Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,236)

Search Parameters:
Keywords = microfluidic application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12185 KB  
Article
Artificial Neural Network-Based Heat Transfer Analysis of Sutterby Magnetohydrodynamic Nanofluid with Microorganism Effects
by Fateh Ali, Mujahid Islam, Farooq Ahmad, Muhammad Usman and Sana Ullah Asif
Magnetochemistry 2025, 11(10), 88; https://doi.org/10.3390/magnetochemistry11100088 (registering DOI) - 10 Oct 2025
Abstract
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of [...] Read more.
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of a Sutterby nanofluid (SNF) within a thin channel, considering the combined effects of magnetohydrodynamics (MHD), Brownian motion, and bioconvection of microorganisms. Analyzing such systems is essential for optimizing design and performance in relevant engineering applications. Method: The governing non-linear partial differential equations (PDEs) for the flow, heat, concentration, and bioconvection are derived. Using lubrication theory and appropriate dimensionless variables, this system of PDEs is simplified into a more simplified system of ordinary differential equations (ODEs). The resulting nonlinear ODEs are solved numerically using the boundary value problem (BVP) Midrich method in Maple software to ensure accuracy. Furthermore, data for the Nusselt number, extracted from the numerical solutions, are used to train an artificial neural network (ANN) model based on the Levenberg–Marquardt algorithm. The performance and predictive capability of this ANN model are rigorously evaluated to confirm its robustness for capturing the system’s non-linear behavior. Results: The numerical solutions are analyzed to understand the variations in velocity, temperature, concentration, and microorganism profiles under the influence of various physical parameters. The results demonstrate that the non-Newtonian rheology of the Sutterby nanofluid is significantly influenced by Brownian motion, thermophoresis, bioconvection parameters, and magnetic field effects. The developed ANN model demonstrates strong predictive capability for the Nusselt number, validating its use for this complex system. These findings provide valuable insights for the design and optimization of microfluidic devices and specialized coating applications in industrial engineering. Full article
Show Figures

Figure 1

11 pages, 1394 KB  
Article
Numerical and Experimental Analysis of Microparticle Focusing and Separation in Split–Recombination Microchannel
by Shuang Chen, Jiajia Sun, Zongqian Shi, Lijie Sun and Junxiong Guo
Micromachines 2025, 16(10), 1145; https://doi.org/10.3390/mi16101145 - 10 Oct 2025
Abstract
Inertial microfluidics has obtained attention for its good performance in microparticle manipulation. It has the advantages of simplicity, high throughput, and a lack of external fields. In this paper, a simple microfluidic device is described, which contains several split and recombination structures. The [...] Read more.
Inertial microfluidics has obtained attention for its good performance in microparticle manipulation. It has the advantages of simplicity, high throughput, and a lack of external fields. In this paper, a simple microfluidic device is described, which contains several split and recombination structures. The design takes advantage of microparticle migration based on inertial lift and the Dean drag force. Two forces drive microparticles to move laterally and arrive at equilibrium positions in a split–recombination microchannel. Based on the numerical and experimental analysis, the trajectories of microparticles are described, and microparticles are focused and form two narrow streams. In addition, the focusing of microparticles is enhanced significantly with the increase in angle. Finally, two sizes of microparticles are separated in experiments. The simple device and high throughput offered by this passive microfluidic approach make it attractive in biomedical and environmental applications. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

22 pages, 1759 KB  
Review
Tumour-on-Chip Models for the Study of Ovarian Cancer: Current Challenges and Future Prospects
by Sung Yeon Lim, Lamia Sabry Aboelnasr and Mona El-Bahrawy
Cancers 2025, 17(19), 3239; https://doi.org/10.3390/cancers17193239 - 6 Oct 2025
Viewed by 287
Abstract
Ovarian cancer is a highly lethal malignancy, characterised by late-stage diagnosis, marked inter- and intra-tumoural heterogeneity, and frequent development of chemoresistance. Existing preclinical models, including conventional two-dimensional cultures, three-dimensional spheroids, and organoids, only partially recapitulate the structural and functional complexity of the ovarian [...] Read more.
Ovarian cancer is a highly lethal malignancy, characterised by late-stage diagnosis, marked inter- and intra-tumoural heterogeneity, and frequent development of chemoresistance. Existing preclinical models, including conventional two-dimensional cultures, three-dimensional spheroids, and organoids, only partially recapitulate the structural and functional complexity of the ovarian tumour microenvironment (TME). Tumour-on-chip (CoC) technology has emerged as a promising alternative, enabling the co-culture of tumour and stromal cells within a microengineered platform that incorporates relevant extracellular matrix components, biochemical gradients, and biomechanical cues under precisely controlled microfluidic conditions. This review provides a comprehensive overview of CoC technology relevant to ovarian cancer research, outlining fabrication strategies, device architectures, and TME-integration approaches. We systematically analyse published ovarian cancer-specific CoC models, revealing a surprisingly limited number of studies and a lack of standardisation across design parameters, materials, and outcome measures. Based on these findings, we identify critical technical and biological considerations to inform the rational design of next-generation CoC platforms, with the aim of improving their reproducibility, translational value, and potential for personalised medicine applications. Full article
(This article belongs to the Special Issue Advancements in Preclinical Models for Solid Cancers)
Show Figures

