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Abstract: This review presents a comprehensive evaluation for the manufacture of organic molecules
via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over
the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic
methods. Microfluidic synthesis has become a crucial technique for the quick, affordable, and
efficient manufacture of organic and organometallic compounds with complicated characteristics
and functions. Therefore, a unique, straightforward flow synthetic methodology can be developed to
conduct organic syntheses and improve their efficiency.
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1. Introduction

Many researchers have concentrated on manufacturing metal complexes, including
proteins, that may be useful for the development of new drugs or fuel cells [1].

With the proliferation of microelectromechanical systems (MEMS) technology, the
syntheses of microfluidic devices or microdroplets have become increasingly important
as tools for chemical analysis and synthesis [2,3]. Microfluidic devices (microreactors,
microchemical chips, etc.) that integrate the functions of chemical synthesis, analysis
equipment, and chemical plants in a compact form are being investigated [4–7]. By applying
semiconductor integrated circuit microfabrication technology using MEMS, chemical and
biochemical analysis tools have become more compact with high performance. Moreover,
micro/nanofluidic devices of approximately 10−9 to 10−12 L for chemical synthesis and
cell function analysis have been fabricated [8,9]. The reagent reacts by pouring the solution
into a groove cut on a small plate, and the flow path is designed to allow the reaction
reagents, products, and waste liquids to meet and separate [10]. Here, MEMS refers to ultra
small devices with a total length of less than less than a millimeter, in which mechanical
parts, sensors, electronic circuits, etc., are integrated into silicon substrates, glass substrates,
organic materials, etc. [11].

Zare et al. generated microdroplets in a spray-like manner to elucidate the reaction
kinetics of organic synthesis at the microscale level. For example, the reaction rate for the
Pomerantz–Fritsch synthesis is 100,000 times faster than the beaker scale [12]. Microfluidic
devices are also capable of extraction operations. For example, Craig et al. reported the
application of organic solvent extraction for Cu2+ ions from aqueous solutions [13]. Tuck
et al. explained the improvement in microscale chemical reaction rates regarding Gibbs
energy. Using the oligomer polymerization of amino acids, they reported that the Gibbs
energy, which is positive at the beaker scale, becomes negative at the microscale, promoting
spontaneous reactions [14].

The advantages of chemical synthesis using microfluidics are as follows: (1) Owing to
their small size, only small quantities of materials that are difficult to obtain or expensive
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can be processed. Smaller sample volumes are advantageous, particularly for analyti-
cal purposes. (2) The reaction is either completed immediately after the rapidly flowing
solutions meet or is limited to a short time when the solutions are in contact with each
other. This is because the distance over which the substances can spread is limited to an
extremely short range. (3) High functionality may require less effort (isolation, purification,
and sequential reactions) than synthesis in a beaker. By devising the groove design of the
microfluidic device, it is possible to separate product AB from the unreacted products, react
product AB with reactant C, or separate the target ABC from unreacted AB or unreacted
products. Therefore, refinement from C is not required [15,16]. (4) Space savings are evident
when compared to the installation space of reaction vessels, draft columns, etc., in a typical
chemical laboratory. (5) The lower cost is related to (1), but because the amount of reagents
required (often with higher yields than conventional methods), solvents, and thermal en-
ergy (heating time) are reduced, less liquid waste is generated. The amount of spent reagent
is reduced (disposal costs), which is both economically and environmentally beneficial [17].
Kim et al. devised a microfluidic approach to chemo selectively functionalize the ortho
position of iodophenyl carbamates via an extremely rapid anionic Fries rearrangement [18].

A research team prepared and developed single crystals of Schiff base complexes
containing rare elements in organic solvents. There is always a risk of volatile solvent
leakage because crystals are formed when the organic solvent in the solution volatilizes.
Moreover, environmental measurements in laboratories may reveal health and fire risks.
Fumes released by volatilizing organic solvents in laboratories are dangerous to human
health. In this case, expertise or knowledge regarding the interfacial organic solvents
utilized for crystallization (two layers in a test tube) and preparation (mutual solute and
solvent dissolution via vapor diffusion) may be crucial for the experimental setup of the mi-
crofluidic preparation apparatus. In light of this correlation, this paper presents chemistry
using interfacial organic solvents obtained from existing experiments. In addition, artificial
metal proteins containing these metal complexes have recently attracted attention, and
the handling of fragile biomolecules and materials using microfluidic devices is becoming
active, overcoming the shortcomings of multi-step and long-term synthesis [10].

As a general introduction, we present some of the advantages of microfluidic synthesis
along with research examples. First, compared with previous methods, microfluidic devices
offer various advantages, including yield and separation.

The synthesis of various organic ligands, metal complexes, and protein complexes
via high-throughput synthesis using a microfluidic device has been explained. Multi-step
synthesis methods typically include the following steps.

Step 1: Synthesis of organic ligands from raw materials and reactants.
Step 2: Synthesis of the metal complex from organic ligands and metal sources.
Step 3: Addition of the protein to the complex and the protein containing the metal

complex.
Y-shaped microfluidic devices have been designed to couple the product of a previous

step to one of the reactants of the next step [10,15].
Concerning the reaction time, in a conventional reaction, the solution is stirred, but

the laminar flows at the two inlets can still meet and react. Additionally, protrusions can
be added to disrupt the flow and promote the mixing of laminar solutions. In addition to
yield (2-fold) and purity (immediate and easy isolation), laminar flow has the remarkable
advantages of low temperature and short reaction time. Metal complexes containing
proteins are generally synthesized using traditional methods (i.e., in a beaker). However,
existing methods have the potential to modify proteins, which are affected by organic
solvents. These changes in proteins increase the difficulty of removing proteins carrying
metal complexes from the reaction fluid [19].

