A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems
Abstract
1. Introduction
- (1)
- Geometry/field-driven capture techniques (such as C-shaped channel structures and dielectrophoresis);
- (2)
- Droplet-based culture methods for optimizing lipid production;
- (3)
- Integrated detection systems, covering fluorescence cell counting (based on chlorophyll autofluorescence), impedance cell counting (enabling label-free activity detection), and digital PCR and single-cell sequencing technologies (capable of detecting pathogens at a level of 10 copies per microliter and mapping host–virus interaction networks);
- (4)
- On-chip time-lapse imaging technologies, by combining microfluidic chip technology with time-lapse imaging technology, high-resolution analysis of microbial behavior is achieved. This method enables real-time monitoring of microbial responses to various environmental gradients (such as pH, temperature and chemical signals) on a microfluidic platform;
- (5)
- Integrated microfluidic probes can achieve rapid and highly sensitive detection in a variety of application scenarios. Take monitoring harmful algal behaviors such as HABs as an example (integrated microfluidic-molecular probes provide rapid and sensitive detection), ballast water compliance (with an accuracy rate exceeding 92%), and deep-sea ATP/gene detection;
- (6)
- Microfluidic technology applied to microbial solutions for climate, such as microbial carbon and energy turnover functions (microfluidic technology clarifies the role of microorganisms in climate solutions).
2. The Compliance Phenomenon of Elastic Materials in Microfluidic Systems
2.1. Description of Compliance Issues in the Microchannels of the LOC System
- (a)
- The total flow into or out of any node in a circuit is zero (the principle of conservation of mass);
- (b)
- The algebraic sum of all pressure differences within any closed loop in a circuit is zero (the principle of conservation of energy).
2.2. Influence of Microchannel Compliance on Passive Separation in Microfluidic Systems
- -
- : The wall effect is weak, and the shear lift force is dominant.
- -
- 0.1 <: The wall effect is significant and affects the equilibrium position.
- -
- : Strong constraint condition, the wall effect is dominant.
- -
- The expansion and deformation of rectangular channels under pressure;
- -
- An increase in channel height ;
- -
- A slight increase in channel width, leading to a transformation of the cross-sectional shape from rectangular to elliptical, etc.
- -
- : Anisotropic permeability of the rigid system;
- -
- : Material-related correction coefficient;
- -
- : Delta P$—System pressure difference;
- -
- : Elastic modulus of the material.
- -
- represents the effective channel height along the transverse position ,
- -
- denotes the variation in channel height,
- -
- is the periodic spacing of the column array,
- -
- indicates the flow distribution of the -th channel,
- -
- is the total width of the channel.
- -
- represents the local streamline deflection angle,
- -
- represents the angle change caused by structural deformation,
- -
- represents the width of the -th streamline,
- -
- is the sensitivity coefficient of streamline width to pressure variation,
- -
- is the total number of periods in the column array.
2.3. Research Advances in the Compliance Behavior of Elastic Materials
- The selection of material elastic modulus;
- The optimization of channel geometry;
- The adjustment of response characteristics.
- Enhanced adaptive performance: The compliance effect enables microfluidic systems to automatically adjust separation parameters according to fluid conditions, thus achieving switching between different separation modes with a single device. Flexible structures have a stronger adaptability to changes in operating conditions.
- Improved functional performance: By controlling the degree of channel deformation, real-time adjustment of separation parameters can be achieved; at the same time, soft interfaces can effectively reduce shear stress on biological samples, enhance biocompatibility, and be more easily integrated with other microfluidic functional modules.
- Cost-effectiveness advantage: Flexible materials such as PDMS have lower processing costs, and flexible structures are less prone to damage from particle impact, making them more suitable for large-scale manufacturing and reuse.
- Nonlinear response characteristics: The relationship between channel deformation and fluid conditions is complex, making it difficult to precisely model and predict;
- Material viscoelasticity influence: Materials like PDMS exhibit response lag, affecting the dynamic response speed of the system;
- High pressure control requirements: The operating pressure range must be strictly controlled, as excessive pressure may lead to excessive deformation and thereby affect separation performance;
- Difficulty in design optimization: Due to the need to consider both fluid mechanics and solid mechanics behaviors simultaneously, the parameter space dimension is high, posing significant challenges for optimization design;
- Lack of unified standards: Currently, there is a lack of unified design guidelines and evaluation systems, which limits the standardized development of its applications in areas such as biological cell separation and particle material manufacturing.