Figure 1

55 pages, 11470 KB  
Review
Organic Fluorescent Sensors for Environmental Analysis: A Critical Review and Insights into Inorganic Alternatives
by Katia Buonasera, Maurilio Galletta, Massimo Rosario Calvo, Gianni Pezzotti Escobar, Antonio Alessio Leonardi and Alessia Irrera
Nanomaterials 2025, 15(19), 1512; https://doi.org/10.3390/nano15191512 - 2 Oct 2025
Viewed by 204
Abstract
The exponential increase in environmental pollutants due to industrialization, urbanization, and agricultural intensification has underscored the urgent need for sensitive, selective, and real-time monitoring technologies. Among emerging analytical tools, organic fluorescent sensors have demonstrated exceptional potential for detecting a wide range of pollutants [...] Read more.
The exponential increase in environmental pollutants due to industrialization, urbanization, and agricultural intensification has underscored the urgent need for sensitive, selective, and real-time monitoring technologies. Among emerging analytical tools, organic fluorescent sensors have demonstrated exceptional potential for detecting a wide range of pollutants in water, air, and soil, with a limit of detection (LOD) in the pM–µM range. This review critically examines recent advances in organic fluorescent sensors, focusing on their photophysical properties, molecular structures, sensing mechanisms, and environmental applications. Key categories of organic sensors, including small molecules, polymeric materials, and nanoparticle-based systems, are discussed, highlighting their advantages, such as biocompatibility, tunability, and cost-effectiveness. Comparative insights into inorganic fluorescent sensors, including quantum dots, are also provided, emphasizing their superior photostability and wide operating range (in some cases from pg/mL up to mg/mL) but limited biodegradability and higher toxicity. The integration of nanomaterials and microfluidic systems is presented as a promising route for developing portable, on-site sensing platforms. Finally, the review outlines current challenges and future perspectives, suggesting that fluorescent sensors, particularly organic ones, represent a crucial strategy toward sustainable environmental monitoring and pollutant management. Full article
Show Figures

Figure 1

26 pages, 1113 KB  
Review
Organ-on-a-Chip Models of the Female Reproductive System: Current Progress and Future Perspectives
by Min Pan, Huike Chen, Kai Deng and Ke Xiao
Micromachines 2025, 16(10), 1125; https://doi.org/10.3390/mi16101125 - 30 Sep 2025
Viewed by 229
Abstract
The female reproductive system represents a highly complex regulatory network governing critical physiological functions, encompassing reproductive capacity and endocrine regulation that maintains female physiological homeostasis. The in vitro simulation system provides a novel tool for biomedical research and can be used as physiological [...] Read more.
The female reproductive system represents a highly complex regulatory network governing critical physiological functions, encompassing reproductive capacity and endocrine regulation that maintains female physiological homeostasis. The in vitro simulation system provides a novel tool for biomedical research and can be used as physiological and pathological models to study the female reproductive system. Recent advances in this technology have evolved from 2D and 3D printing to organ-on-a-chip (OOC) and microfluidic systems, which has emerged as a transformative platform for modeling the female reproductive system. These microphysiological systems integrate microfluidics, 3D cell culture, and biomimetic scaffolds to replicate key functional aspects of reproductive organs and tissues. They have enabled precise simulation of hormonal regulation, embryo-endometrium interactions, and disease mechanisms such as endometriosis and gynecologic cancers. This review highlights the current state of female reproductive OOCs, including ovary-, uterus-, and fallopian tube-on-a-chip system, their applications in assisted reproduction and disease modeling, and the technological hurdles to their widespread application. Though significant barriers remain in scaling OOCs for high-throughput drug screening, standardizing protocols for clinical applications, and validating their predictive value against human patient outcomes, OOCs have emerged as a transformative platform to model complex pathologies, offering unprecedented insights into disease mechanisms and personalized therapeutic interventions. Future directions, including multi-organ integration for systemic reproductive modeling, incorporation of microbiome interactions, and clinical translation for mechanisms of drug action, will facilitate unprecedented insights into reproductive physiology and pathology. Full article
(This article belongs to the Special Issue Microfluidics in Biomedical Research)
Show Figures