Second, the microfluidic system is useful for the conversion of specific functional
groups into hazardous products under harsh reaction conditions. Recently, microfluidic
devices and chemistry-related reactions have been developed. Fast reaction rates and
effective synthesis can be accomplished with these devices, while the period of diffusion
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of the chemical species is short in microscale channels [20]. Because of the laminar flow,
many chemical species do not contribute to the reaction in devices with Y-shaped channel
designs, despite their frequent use in easy manufacturing. This apparatus has been used
for the bromination of organic substances. In a simple microchannel, in the absence of an
iron catalyst, the monobromination of two or more bromo groups was achieved, but no
addition was made to the organic compounds. Two simple solutions were considered, and
initially, mixed particles of iron were utilized as reagents. Iron particles either blocked
or flowed through the channel before the chemical reaction; however, dibromination was
not observed. Alternatively, sputtering or vapor deposition can be used to cover the
microchannel surface with an iron catalyst [21,22].

Conventional bromo group addition reactions are dangerous because of the toxicity
and corrosiveness of bromine. In addition, the bromination reaction rate is usually low, and
the reaction is considered complicated. In contrast, the specificity of the microscale reactor
increased reaction speed and improved recovery rates of the target substances [23]. The
highly toxic and corrosive bromo group addition reaction has been performed under highly
efficient and nonhazardous conditions using a simple microfluidic method. The proposed
silicon/glass structure prevents the leakage and circulation of internal and external gases,
thereby eliminating the need for atmospheric control. Harmful bromine-containing gases
are trapped in the isolated microchannels of the device [24,25].

Third, chemical reactions can be implemented by achieving specific physical conditions
such as temperature (dissipation and activation), diffusion (mass transfer, solvent viscosity),
and surface tension energy. Azo compounds are attractive materials for anticancer drugs
and solar cells. However, existing synthesis methods are not efficient. For example, to
eliminate heat produced during the reaction, the temperature is set at 0 ◦C [26]. Additionally,
high concentrations of acidic and alkaline reagents cause product decomposition; therefore,
the pH must be neutral. However, such complex chemical reactions are difficult to achieve
using droplet or single-step synthetic reactions [27].

In addition, the existing method requires recrystallization because unreacted materials
and byproducts are mixed. However, the microdroplet method ensures a high product
purity, and additional recrystallization is not required in this method. This result con-
sistently provides the high diffusion length of the chemical moieties contributed to the
high-efficiency chemical reaction. These results showed that complex chemical synthesis
was possible in microdroplets and that chemical reactions using microdroplets could spread
chemical species quickly and efficiently [14].

In this way, microscopic water droplets were considered ‘little laboratories,’ and com-
plex chemical azo compounds were synthesized for the first time. However, the synthesis
of azo compounds requires precise pH control, and the reaction is exothermic. Synthesis
using microdroplets has advantages over temperature control and does not require the
pH reagent concentration, synthesis time, or recrystallization. The microdroplets quickly
release heat without any heat-induced side reactions. Accurate pH control and high-purity
synthesis are possible using the micro-liquid titration method [28,29]. Microfluidics is one
of the most rapidly rising scientific topics. It has practical applications in all aspects of
life, including the pharmaceutical business, diagnosis, chemical analysis, drug screening,
medical care, environmental control systems, private testing, and food processing [30–32].
All of these advantages are not possible without the use of various pumping strategies
for microfluidics. These shortcomings are compensated for by active pumping processes,
which result in extremely efficient, robust, completely automated microfluidic flow reg-
ulation systems. These are outfitted with various pumps (electromagnetic, syringe, and
magnetic) and valves to accurately control the fluid flow which make this microfluidic
system costly. We anticipate that novel microfluidic systems will be designed to be as
small as feasible, regardless of fluid flow control. The authors also believe that active flow
control mechanisms will displace passive techniques and integrate all of the advantages of
currently available methods, resulting in the development of revolutionary miniaturized
high-precision all-in-one microfluidic systems with no external elements. We anticipate
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that current microelectronics research will greatly lower the size and power consumption of
microfluidic devices. This fact will result in low-cost, portable, automated, and extremely
precise systems that can perform a wide range of tests on a single chip [33,34]. Another
reason behind limited use of microfluidic system at an industrial scale is that academic
laboratories typically produce microfluidic devices utilizing materials and processes that
require significant modification for industrial application, and they lack the time and re-
sources to further develop these in-house. For the same reason, the industry may be hesitant
to invest in early-stage innovations that have yet to be demonstrated to work outside of
academic laboratories. To fulfill this above problem, recently, he Canadian government
made a large investment in Precision Nanosystems, a local biotechnology company, for
vaccine production using nanoparticle technology [35].

2. Industrial Applications and Microfluidic Synthesis
2.1. Pharmaceutical Applications

Photochemical reactions can be enhanced through the implementation of continuous
flow technology. Scientists have developed a High Throughput Experimentation (HTE)
droplet microfluidic platform that enables high-throughput drug discovery in flow to gener-
ate pharmaceutically relevant compound libraries. It is possible to handle several samples
simultaneously over a long period by segmenting them with an immiscible phase [36,37].
Greater alkene compatibility and enhanced reactivity were observed with pharmacologi-
cally relevant sulfonyl acetamides containing heteroarenes, as shown in Scheme 1A. The
in-droplet reaction discovery screen enabled researchers to expand upon their previously re-
ported alkene amino arylation methodology to include substrates with increased structural
complexity. It also allowed them to identify reactivity trends and [29] structure–activity re-
lationships to inform ongoing mechanistic investigations [38]. The present study introduces
a microfluidic redox-neutral electrochemistry platform (µRN-eChem), which is widely ap-
plicable to single-electron transfer chemistry (SET), such as radical–radical cross-coupling,
Minisci reactions, and nickel-catalyzed C(sp2)-O cross-couplings (Scheme 1B). A microflu-
idic channel facilitates selective transformation by accelerating molecular diffusion across a
cathode and anode simultaneously while outpacing the decomposition of intermediates.
Due to the excellent conductivity of the microfluidic channel, no additional electrolyte was
required. An electrosynthesis of a nematic liquid crystal compound was demonstrated
using µRN-eChem in two steps [39].