3. Compliance Influenced by Microchannel Surface Wettability
4. Conclusions
- At the microscale, the interaction between fluid and structure exhibits distinct characteristics from those at the macroscale, especially when the microchannels are made of flexible materials.
- In microfluidic devices, the flow of laminar flow in flexible material channels can cause deformation of the channel geometry, and this deformation in turn affects the relationship between flow rate and pressure drop. This phenomenon is particularly evident in microchannels made of flexible materials such as PDMS (polydimethylsiloxane), where pressure-driven flow can lead to significant deformation of the channel walls.
- The fluid mechanics effects at the microscale or mesoscale are unique: the small characteristic length scale and high deformation rate can trigger significant stretching flow effects at the constricted throat, and even dilute polymer solutions with millisecond time constants can exhibit strong viscoelastic behavior. By introducing the definition of the elastic number El = Wi/Re, it can be known that the length scale of the geometric structure is a key factor in triggering strong viscoelastic effects.
- In practical applications, the compliance effect brings both challenges and opportunities, involving the design optimization of various microfluidic devices such as micro-mixers, micro-heat exchangers, logic microfluidic circuits, and particle manipulation.
- Numerical simulation helps deepen theoretical understanding, reduce prototype testing, and accelerate the development process. However, the complexity of multi-physics field coupling must be fully considered. For fluid–solid coupling problems in microfluidic channels, advanced numerical methods should be adopted to accurately capture the interactions among various physical fields. These methods need to handle the flow behavior in continuously deforming geometries and the resulting deformations and displacements. Meanwhile, modeling particles with elastic deformation (such as bacteria) as spheres is a simplification that ignores the natural differences in size and shape of bacteria. This assumption’s limitations should be acknowledged [105]. Due to the wide variety of bacteria and microorganisms in nature, their diverse shapes, and the possible dynamic interactions among them in in situ detection, as pointed out by a renowned research team [106]. Additionally, in viscoelastic fluids, the collective behavior of bacteria and the coupling effects between turbulence and individual bacteria are also key factors to be considered in future application research [107,108].
- Further exploration by authors and experts in related fields is still needed in obtaining analytical solutions for compliance phenomena caused by fluid–structure interaction and in-depth research on the nonlinear fluid elastic mechanics mechanism.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, C.; Zheng, S.; Feng, M.; Xie, L.; Wang, L.; Zhang, T.; Yan, L. Interannual Variability of the East African Coastal Current Associated with El Niño–Southern Oscillation. J. Clim. 2024, 37, 4613–4631. [Google Scholar] [CrossRef]
- Zhang, D.; Liang, Z.; Zhao, B.; Xie, Y.; Zhao, G.; Zhang, Y.; Zhang, S.; Tian, Y.; Zhu, K. Balancing Accuracy and Efficiency: Optimizing Segmentation in Lumped Mass Method for Hydrodynamic Analysis of Marine Flexible Structures. Phys. Fluids 2025, 37, 071303. [Google Scholar] [CrossRef]
- Zhu, K.; Carpentieri, M.; Zhang, L.; Fang, B.; Cai, J.; Verba, R.; Giordano, A.; Puliafito, V.; Zhang, B.; Finocchio, G.; et al. Nonlinear Amplification of Microwave Signals in Spin-Torque Oscillators. Nat. Commun. 2023, 14, 2183. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, D.; Zhu, K.; Zhang, T. Dynamic Analysis of Umbilical Cable under Interference with Riser. Ships Offshore Struct. 2018, 13, 809–821. [Google Scholar] [CrossRef]