Figure 1

14 pages, 2970 KB  
Article
Cost-Effective and High-Throughput LPS Detection via Microdroplet Technology in Biopharmaceuticals
by Adriano Colombelli, Daniela Lospinoso, Valentina Arima, Vita Guarino, Alessandra Zizzari, Monica Bianco, Elisabetta Perrone, Luigi Carbone, Roberto Rella and Maria Grazia Manera
Biosensors 2025, 15(10), 649; https://doi.org/10.3390/bios15100649 - 30 Sep 2025
Viewed by 277
Abstract
Lipopolysaccharides (LPS) from Gram-negative bacteria represent a significant challenge across various industries due to their prevalence and pathogenicity and the limitations of existing detection methods. Traditional approaches, such as the rabbit pyrogen test (RPT) and the Limulus Amebocyte Lysate (LAL) assay, have served [...] Read more.
Lipopolysaccharides (LPS) from Gram-negative bacteria represent a significant challenge across various industries due to their prevalence and pathogenicity and the limitations of existing detection methods. Traditional approaches, such as the rabbit pyrogen test (RPT) and the Limulus Amebocyte Lysate (LAL) assay, have served as gold standards for endotoxin detection. However, these methods are constrained by high costs, lengthy processing times, environmental concerns, and the need for significant reagent volumes, which limit their scalability and application in resource-limited settings. In this study, we introduce an innovative microfluidic platform that integrates the LAL assay within microdroplets, addressing the critical limitations of traditional techniques. By leveraging the precise fluid control and reaction isolation offered by microdroplet technology, the system reduces reagent consumption, enhances sensitivity, and enables high-throughput analysis. Calibration tests were performed to validate the platform’s ability to detect LPS, using colorimetric measurements. Results demonstrated comparable or improved performance relative to traditional systems, achieving lower detection limits and greater accuracy. This work demonstrates a proof-of-concept miniaturisation of the pharmacopoeial LAL assay. The method yielded low intra-assay variability (σ ≈ 0.002 OD; CV ≈ 0.9% over n = 50 droplets per point) and a LOD estimated from calibration statistics after path-length normalisation. Broader adoption will require additional comparative validation and standardisation. This scalable, cost-effective, and environmentally sustainable approach offers a practical solution for endotoxin detection in clinical diagnostics, biopharmaceutical production, and environmental monitoring. The proposed technology paves the way for advanced LPS detection methods that meet stringent safety standards while improving efficiency, affordability, and adaptability for diverse applications. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and MEMS in Biosensing Applications)
Show Figures

Figure 1

33 pages, 2985 KB  
Review
A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems
by Wei Wang, Jin Yan, Junsheng Wang, Yuezhu Wang, Ge Chen, Zihao Weng, Hongchen Pang, Xianzhang Wang and Dapeng Zhang
Micromachines 2025, 16(10), 1115; https://doi.org/10.3390/mi16101115 - 29 Sep 2025
Viewed by 224
Abstract
Microfluidic chips made of polydimethylsiloxane (PDMS) have shown significant application potential in aquatic environments with high microbial density, such as “marine ranches”, due to their high-throughput, high-efficiency and high-precision detection capabilities. This technology can rapidly identify pathogenic microorganisms or harmful particles in aquaculture [...] Read more.
Microfluidic chips made of polydimethylsiloxane (PDMS) have shown significant application potential in aquatic environments with high microbial density, such as “marine ranches”, due to their high-throughput, high-efficiency and high-precision detection capabilities. This technology can rapidly identify pathogenic microorganisms or harmful particles in aquaculture systems, thereby providing urgently needed innovative methods for implementing preventive measures and enhancing aquaculture productivity. By regulating the micro-nano scale channel structure, microfluidic technology can precisely control fluid flow patterns, offering new insights and effective solutions for microbiological research and the separation and analysis of particulate matter. This paper first provides a concise overview of the application of microfluidic chip technology in the analysis of marine microorganisms. Subsequently, it focuses on the “compliance” phenomenon in PDMS-based microfluidic systems, systematically reviewing the potential mechanisms, latest progress and impacts of compliance behavior in mechanically elastic materials such as PDMS. Additionally, this article also investigates the role of “compliance” in key processes of microfluidic technology application, including the capture, separation, enrichment and detection of microorganisms and particles. Moreover, the relationship between surface wettability engineering and compliance phenomena is also explored. We believe that this review will contribute to enhancing the understanding and control of the mechanical behavior of microfluids and the particles they carry within microfluidic systems, providing valuable theoretical insights and practical guidance for researchers in this field. Full article
(This article belongs to the Special Issue Exploring the Potential Applications of Microfluidics)
Show Figures