An isoporous nanostructured membrane is incorporated into microfluidics-integrated
microscale organic electrochemical transistors (OECTs). These label-free devices were used
to cure Alzheimer’s disease (AD) by detecting Aβ protein aggregates in human serum
with a performance exceeding those of several other systems [40,41]. To capture protein
aggregates, Congo Red (CR) molecules were functionalized on the membrane. During
the accumulation process, the membrane surface’s capacitance changed, modulating the
gate voltage felt by the transistor channel. Microfluidic channels served as immunoreac-
tion chambers that reduced analytical time compared to microwells while using minimal
sample/reagents. There was a drastic difference between transistor characteristics for all de-
vices as a result of the binding event. Both buffer and human serum samples were detected
with Microfluidic-based OECTs in a broad range of concentrations. Since accumulation-
mode devices require less power and have higher current changes during binding, they
outperform depletion-mode devices. Unlike electronic immunosensors that rely on ref-
erence electrodes or electroactive labels, our simple detection method does not require
reference electrodes [42].

In order to synthesize organic TPE nanoparticles (NPs), a new supercritical antisolvent
(SAS) process was developed with a microreactor. A model organic molecule, tetraphenyl
ethylene (TPE), was solubilized in tetrahydrofuran (THF) [43], and supercritical carbon
dioxide (sc-CO2) was used as an antisolvent. It is possible to obtain sizes below 15 nm using
µSAS. Narrow dispersion size (±3 nm) was obtained. This technique is very useful for
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producing very small organic nanoparticles, paving the way for a wide range of practical
applications [44].
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decarboxylative arylation.

Metal–organic framework microcrystals with HKUST-1 topology [45] of different sizes,
shapes, and chemistry of metal clusters have been synthesized using the microfluidic
system consisting of the microfluidic chip (MFC) and syringe pumps. The MFC contains
two channels, the upper channel contained metallic salt (CuSO4, Cu(NO3)2 or Ni(NO3)2
preliminarily dissolved in N,N-Dimethylformamide), whereas the bottom channel was
filled with the ligand (benzene-1,3,5-tricarboxylic acid or trimesic acid preliminarily dis-
solved in N,N-Dimethylformamide) shown in Scheme 2. The reaction rapidly started at
the junction of two channels. For the temperature regulation, the MFC was placed on a
refrigerant and a heating plate. Variations of the reaction temperature in the case of all
three metallic salts used resulted in a change of the morphology of the obtained MOF
microcrystals [46].
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Previous studies have shown that a multifunctional nanoparticle drug delivery system
(NDDS) is capable of delivering hydrophilic doxorubicin (DOX) and near-infrared photosen-
sitizer dye IR780 simultaneously using a nanoscale zeolitic imidazolate framework-90 (ZIF-
90) core and a SAD shell using a microfluidics-based approach. ZIF-DH obtained by IR780
has a 10-fold loading capacity over ZIF-90 obtained by conventional means. A spermine-
modified acetalated dextran (SAD) shell could further enhance the pH-responsive release
and prevent drug leakage in physiological solutions by improving the pH-responsive
release performance of nanoscale ZIF-90. ZIF-90 is also capable of targeting tumors due to
its conjugation of hyaluronic acid (HA) via amine groups on its SAD shell. A synergistic
dual-mode chemo-photodynamic therapy using IR780/DOX@ZIF-DH was shown to be ef-
fective against cancer both in vitro and in vivo. As a result of this study, multiple problems
encountered in nanoscale ZIF are simultaneously solved by combining intelligent polymer
design and controllable microfluidics-based production. It is expected that this technology
has great potential for cancer therapy clinical applications [47].

There are a number of foodborne pathogens, including Salmonella, that are found
throughout the world. It can cause diarrhea, gastroenteritis, typhoid, and other symptoms
when found in a wide range of foods. To prevent and control foodborne diseases, rapid
and sensitive detection of Salmonella is essential [48]. In conventional methods, bacteria
are mainly detected by culture, enzyme-linked immunosorbent assays (ELISAs) and poly-
merase chain reactions (PCRs) [49]. An automatic, rapid, sensitive and automated detection
system for foodborne pathogens has been successfully developed using a microfluidic
biosensor [50,51]. An MNB–Salmonella–MOF complex was formed using the immune mag-
netic nanobeads (MNBs) and the immune magnetic nanofoams (MOFs) to detect Salmonella
typhimurium. As a result of the catalysis by the complexes, yellow 2,3-diaminophenazine
(DAP) was produced by combining o-phenylenediamine with H2O2 as shown in Figure 1.
The catalyst was then photographed using a narrow-band blue light. With greater sensitiv-
ity, the improved image processing was demonstrated to be effective for rapidly mixing the
solutions in the vibrating mixer. Detection of Salmonella typhimurium at a concentration
of 14 CFU/mL was achieved using the microfluidic biosensor, which integrated mixing,
incubation, separation, catalysis, and detection. Despite its microfluidic design, this mi-
crofluidic biosensor does not cost more than USD 200. For ensuring food safety, it can be
extended for in-field screening of other foodborne bacteria [52].
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Figure 1. Diagram of the microfluidic chip to detect Salmonella typhimurium bacteria.

Approximately 30 thousand tons of cephalexin, which is a kind of β-lactam, are pro-
duced each year and the antibiotic sells for USD 15 billion annually [53]. An integrated
microfluidic platform was developed to manufacture cephalexin continuously through
an enzymatic reaction. Microspace is used on this platform as an excellent environment
in which to perform continuous reaction–transport processes. This platform offers simul-
taneous synthesis and separation of reaction products in combination with an aqueous
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two-phase system (ATPS). It is screened for the composition of ATPS that allows the sep-
aration of the enzyme from the reaction product. In order to synthesize cephalexin, the
bottom (salt) phase of ATPS is used as a reaction medium. During the kinetic regime,
reaction conditions are set so that maximum cephalexin yields can be achieved. Afterward,
slug-flow microfluidic platforms are used to test the enzyme recycle of cephalexin synthesis.
A modular microfluidic system with a gravity settler and a microdialysis unit is utilized to
continuously synthesize cephalexin [54].

