figure 1

14 pages, 7884 KB  
Article
Microfluidic-Assisted Synthesis of Metal—Organic Framework —Alginate Micro-Particles for Sustained Drug Delivery
by Akhilesh Bendre, Vinayak Hegde, Kanalli V. Ajeya, Subrahmanya Thagare Manjunatha, Derangula Somasekhara, Varalakshmi K. Nadumane, Krishna Kant, Ho-Young Jung, Wei-Song Hung and Mahaveer D. Kurkuri
Biosensors 2023, 13(7), 737; https://doi.org/10.3390/bios13070737 - 17 Jul 2023
Cited by 22 | Viewed by 4105
Abstract
Drug delivery systems (DDS) are continuously being explored since humans are facing more numerous complicated diseases than ever before. These systems can preserve the drug’s functionality and improve its efficacy until the drug is delivered to a specific site within the body. One [...] Read more.
Drug delivery systems (DDS) are continuously being explored since humans are facing more numerous complicated diseases than ever before. These systems can preserve the drug’s functionality and improve its efficacy until the drug is delivered to a specific site within the body. One of the least used materials for this purpose are metal—organic frameworks (MOFs). MOFs possess many properties, including their high surface area and the possibility for the addition of functional surface moieties, that make them ideal drug delivery vehicles. Such properties can be further improved by combining different materials (such as metals or ligands) and utilizing various synthesis techniques. In this work, the microfluidic technique is used to synthesize Zeolitic Imidazole Framework-67 (ZIF-67) containing cobalt ions as well as its bimetallic variant with cobalt and zinc as ZnZIF-67 to be subsequently loaded with diclofenac sodium and incorporated into sodium alginate beads for sustained drug delivery. This study shows the utilization of a microfluidic approach to synthesize MOF variants. Furthermore, these MOFs were incorporated into a biopolymer (sodium alginate) to produce a reliable DDS which can perform sustained drug releases for up to 6 days (for 90% of the full amount released), whereas MOFs without the biopolymer showed sudden release within the first day. Full article
(This article belongs to the Special Issue Microfluidic Bio-Sensors and Their Applications)
Show Figures

Graphical abstract

50 pages, 19450 KB  
Article
Screening Libraries to Discover Molecular Design Principles for the Targeted Delivery of mRNA with One-Component Ionizable Amphiphilic Janus Dendrimers Derived from Plant Phenolic Acids
by Juncheng Lu, Elena N. Atochina-Vasserman, Devendra S. Maurya, Muhammad Irhash Shalihin, Dapeng Zhang, Srijay S. Chenna, Jasper Adamson, Matthew Liu, Habib Ur Rehman Shah, Honey Shah, Qi Xiao, Bryn Queeley, Nathan A. Ona, Erin K. Reagan, Houping Ni, Dipankar Sahoo, Mihai Peterca, Drew Weissman and Virgil Percec
Pharmaceutics 2023, 15(6), 1572; https://doi.org/10.3390/pharmaceutics15061572 - 23 May 2023
Cited by 27 | Viewed by 8856
Abstract
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral [...] Read more.
Viral and synthetic vectors to deliver nucleic acids were key to the rapid development of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs), containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioNTech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution of their four components when delivering mRNA. Here, we report a methodology that involves screening libraries to discover the molecular design principles required to realize organ-targeted mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple injection of their ethanol solution in a buffer. The precise location of the functional groups in one-component IAJDs demonstrated that the targeted organs, including the liver, spleen, lymph nodes, and lung, are selected based on the hydrophilic region, while activity is associated with the hydrophobic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify the synthesis of IAJDs, the assembly of DNPs, handling, and storage of vaccines, and reduce price, despite employing renewable plant starting materials. Using simple molecular design principles will lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics. Full article
Show Figures

Figure 1

15 pages, 3216 KB  
Article
Tuning Properties of Polyelectrolyte-Surfactant Associates in Two-Phase Microfluidic Flows
by Artem Bezrukov and Yury Galyametdinov
Polymers 2022, 14(24), 5480; https://doi.org/10.3390/polym14245480 - 14 Dec 2022
Cited by 1 | Viewed by 2101
Abstract
This work focuses on identifying and prioritizing factors that allow control of the properties of polyelectrolyte-surfactant complexes in two-phase microfluidic confinement and provide advantages over synthesis of such complexes in macroscopic conditions. We characterize the impact of polymer and surfactant aqueous flow conditions [...] Read more.
This work focuses on identifying and prioritizing factors that allow control of the properties of polyelectrolyte-surfactant complexes in two-phase microfluidic confinement and provide advantages over synthesis of such complexes in macroscopic conditions. We characterize the impact of polymer and surfactant aqueous flow conditions on the formation of microscale droplets and fluid threads in the presence of an immiscible organic solvent. We perform an experimental and selected numerical analysis of fast supramolecular reactions in droplets and threads. The work offers a quantitative control over properties of polyelectrolyte-surfactant complexes produced in two-phase confinement by varying capillary numbers and the ratio of aqueous and organic flowrates. We propose a combined thread-droplet mode to synthesize polyelectrolyte-surfactant complexes. This mode allows the production of complexes in a broader size range of R ≈ 70–200 nm, as compared with synthesis in macroscopic conditions and the respective sizes R ≈ 100–120 nm. Due to a minimized impact of undesirable post-chip reactions and ordered microfluidic confinement conditions, the dispersity of microfluidic aggregates (PDI = 0.2–0.25) is lower than that of their analogs synthesized in bulk (PDI = 0.3–0.4). The proposed approach can be used for tailored synthesis of target drug delivery polyelectrolyte-surfactant systems in lab-on-chip devices for biomedical applications. Full article
(This article belongs to the Special Issue Recent Developments in Functional Polyelectrolyte Systems)
Show Figures

Graphical abstract

Back to TopTop