Figure 1

38 pages, 1612 KB  
Review
Microengineered Breast Cancer Models: Shaping the Future of Personalized Oncology
by Tudor-Alexandru Popoiu, Anca Maria Cimpean, Florina Bojin, Simona Cerbu, Miruna-Cristiana Gug, Catalin-Alexandru Pirvu, Stelian Pantea and Adrian Neagu
Cancers 2025, 17(19), 3160; https://doi.org/10.3390/cancers17193160 - 29 Sep 2025
Viewed by 552
Abstract
Background: Breast cancer remains the most prevalent malignancy in women worldwide, characterized by remarkable genetic, molecular, and clinical heterogeneity. Traditional preclinical models have significantly advanced our understanding of tumor biology, yet consistently fall short in recapitulating the complexity of the human tumor [...] Read more.
Background: Breast cancer remains the most prevalent malignancy in women worldwide, characterized by remarkable genetic, molecular, and clinical heterogeneity. Traditional preclinical models have significantly advanced our understanding of tumor biology, yet consistently fall short in recapitulating the complexity of the human tumor microenvironment (TME), immune, and metastatic behavior. In recent years, breast cancer-on-a-chip (BCOC) have emerged as powerful microengineered systems that integrate patient-derived cells, stromal and immune components, and physiological stimuli such as perfusion, hypoxia, and acidic milieu within controlled three-dimensional microenvironments. Aim: To comprehensively review the BCOC development and application, encompassing fabrication materials, biological modeling of key subtypes (DCIS, luminal A, triple-negative), dynamic tumor–stroma–immune crosstalk, and organotropic metastasis to bone, liver, brain, lungs, and lymph nodes. Methods: We selected papers from academic trusted databases (PubMed, Web of Science, Google Scholar) by using Breast Cancer, Microfluidic System, and Breast Cancer on a Chip as the main search terms. Results: We critically discuss and highlight how microfluidic systems replicate essential features of disease progression—such as epithelial-to-mesenchymal transition, vascular invasion, immune evasion, and therapy resistance—with unprecedented physiological relevance. Special attention has been paid to the integration of liquid biopsy technologies within microfluidic platforms for non-invasive, real-time analysis of circulating tumor cells, cell-free nucleic acids, and exosomes. Conclusions: In light of regulatory momentum toward reducing animal use in drug development, BCOC platforms stand at the forefront of a new era in precision oncology. By bridging biological fidelity with engineering innovation, these systems hold immense potential to transform cancer research, therapy screening, and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

25 pages, 9895 KB  
Review
Harnessing Microfluidics for the Effective and Precise Synthesis of Advanced Materials
by Xinlei Qi and Guoqing Hu
Micromachines 2025, 16(10), 1106; https://doi.org/10.3390/mi16101106 - 28 Sep 2025
Viewed by 376
Abstract
Microfluidic methods are powerful platforms for synthesizing advanced functional materials because they allow for precise control of microscale reaction environments. Microfluidics manipulates reactants in lab-on-a-chip systems to enable the fabrication of highly uniform materials with tunable properties, which are crucial for drug delivery, [...] Read more.
Microfluidic methods are powerful platforms for synthesizing advanced functional materials because they allow for precise control of microscale reaction environments. Microfluidics manipulates reactants in lab-on-a-chip systems to enable the fabrication of highly uniform materials with tunable properties, which are crucial for drug delivery, diagnostics, catalysis, and nanomaterial design. This review emphasizes recent progress in microfluidic technologies for synthesizing functional materials, with a focus on polymeric, hydrogel, lipid-based, and inorganic particles. Microfluidics provides exceptional control over the size, morphology, composition, and surface chemistry of materials, thereby enhancing their performance through uniformity, tunability, hierarchical structuring, and on-chip functionalization. Our review provides novel insights by linking material design strategies with fabrication methods tailored to biomedical applications. We also discuss emerging trends, such as AI-driven optimization, automation, and sustainable microfluidic practices, offering a practical and forward-looking perspective. As the field advances toward robust, standardized, and user-friendly platforms, microfluidics has the potential to increase industrial adoption and enable on-demand solutions in nanotechnology and personalized medicine. Full article
Show Figures