Metal–organic nanoparticles (MONs) were prepared from diethyldithiocarbamate cop-
per Cu(DDC)2 using a Stabilized Metal Ion Ligand Nanocomplex (SMILE) technique [55].
In addition to being a superior yielding and high-concentration method, the SMILE method
also requires a simplified process for formulation and preparation, and it has excellent
formulation properties. The 3D-printed microfluidic device was used to further develop
the SMILE technology for continuous production of bovine serum albumin Cu(DDC)2
MONs (Scheme 3). The microfluidic device was used to achieve precise mixing control, to
easily scale up preparation for mass production, and to demonstrate great potential for
treating breast cancer [56].
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A microfluidic chip based on glass capillaries was used to produce solid–lipid nanopar-
ticles (SLNs) for the first time. The current synthesis method showed several advantages
over conventional bulk methods, which usually suffer from multiple preparation steps,
low production rates and poor reproducibility, as well as being able to produce SLNs
continuously with high yields, to be highly reproducible, and to be precisely controlled
over their physical properties. For the purpose of testing the efficacy of SLN-based nano
formulations in cancer therapy, sorafenib (SFN) and paclitaxel (PTX) were used as model
drugs. As a result of the microfluidic production of SLNs, the drugs were encapsulated
efficiently and loaded sufficiently to sustain a sustained release. In addition, fluorescence
assisted imaging was used to confirm tumor penetration and cellular uptake as well as the
anti-cancer efficacy of the drug-loaded SLN formulations [57].

A microreactor device was used for the successful preparation of lignin/chitosan pH-
responsive polymer nanoparticles (Lig/Chi NPs) used for drug delivery. The electrostatic
assembly of amino groups of chitosan and carboxyl groups of lignin formed Lig/Chi NPs
during the mixing of positively charged chitosan and negatively charged lignin solutions in
a microreactor. There is a positive charge on the surface of the nanoparticles, and they are
very dispersible as shown in Figure 2. With the microreactor, lignin-based nanoparticles
(LNP) suspensions with high stability and controlled size distributions can be produced
with more uniform mixing and better control of the solvent/antisolvent ratio throughout
the process. Lig/Chi NPs have been demonstrated as pH-responsive drug delivery carriers
in these studies, and their production and application have reached a large-scale and
commercial level [58].
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Figure 2. Microfluidic synthesis of Lig/Chi NPs.

Poly(ε-caprolactone) (PCL) is a polymer made from synthetic materials and has signif-
icant drug-loading capacity (LC), biodegradability, non-immunogenicity, and permeability,
all of which improve the controlled release of drugs [59]. PCL nanoparticles (NPs) con-
taining clarithromycin (CLR) have been synthesized using the microfluidic technique. To
ensure the most homogeneous solution, 0.04 g of PCL granules were added to 20 mL
of acetone, and the mixture was agitated for 1 h at 45 ◦C and 1 h at room temperature.
Subsequently, CLR powder was dissolved in a cooled polymer solution in a tightly closed
container. To produce NPs, distilled water was injected into the adjacent channels at a
flow rate of 50 mL/h, whereas the PCL/CLR solution was injected into the middle channel
at a rate of 2.5 mL/h. Subsequently, the two fluid flows were joined by a hydrodynamic
flow-focusing event in the mixing region, where two liquid continuous phase streams
surrounded the scattered phase stream and split it into droplets. To conduct additional
analyses, the solution was lyophilized after it was removed from the outlet channel, after
which the PCL NPs were formed (Figure 3). The resulting NPs were smaller, more uniform,
and more stable than the NPs prepared using conventional methods [60].
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2.2. Photocatalytic Applications

Synthetic organic photocatalytic chemistry is an effective method for easily producing
both naturally occurring chemicals and compounds with highly complex structures under
favorable circumstances. However, implementing a photochemical mechanism in an
industrial process has proven challenging owing to scaling-up difficulties. With flow
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chemistry, it is possible to have more control over the reaction parameters, as well as higher
reaction selectivity and reproducibility [61–63]. In contrast to conventional continuous-flow
systems, droplet microfluidic technology uses multiple immiscible fluids to create a series
of droplets that serve as analysis units. This avoids the issues of sample diffusion and
cross-contamination, while further reducing the amount of reagent used. This method
modifies fluids in microscale channels and offers a framework for several chemical synthesis
approaches, leading to materials and molecules [64].

Metal catalysts and large quantities of hazardous organic solvents are required for the
practical production of polyconjugate polymeric materials. Aqueous solutions containing
micelle-forming agents can easily substitute for non-aqueous solvents, even when used for
the manufacture of water-insoluble organics. Recently, the researchers described a selective
metal-free photoinduced microfluidic system-based direct arylation procedure conducted
in a laboratory setting with water, ambient temperature, and minimal competitive dehalo-
genation. The surfactant Kolliphor EL (K-EL) and a specially formulated photo redox
mediator (S-PTh), which also functioned as a cosurfactant, partitioned numerous reactive
species into different compartments of the association colloid formed in water, resulting in
unexpected selectivity. The synthesized arylated compounds prepared by batch process
had several drawbacks in terms of reagent amount, selectivity, reproducibility, and prepa-
ration time. To overcome these problems, the reaction was performed in a microfluidic
reactor system and the results were surprising [65]. Table 1 shows the summary of role of
microfluidic system in pharmaceutical industry.

Table 1. Summarization of microfluidic system based pharmaceutical synthesis.

Experiments Type of Reaction Advantages Pharmaceutical Applications

Electrosynthesis of nematic liquid
crystal compounds

Microfluidic redox-neutral
molecular diffusion

Enhanced reactivity, Handle
several samples simultaneously
over a long period, Rapid
molecular diffusion

Facilitates selective
transformation

Detect amyloid-β protein in
human serum

Microfluidic organic
electrochemical transistors
reaction

Reduced analytical time, Minimal
sample, Not required reference
electrodes

Cure Alzheimer’s disease

Organic TPE nanoparticles (NPs) Microreactor based antisolvent
process

Possibility to obtain sizes below
15 nm Imaging, biosensing and medicine

MOF microcrystals with HKUST-1 Continuous flow synthesis in a
microfluidic chip

2 times higher loading capacities
than a solvothermally synthesized
compound

Utilize them as drug delivery
systems

Zeolitic imidazolate
framework-90 (ZIF-90) core and a
SAD shell

Microfluidics-Assisted Surface
Trifunctionalization

10-fold loading capacity over
ZIF-90 obtained by conventional
means, prevent drug leakage

Cancer therapy, clinical
applications

2,3-diaminophenazine (DAP)
production Used microfluidic biosensors Greater sensitivity, improved

image processing. rapid mixing
In-field screening of foodborne
pathogens

Cephalexin is synthesized by
penicillin acylase

Microfluidic aqueous two-phase
system

High affinity, allows simple
enzyme recycle and addition of
fresh reactants.