Figure 1

38 pages, 9769 KB  
Review
Label-Free Cancer Detection Methods Based on Biophysical Cell Phenotypes
by Isabel Calejo, Ana Catarina Azevedo, Raquel L. Monteiro, Francisco Cruz and Raphaël F. Canadas
Bioengineering 2025, 12(10), 1045; https://doi.org/10.3390/bioengineering12101045 - 28 Sep 2025
Viewed by 272
Abstract
Progress in clinical diagnosis increasingly relies on innovative technologies and advanced disease biomarker detection methods. While cell labeling remains a well-established technique, label-free approaches offer significant advantages, including reduced workload, minimal sample damage, cost-effectiveness, and simplified chip integration. These approaches focus on the [...] Read more.
Progress in clinical diagnosis increasingly relies on innovative technologies and advanced disease biomarker detection methods. While cell labeling remains a well-established technique, label-free approaches offer significant advantages, including reduced workload, minimal sample damage, cost-effectiveness, and simplified chip integration. These approaches focus on the morpho-biophysical properties of cells, eliminating the need for labeling and thus reducing false results while enhancing data reliability and reproducibility. Current label-free methods span conventional and advanced technologies, including phase-contrast microscopy, holographic microscopy, varied cytometries, microfluidics, dynamic light scattering, atomic force microscopy, and electrical impedance spectroscopy. Their integration with artificial intelligence further enhances their utility, enabling rapid, non-invasive cell identification, dynamic cellular interaction monitoring, and electro-mechanical and morphological cue analysis, making them particularly valuable for cancer diagnostics, monitoring, and prognosis. This review compiles recent label-free cancer cell detection developments within clinical and biotechnological laboratory contexts, emphasizing biophysical alterations pertinent to liquid biopsy applications. It highlights interdisciplinary innovations that allow the characterization and potential identification of cancer cells without labeling. Furthermore, a comparative analysis addresses throughput, resolution, and detection capabilities, thereby guiding their effective deployment in biomedical research and clinical oncology settings. Full article
(This article belongs to the Special Issue Label-Free Cancer Detection)
Show Figures

Graphical abstract

24 pages, 6138 KB  
Article
Research on Liquid Flow Pulsation Reduction in Microchannel of Pneumatic Microfluidic Chip Based on Membrane Microvalve
by Xuling Liu, Le Bo, Yusong Zhang, Chaofeng Peng, Kaiyi Zhang, Shaobo Jin, Guoyong Ye and Jinggan Shao
Fluids 2025, 10(10), 256; https://doi.org/10.3390/fluids10100256 - 28 Sep 2025
Viewed by 287
Abstract
The unsteady and discontinuous liquid flow in the microchannel affects the efficiency of sample mixing, molecular detection, target acquisition, and biochemical reaction. In this work, an active method of reducing the flow pulsation in the microchannel of a pneumatic microfluidic chip is proposed [...] Read more.
The unsteady and discontinuous liquid flow in the microchannel affects the efficiency of sample mixing, molecular detection, target acquisition, and biochemical reaction. In this work, an active method of reducing the flow pulsation in the microchannel of a pneumatic microfluidic chip is proposed by using an on-chip membrane microvalve as a valve chamber damping hole or a valve chamber accumulator. The structure, working principle, and multi-physical model of the reducing element of reducing the flow pulsation in a microchannel are presented. When the flow pulsation in the microchannel is sinusoidal, square wave, or pulse, the simulation effect of flow pulsation reduction is given when the membrane valve has different permutations and combinations. The experimental results show that the inlet flow of the reducing element is a square wave pulsation with an amplitude of 0.1 mL/s and a period of 2 s, the outlet flow of the reducing element is assisted by 0.017 and the fluctuation frequency is accompanied by a decrease. The test data and simulation results verify the rationality of the flow reduction element in the membrane valve microchannel, the correctness of the theoretical model, and the practicability of the specific application, which provides a higher precision automatic control technology for the microfluidic chip with high integration and complex reaction function. Full article
Show Figures