Used as antibiotic

Solid-Lipid Nanoparticles (SLNs) Oil-in-water homogenization
microfluidic process

High yields and highly
reproducible

Good encapsulation efficiency
and loading degree of the drugs

PCL nanoparticles containing
clarithromycin

Microfluidic hydrodynamic flow
focusing reaction

NPs were smaller, more uniform,
and more stable than the NPs
prepared using conventional
methods

Significant drug-loading capacity,
biodegradability,
non-immunogenicity

Bovine serum albumin production Scalable continuous microfluidic
assisted SMILE technology

Precise mixing control, easily
scale up preparation for mass
production

Potential for treating breast cancer

Compared to conventional batch synthesis, microfluidic reactors have demonstrated
considerable advantages in photocatalytic organic synthesis because they transfer heat
and mass rapidly, have short molecular diffusion distances, are easy to control, and are
light transplant [66–68]. Researchers reported a cationic poly(p-phenylene ethynylene
terthiophene) (PPET3-N2) as a sensitizer for effective photocatalytic oxidation of a series
of organic sulfides in microfluidic device (Figure 4). In the present study, photocatalytic
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oxidation of 4-methoxythioanisole was performed. The channel in the microfluidic reactor
was filled with mixed solution of PPET3-N2 and 4-methoxythioanisole in methanol. In order
to keep the microfluidic reactor in an oxygen rich environment, oxygen was delivered into
another channel using a syringe pump [69]. Table 2 shows summarization of microfluidic
system based photocatalytic synthesis.
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Table 2. Summarization of microfluidic system based photocatalytic synthesis.

Experiments Type of Reaction Advantages Photocatalytic Applications

Arylated compounds Photoredox reaction Improves the reaction time, without
eroding the yields and selectivity

Carrying out photoredox
direct arylation couplings

Cationic poly(p-phenylene
ethynylene terthiophene) Photocatalytic oxidation

Transfer heat and mass rapidly,
have short molecular diffusion
distances and easy to control

Used as a sensitizer for series
of organic sulfides

2.3. Biochemical Applications

Several new methods have been demonstrated recently for the construction of mul-
tifunctional wound healing materials. As the substrate, a polyvinylpyrrolidone (PVP)-
oriented membrane was spun by microfluidics to create an oriented microfiber mem-
brane. A zeolitic metal–organic framework-8 at ascorbic acid (ZIF-8@AA) was used as a
framework to load ascorbic acid in drug-delivery nanomaterials. Following microfluidic
spinning, the PVP-oriented membrane showed robust antibacterial and drug release per-
formance. Biocompatibility and hemocompatibility of the fabricated PVP membrane were
excellent in vitro. The present work offers a method of constructing regular microfiber
arrangements and allowing active materials to be loaded into substrates in the biomedical
field for disease treatment [70].

An insulin delivery system based on a metal–organic framework (MOF) has been
developed using microfluidics. Through a continuous-flow, microfluidic mixing system,
ZIF-8 was synthesized with insulin and gold nanoparticles (AuNPs). To oxidize glucose
molecules absorbed by porous ZIF-8, glucose oxidase mimicking the function of AuNPs
was used. As glucose was oxidized inside the MOF, gluconic acid and hydrogen peroxide
were produced. It is possible to use these synthetic bioactive MOFs to develop stimulus-
responsive drug delivery systems and to exploit them for biosensing applications [71].
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In Figure 5, enzyme–MOF composites were synthesized using a double-Y-shaped
microfluidic channel. First, zinc ions (Zn2+) were mixed with 2-methylimidazole (2-MeIM),
followed by protein. Through centrifugation and washing steps, the product was continu-
ously collected from the outlet. As the ratio of reactants in the microchannel continuously
changed, mesopores appeared in the resultant products. The multimodal distribution of
pore sizes enabled enzymes to be immobilized while reducing resistance to mass transfer.
As a result, enzyme–MOF composites prepared from conventional bulk solution synthe-
sis are believed to have a nearly twofold higher enzymatic activity than enzyme–MOF
composites. As a result of this defect-assisted synthesis, a new approach to enhancing
enzyme–MOF composite activity has been proposed [72].
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Through a microfluidic approach, researchers have developed BioZIF-8 MOFs
that are aptamer-functionalized in a single step and using a single chip. Microfluidics
enabled the encapsulation of nucleic acids, proteins, and small drug molecules while
simultaneously functionalizing BioZIF-8 MOFs with an aptamer (RNA and DNA ap-
tamers). It was found that neat BioZIF-8 MOFs had a much lower toxicity profile and
were more effective at targeting lymph nodes and tumor masses than the aptamer-
BioZIF-8 MOFs [73–75]. In this study, BioZIF-8 MOFs are prepared using a simple
one-step and one-chip microfluidic method [76].

It was confirmed that the microfluidic method was a simple and fast method for
producing liposomes (Figure 6). A uniform size distribution was observed for curcumin-
loaded liposomes and empty liposomes produced by microfluidics. Liposome production
using LCD-printed microfluidic devices was studied for the first time in this study. It is
necessary to consider scalability, process control, and multistep processes when fabricating
microfluidic devices because traditional fabrication techniques suffer from many disad-
vantages, including multistep processing, costly facilities, low encapsulation efficiency,
and low encapsulation efficiency, among others [77]. A novel method for preparing 1,2-
dimyristoyl-sn-glycero-3-phosphocholine liposomes with cholesterol was developed by
using commercial and 3D-printed microfluidic devices. The anticancer activity of curcumin
produced by microfluidics has been reported to be enhanced when compared with other
reported systems that encapsulate curcumin [70,78].