Figure 1

31 pages, 1838 KB  
Review
Emerging Technologies for the Diagnosis of Urinary Tract Infections: Advances in Molecular Detection and Resistance Profiling
by Baiken Baimakhanova, Amankeldi Sadanov, Vladimir Berezin, Gul Baimakhanova, Lyudmila Trenozhnikova, Saltanat Orasymbet, Gulnaz Seitimova, Sundetgali Kalmakhanov, Gulzakira Xetayeva, Zhanserik Shynykul, Aizat Seidakhmetova and Aknur Turgumbayeva
Diagnostics 2025, 15(19), 2469; https://doi.org/10.3390/diagnostics15192469 - 26 Sep 2025
Viewed by 608
Abstract
Background/Objectives: Urinary tract infections (UTIs) represent a considerable challenge within the field of clinical medicine, as they are responsible for significant morbidity and intensify the operational pressures encountered by healthcare systems. Conventional diagnostic approaches, which include symptom evaluation, dipstick urinalysis, and standard [...] Read more.
Background/Objectives: Urinary tract infections (UTIs) represent a considerable challenge within the field of clinical medicine, as they are responsible for significant morbidity and intensify the operational pressures encountered by healthcare systems. Conventional diagnostic approaches, which include symptom evaluation, dipstick urinalysis, and standard urine culture, often demonstrate inadequacies in identifying atypical clinical manifestations, infections with low bacterial counts, or pathogens that show growth difficulties under typical laboratory conditions. These limitations undermine diagnostic accuracy and hinder timely therapeutic measures. Methods: The present manuscript is a systematic review conducted in accordance with PRISMA guidelines. A structured search was performed in PubMed, Scopus, and Google Scholar, yielding 573 records, of which 107 studies were included for qualitative synthesis. The primary aim of this systematic review is to evaluate both conventional and emerging diagnostic methods for UTIs, with specific objectives of assessing their clinical applicability, limitations, and potential to improve patient outcomes. Results: Recent progress in diagnostic technologies offers promising alternatives. Molecular-based assays, such as multiplex polymerase chain reaction, matrix-assisted laser desorption ionization mass spectrometry, and next-generation sequencing, have substantially improved both the precision and efficiency of pathogen identification. Furthermore, contemporary techniques for evaluating antimicrobial susceptibility, including microfluidic systems and real-time phenotypic resistance assays, enable clinicians to execute targeted therapeutic strategies with enhanced efficacy. Results of this synthesis indicate that while conventional diagnostics remain the cornerstone for uncomplicated cases, innovative molecular and phenotypic approaches demonstrate superior performance in detecting low-count bacteriuria, atypical pathogens, and resistance determinants, particularly in complicated and recurrent infections. These innovations support antimicrobial stewardship by reducing dependence on empirical antibiotic treatment and lessening the risk of resistance emergence. Conclusions: Nonetheless, the incorporation of these technologies into clinical practice requires careful consideration of implementation costs, standardization protocols, and the necessary training of healthcare professionals. In conclusion, this systematic review highlights that emerging molecular diagnostics and resistance-profiling tools offer substantial promise in complementing or enhancing traditional methods, but their widespread adoption will depend on robust validation, cost-effectiveness, and integration into clinical workflows. Full article
(This article belongs to the Special Issue Urinary Tract Infections: Advances in Diagnosis and Management)
Show Figures