To scale-up the production of lipid nanoparticles (LNPs) and small interfering RNA
(siRNA)-loaded LNPs, an integrated baffle device has been designed. By using a microflu-
idic stepwise post-treatment system, a seamless and simple manufacturing process could
be achieved. It demonstrated high knockdown activity and low accumulation of siRNAs
in mice hepatocytes when LNPs were delivered effectively. A microfluidic post-treatment
method did not significantly affect siRNA delivery or LNP activity, according to scientists.
The rapid ethanol dilution method, in comparison to conventional post-treatment methods,
allowed greater precision in size control for LNPs. Integrated baffle devices can be used
to produce more precise LNP-based nanomedicines under strict hygiene conditions, im-
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proving the efficacy of current nanomedicines and enabling high-throughput production to
improve health outcomes [79,80].
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Microfluidic chips can be used to automate and integrate DNA-based data storage by
encapsulating DNA micro bibliographies within 10 min of encapsulation and extracting
them within 5 min. By combining DNA microlibrary@MOFs with data-encoded DNA,
harsh environments can be effectively handled. When stored at 25 ◦C, 50% relative humidity,
and 10,000 lx of sunlight radiation, the encoded information can be read out perfectly after
accelerated aging. As well as this, the library can be reproduced every time it is accessed so
that target data can be retrieved in real-time via flow cytometry [81].

In recent years, scientists have focused on building metal complexes with proteins
that can be used as fuel cells or for drug development. Chemical synthesis has enabled
the extensive use of microfluidic devices [82]. Several complexes comprising proteins
have been developed using conventional-scale glassware [83]. The oxidative degradation
of metal complexes by ambient oxygen is a major problem because the reaction time is
prolonged at this scale. After synthesis, it is necessary to separate the complex from the
unreacted compounds and organic solvents. Figure 7 depicts the microfluidic apparatus
used to manufacture the chiral salen Mn(II) and Co(II) complexes with lysozyme because
rapid reactions are possible using microfluidic chemical synthesis [6]. It was observed that
the enclosed channel walls would reduce the influence of the atmosphere and that the
reaction time would be lower at lower temperatures.
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As shown in Scheme 4, in Step 1, methanol (50 mL) is dissolved dropwise to form a
solution of (1R,2R)-(+)-1,2-diphenylethylenediamine (B). The mixture is then agitated at
40 ◦C for 2 h to produce a yellow solution of the ligand. Step 2 involves the formation of
a metal complex from the ligand and Mn(II) or Co(II) acetate tetrahydrate (C), both of
which are dissolved in methanol. Synthesis is performed without any treatment after Step
1, and the ligand inlet for Step 2 is connected to the outlet of Step 1, as shown in Figure 7a.
The interaction between the Mn (II) complex and lysozyme in Step 3 produces Mn(II)
and Co(II) complexes containing lysozyme. The X-junction apparatus employed in the
experiment is shown in Figure 7b. To separate the unwanted products, this instrument
incorporates a separation barrier. A sodium citrate buffer solution (pH 4.25) is mixed
with the Mn(II) complex after slight dissolution in methanol. Lysozyme is mixed in a
buffer solution, and the lysozyme solution is injected from inlets a and b in Figure 7b
together with Mn(II) or Co(II) complexes, respectively [10]. Table 3 shows microfluidic
system based Biochemical synthesis.
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Table 3. Summarization of microfluidic system based Biochemical synthesis.

Experiments Type of Reaction Advantages Biochemical applications

A zeolitic metal-organic
framework-8 at ascorbic acid

Electrostatic hydrogen bonding,
microfluidic spinning

Excellent biocompatibility and
hemocompatibility

Construction of multifunctional
wound healing materials

Insulin- and
AuNP-encapsulated zeolitic
imidazolate framework-8

Continuous-flow, microfluidic
oxidation system

Due to presence of glucose stimulus for
insulin release

Drug delivery, biosensing
applications

Enzyme-MOF composites Microfluidic laminar flow Reducing resistance to mass transfer Maintaining the protection to
the enzymes

BioZIF-8 MOFs with an aptamer Electrostatic one chip
microfluidic reaction

Lower toxicity and more effective at
targeting lymph nodes and tumor mass

Encapsulation of nucleic acids,
proteins, and small drug
molecules

Curcumin-loaded Liposomes Microfluidic polymerization Controlling the channel length, flow
rates, composition, pH and temperature Anticancer activity

Small interfering RNA-loaded
LNPs

Continuous-flow, microfluidic
system

High knockdown activity and low
accumulation

Used for the treatment of
various cancers

Chiral salen Mn(II) and Co(II)
complexes with lysozyme Microfluidic oxidation reaction Reaction time would be lower at lower

temperatures
Used in drugdiscovery or fuel
cells
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2.4. Fine Chemical Production

Azo compounds are adaptable substances used in a wide range of products including
batteries and anticancer medications and are typically produced via challenging solution-
based processes [26,84]. To facilitate the chemical reaction, diazotization is typically per-
formed in a highly concentrated aqueous HCl solution. The pH is brought back to neutral
because excessive amounts of either alkaline or acidic reagents can cause product deteriora-
tion. However, these conventional solution-phase synthesis methods require challenging
procedures involving metal catalysts, precise temperature, and environmental control.
Consequently, a unique method for producing azo compounds known as microfluidics-
based pH control, in which all of the difficult steps are completed in tiny droplets, has
been developed. Using the microdroplet technique, the required azo molecule could be
produced quickly, allowing the reaction to be conducted at ambient temperature (23 ◦C) as
opposed to 0 ◦C and reducing the reaction time from 1 h to 3 s or less. Furthermore, pH
control can be easily attained, and the reagent concentration can be lowered to one-tenth of
what is typically required. In addition, the presented microfluidic device makes it simple
to alter the reagent concentration by changing the rate at which it flows, and synthetic
experiments may be conducted under various conditions (Figure 8).
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Figure 8. Microfluidic system for the synthesis of azo compounds.

Aniline, sodium nitrite, and o-vanillin were used to prepare azo compounds according
to Scheme 5. Aqueous HCl and sodium hydroxide solutions were used to dissolve aniline
and o-vanillin, respectively. To investigate their impact on the chemical reaction, the flow
rate varied with pH and reagent concentration. After filtration, the azo compound was
isolated [85].
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The two-step microfluidic system-based synthesis of a Cu(II) complex with a Schiff
base is shown in Figure 9. Isoleucine and salicylaldehyde are injected from inlets A and B,
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respectively, at a rate of flow 5 L/min. The Schiff base ligand is produced in Step 1. Inlet C
is used to induce the formation of a Cu(II) acetate dihydrate solution (20 mmol/L) at a flow
rate of 10 L/min. The Cu(II) complex ligand is produced and removed as a solution from
outlet D. Syringes and syringe pumps are used to inject the reactants dissolved in methanol
into the inlets. This facilitates the precise control of the flow rate of the microfluidic device
and the amount of reactants added [19].
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Figure 9. Microfluidic synthesis of Schiff base Cu(II) complex.

Schiff bases are produced via the combination of amino and carbonyl groups con-
taining multidentate ligands to synthesize highly significant complexes with metal ions.
These compounds are used as polymer stabilizing substances [86], anti-corrosion [87], dyes,
pigments, catalysts, antioxidants [88], carcinogens, and antimicrobial agents [89]. For the
first time, microfluidic technology allowed for temperature-free synthesis of the Schiff base
Cu(II) complex in 20 s, and the reaction performance was approximately 700 times greater
than that of the synthesis utilizing the beaker [90] (Scheme 6).
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Another Cu(II) complex was produced like the one described above. As shown in
Scheme 7, as a starting point, a ligand is prepared using 3,5-dichlorosalicylaldehyde and
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(1R,2R)-(+)-1,2-diphenyl-ethylenediamine in a beaker with methanol as the solvent. Next, a
droplet-merging device is used to synthesize a copper complex using the ligand and Cu(II)
acetate monohydrate. The ligand and Cu(II) acetate monohydrate are effectively combined
during the merging stage in a methanol solution. Immediately upon their merging, the
droplet interiors were transparent; however, a complex crystal started to emerge after 0.2 s.
The synthesis is almost finished in one second at an ambient temperature below 25 ◦C, as
opposed to two hours at 40 ◦C for the beaker-level work [5]. 
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Scheme 7. Schematic pathway for the synthesis of Cu(II) complex. Step 1 for the synthesis of ligands
and Step 2 for the synthesis of metal complexes.

Covalent organic frameworks (COFs) are a new class of molecular materials that
rely on the precise chemical fusion of organic subunits to form 2D or 3D permeable crys-
talline frameworks coupled by covalent bonds with deterministic control over porosity,
composition, and topology [91–94]. The majority of recently developed COFs are based
on self-condensation reactions with other boronic acids or boronic acids condensed with
catechol. Solvothermal reaction conditions are required to produce porous crystalline
materials. However, the limited chemical stability of these COFs, despite their thermal
durability, severely restricts their use in various applications [95,96]. Researchers re-
ported the rapid synthesis of a crystalline COF at room temperature as part of our efforts
to overcome these limitations.

For the first time, an imine-based COF material (MF-COF-1) was developed under
continuous microfluidic conditions. At atmospheric pressure and room temperature,
MF-COF-1 could be manufactured in only a few seconds (~11 s). In a typical study, 1,3,5-
benzenetricarbaldehyde (BTCA) and 1,3,5-tris(4-aminophenyl)benzene (TAPB) solutions
with acetic acid were used to synthesize MF-COF-1. As shown in Figure 10, channels (A)
and (D), are filled with purified acetic acid, whereas channels (B) and (C) are filled with
BTCA and TAPB fluids, respectively. A syringe pump is used to inject the solution into the
microfluidic device. Macroscopic fibers such as jelly are produced during the microfluidic
production of MF-COF-1 and can be readily collected or placed on surfaces [97].
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Figure 10. Microfluidic synthesis of MF-COF-1 at room temperature.

To exploit the known catalyst 10-(4-methoxy)phenyl-10H-phenothiazine (PTh-OMe),
researchers arylated N-methyl pyrrole with ethyl-4-bromobenzoate. The pyrrole and in-
dole couplings reported here were performed by preparing a stock solution of ethyl 4-
bromobenzonitrile (Ih), N-methylpyrrole (IIh), and N, N-diisopropylethylamine (DIPEA), and
the PTh-OMe catalyst was dissolved in 15 mL of acetonitrile. After a suitable period, 12 mL
of this solution was recirculated inside the reactor while being exposed to radiation. The
resulting solution was emulsified by sonication in an ultrasonic bath for 15 min with 15 mL
of a 2 wt% K-EL surfactant in an aqueous solution. This emulsion was then injected into the
microreactor channels of the microfluidic system under radiation at a flow rate of 0.1 L/min
while put under light for 100 min. To maximize the mixing, thermal exchange, and uniformity,
the reaction mixture was pushed through microchannels with a high surface-to-volume ratio.
By parallelizing the reaction flasks, microfluidic reactors can drastically increase efficiency
without reducing the usability of synthetic materials. To demonstrate the selectivity of the
process, decreasing the excess of the arylation partner from the usual 20–50 fold to 5.5 fold
as compared to the batch process and the reaction time for reagent coupling from hours to
minutes by replacing the base DIPEA with triethanolamine (TEA) [65]. A similar procedure
was used for the synthesis of indole using the microfluidic system in excellent yield (Scheme 8).
The microfluidic system-based synthesis of pyrrole is shown in Figure 11.
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Using femtosecond laser micromachining, microfluidic chips (MFCs) consisting of
centimeter-level 3D channels with large volume and high density were developed for
timesaving, economically viable, and hazard-free flow synthesis. Its advantages have
been demonstrated by forming aryldiazonium salts in situ and borylating them with
bis(pinacolato)diboron. The 3D MFC-based flow synthesis technology we developed offers
several important advantages, such as (1) altering the reaction temperature from an ice
bath to room temperature; (2) reducing the residence time by 10 times; and (3) significantly
increasing yields, as several aryl-boronates were produced with higher yields than tradi-
tional batch processes. It is therefore anticipated that a novel, simplified flow synthetic
protocol will be developed for green organic synthesis using MFCs [98].