Figure 1

10 pages, 1471 KB  
Communication
Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets
by Mitra Shojania Feizabadi, Ramiz Alejilat and Amy Ataalla
Appl. Sci. 2025, 15(18), 10290; https://doi.org/10.3390/app151810290 - 22 Sep 2025
Viewed by 345
Abstract
Droplet-based microfluidics has rapidly advanced applications in chemistry, biology, materials science, medicine, food science, and cosmetics. Using this technology, various oils have been employed for fluid encapsulation. This study is the first to investigate the use of an animal-based unsaturated fatty acid oil—emu [...] Read more.
Droplet-based microfluidics has rapidly advanced applications in chemistry, biology, materials science, medicine, food science, and cosmetics. Using this technology, various oils have been employed for fluid encapsulation. This study is the first to investigate the use of an animal-based unsaturated fatty acid oil—emu oil—for microdroplet formation. We characterized droplet generation in the presence and absence of a non-fluorinated surfactant at a defined concentration and examined the influence of geometrical parameters using T-junction microchannels with two different central channel widths. The results were compared with those obtained from a plant-based oil (olive oil) under parallel experimental conditions. Given the growing concerns regarding the environmental and health risks of fluorocarbon oils combined with fluorinated surfactants, which are widely used in microfluidics, emu oil represents a potentially safer alternative for microdroplet-based technologies across multiple fields. Full article
Show Figures

Figure 1

16 pages, 5289 KB  
Article
Non-Invasive Three-Dimensional Cell Manipulation Technology Based on Acoustic Microfluidic Chips
by Lin Lin, Yiming Zhen, Wang Li, Guoqiang Dong, Rongxing Zhu and Minhui Liang
Micromachines 2025, 16(9), 1068; https://doi.org/10.3390/mi16091068 - 22 Sep 2025
Viewed by 446
Abstract
This study presents a non-invasive three-dimensional cell manipulation technique based on acoustic microfluidic chips, which generates acoustic flow fields through the vibration of micropillars induced by bulk acoustic waves to achieve precise multi-dimensional rotational manipulation of cells. Moreover, the characteristics of the acoustic [...] Read more.
This study presents a non-invasive three-dimensional cell manipulation technique based on acoustic microfluidic chips, which generates acoustic flow fields through the vibration of micropillars induced by bulk acoustic waves to achieve precise multi-dimensional rotational manipulation of cells. Moreover, the characteristics of the acoustic flow field under linear, quasi-circular, elliptical, and higher-order vibration modes were intensively studied, and the rotational manipulation performance of polystyrene microbeads and cancer cells was optimized by adjusting the frequency and voltage. The results showed that the rotational speed and direction of the particles varied significantly in different vibration modes, with the particles and cells achieving the highest rotational speed in the elliptical vibration mode (frequency: 44.9 kHz, and voltage: 60 Vpp). In addition, the technique successfully achieved in-plane and out-of-plane rotation of cancer cells, and cell viability tests showed that 94% of the cells remained active after manipulation, demonstrating the low damage and biocompatibility of the method. This study provides a new, efficient, precise and gentle approach to three-dimensional manipulation of cells, which holds significant potential in biomedical research and clinical applications. Full article
(This article belongs to the Special Issue Emerging Devices and Technologies in BioMEMS for Biomarker Detection)
Show Figures

Figure 1

32 pages, 4787 KB  
Review
Performance Comparison of Mechanical and Ferrofluidic Micropumps: Structural and Operational Perspectives
by Xing Zhou, Zhenggui Li, Baozhu Han, Qinkui Guo and Zhichao Qing
Actuators 2025, 14(9), 460; https://doi.org/10.3390/act14090460 - 20 Sep 2025
Viewed by 559
Abstract
Since the successful implementation of microfluidic technology in biomedical applications, research on micropumps—the central component of these systems—has gained significant momentum. Benefiting from advancements in pump materials and corresponding fabrication methods, micropumps have evolved from structurally complex mechanical designs to simpler non-mechanical configurations. [...] Read more.
Since the successful implementation of microfluidic technology in biomedical applications, research on micropumps—the central component of these systems—has gained significant momentum. Benefiting from advancements in pump materials and corresponding fabrication methods, micropumps have evolved from structurally complex mechanical designs to simpler non-mechanical configurations. This paper reviews well-developed mechanical micropumps, discussing their diaphragms, pump chambers, materials, and other aspects to outline their developmental trajectory and current applications, while also highlighting their limitations. After identifying the shortcomings of traditional micropumps, we introduce the concept of ferrofluid-based micropumps, emphasizing their structural simplicity, self-sealing capability, and recoverability. Previous research on ferrofluidic micropumps is summarized, demonstrating their superior performance in certain aspects. Finally, we provide an outlook on their potential applications in biomedicine and specialized fields. Full article
(This article belongs to the Section Miniaturized and Micro Actuators)
Show Figures

Figure 1

Back to TopTop