A microfluidic system was discovered here that automates chemical reaction screening
and optimization inside microliter liquid droplets. Droplet “micro-reactors” are generated,
merged, and flowed, and reaction conditions, including reagent volumes, temperature,
and time, are precisely controlled by the system. Input parameters can be thoroughly
monitored by allowing multiple reaction conditions to be screened simultaneously due to
the high level of control coupled. Furthermore, there is a remarkable reduction in reagent
consumption. The researcher demonstrated the use of a microfluidic platform to screen a
model imine formation-(E)-1-(2-nitrophenyl)-N-phenethylmethanimine using ethanol as a
solvent through a condensation of o-nitrobenzaldehyde and phenylethylamine. Tests were
conducted using microfluidics to determine (i) the ratio of reagents (aldehyde and amine),
(ii) the temperature, (iii) the reaction time, as well as (iv) the effect of p-toluenesulfonic acid
as a catalyst (Scheme 9A) [99].

Microfluidics technique utilizes femtosecond laser-fabricated 3D microfluidic chips
(MFCs). Using a packed-bed reactor and CO2 gas–liquid carboxylation, this innovative
approach enhances the efficiency of CO2 gas–liquid carboxylation. Using CO2 and Grig-
nard reagents under mild conditions (Scheme 9B), this platform demonstrated ingenuity,
simplicity, efficiency, and cost-effectiveness in enabling fluorinated aryl carboxylic acids
to be synthesized. It is important to note that the 3D MFCs integration and automatic
operation not only enhances productivity and flexibility, but also ensures utmost safety
when creating continuous mass production [100].

According to Scheme 9C, benzaldehyde and benzylamine were used in the microfluidic
synthesis of n-benzylidene benzylamine. It is a highly industrially relevant approach, since
fluctuations in concentration, an incorrect dosage, or a loss of temperature control may not
always be prevented in real industrial settings [101].
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In 1907, phenol and formaldehyde were combined to create the first thermosetting
resin, known as phenolic resin [102]. After more than a century of study and commercializa-
tion, the average annual worldwide production of phenolic resins is six million tons [103].
The long-term thermal, chemical, and mechanical durability, exceptional strength, excel-
lent insulating abilities, and superior char yield properties of phenolic resins are widely
recognized because of their significant cross-linking with aromatic dense structure [104].
In conventional synthesis techniques, formaldehyde and phenol are primarily used to
produce phenolic resins at certain temperatures and pH levels, in which specific catalysts
are frequently needed. Additionally, conventional synthesis is typically performed in a bulk
system, which results in a significant number of side-reaction products owing to the loss of
precise control over the reaction conditions. In recent years, microfluidics has become a
unique technique for producing a range of phenolic resins with relatively small quantities
of reagents, according to a previously reported structure [105–108].

To prepare these solutions, 3-aminophenol, formaldehyde, and ammonia were dis-
solved in water. As a continuous phase, dimethyl silicone oil was injected at various Span
80 mass ratios. The prepared solutions were placed separately in syringes and delivered
using syringe pumps that controlled the flow rate. The droplets were formed at the intake
channel intersection. As they travel along the winding channel, the chemicals inside the
channel mix rapidly. A tube with a helical structure that connects to the channel outlet is
submerged in a water bath with a thermostat, as shown in Figure 12. The residence time is
controlled by adjusting the overall length of the helical tube according to the total flow rate.
Therefore, the chemical reaction is stopped promptly, and the products are removed in a
conical flask containing an ice-water bath. Subsequently, alcohol/water rinsing, and rapid
centrifugation are performed to separate and purify the product. The ideal residence period
and temperature for the synthesis are approximately 270 s and 80 °C, respectively [109].
Table 4 shows the summarization of microfluidic system-based fine chemical synthesis.
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Table 4. Summarization of microfluidic system-based fine chemical synthesis.

Experiments Type of Reaction Advantages Fine chemical Applications

Azo compounds synthesis Diazotization reaction pH control, short reaction time, at
room temperature

Batteries and anticancer
medications

Cu(II) complexes with a
Schiff base

Laminar flow microfluidic
reaction

Lower reagent quantity, precise
control of the flow rate, reaction
performance 700 times greater than
conventional method

High biological activity and
catalytic function, anti-corrosion,
dyes, pigments, antioxidants,
carcinogens, and antimicrobial
agents

Imine-based COF material
(MF-COF-1) Self-condensation reactions,

At atm pressure and room
temperature, compound
manufactured in only a few seconds

Direct drawing of objects on
surface

Arylated N-methyl pyrrole with
ethyl-4-bromobenzoate Microfluidic arylation reaction Provide high surface-to-volume ratio

Polymer chemistry, biomedical
science, pharmacy, isolation, and
photochromism

Phenolic resins Oil in water microfluidic
reaction

Controlled residence time and
flow rate Thermosetting resin

Continuous CO2 transformation
in multiphase flow Gas-liquid carboxylation High yield and short reaction time Replacing the use of fossil fuel

resources
Imine formation-(E)-1-(2-
nitrophenyl)-N-
phenethylmethanimine

Microfluidic condensation
reaction

Low ratio of reagents, temperature,
and reaction time Dying, catalysis, paper industry

3. Conclusions

Various organic compounds, including tiny molecules and polymers with a narrow
range of sizes, can be produced through microfluidic synthesis by properly mixing or
focusing the reagents, component flows, and consistent morphology with superior thermal,
optical, electrical, and magnetic properties. The application of microfluidic systems in
the manufacture of organic compounds has been thoroughly studied over the past few
years. The findings of this review demonstrate the immense potential of organic substances
produced on such platforms. Despite significant recent progress, more research on the
interface between microfluidic innovation and organic compound layout is still required to
fully exploit the potential of microfluidic synthesis for the development of novel materials
that are useful for biomedical, biosensing, and ecological engineering applications.
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