- Zhao, K.; Wei, Y.; Dong, J.; Zhao, P.; Wang, Y.; Pan, X.; Wang, J. Separation and Characterization of Microplastic and Nanoplastic Particles in Marine Environment. Environ. Pollut. 2022, 297, 118773. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Wang, J.; Dong, J. Small Chips, Big Ocean: Recent Trends in Microfluidic Technology for Marine Environmental Monitoring. Trends Environ. Anal. Chem. 2025, 46, e00264. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Wang, Y.; Zhang, Y.; Dong, J. Exploring the Deep Blue: Recent Advances in Microfluidics for Marine Microbiology. Phys. Fluids 2025, 37, 051303. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Sharma, S.; Chatterjee, S. Microplastic Pollution, a Threat to Marine Ecosystem and Human Health: A Short Review. Environ. Sci. Pollut. Res. 2017, 24, 21530–21547. [Google Scholar] [CrossRef]
- Kazour, M.; Jemaa, S.; Issa, C.; Khalaf, G.; Amara, R. Microplastics Pollution along the Lebanese Coast (Eastern Mediterranean Basin): Occurrence in Surface Water, Sediments and Biota Samples. Sci. Total Environ. 2019, 696, 133933. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, D.; Zhao, Q.; Yan, S.; Tang, S.Y.; Tan, S.H.; Guo, J.; Xia, H.; Nguyen, N.T.; Li, W. Tunable Particle Separation in a Hybrid Dielectrophoresis (DEP)-Inertial Microfluidic Device. Sens. Actuators B Chem. 2018, 267, 14–25. [Google Scholar] [CrossRef]
- Sarno, B.; Heineck, D.; Heller, M.J.; Ibsen, S.D. Dielectrophoresis: Developments and Applications from 2010 to 2020. Electrophoresis 2021, 42, 539–564. [Google Scholar] [CrossRef]
- Ma, J.; Wu, Y.; Liu, Y.; Ji, Y.; Yang, M.; Zhu, H. Cell-Sorting Centrifugal Microfluidic Chip with a Flow Rectifier. Lab Chip 2021, 21, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Ugolini, G.S.; Wang, M.; Secchi, E.; Pioli, R.; Ackermann, M.; Stocker, R. Microfluidic Approaches in Microbial Ecology. Lab Chip 2024, 24, 1394–1418. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Yang, H.; Hou, Y.; Huang, H.; Qiu, J.; Wang, C.; Sang, Y.; Liu, H.; Han, L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. Adv. Mater. 2024, 36, 2307051. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, X.; Funk, T.; Rashid, I.; Herman, B.; Bompoti, N.; Mahmud, M.S.; Chrysochoou, M.; Yang, M.; Vadas, T.M.; et al. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. Environ. Sci. Technol. 2022, 56, 13546–13564. [Google Scholar] [CrossRef]
- Nsamela, A.; Garcia Zintzun, A.I.; Montenegro-Johnson, T.D.; Simmchen, J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms—An Overview. Small 2023, 19, 2202685. [Google Scholar] [CrossRef]
- Tokárová, V.; Perumal, A.S.; Nayak, M.; Shum, H.; Kašpar, O.; Rajendran, K.; Mohammadi, M.; Tremblay, C.; Gaffney, E.A.; Martel, S.; et al. Patterns of Bacterial Motility in Microfluidics-Confining Environments. Proc. Natl. Acad. Sci. USA 2021, 118, e2013925118. [Google Scholar] [CrossRef]
- Bae, S.; Kim, C.W.; Choi, J.S.; Yang, J.W.; Seo, T.S. An Integrated Microfluidic Device for the High-Throughput Screening of Microalgal Cell Culture Conditions That Induce High Growth Rate and Lipid Content. Anal. Bioanal. Chem. 2013, 405, 9365–9374. [Google Scholar] [CrossRef]
- Abedini-Nassab, R.; Emamgholizadeh, A. Controlled Transport of Magnetic Particles and Cells Using C-Shaped Magnetic Thin Films in Microfluidic Chips. Micromachines 2022, 13, 2177. [Google Scholar] [CrossRef]
- Kim, H.S.; Weiss, T.L.; Devarenne, T.P.; Han, A. A High-Throughput Microfluidic Light Controlling Platform for Biofuel Producing Photosynthetic Microalgae Analysis. In Proceedings of the 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, The Netherlands, 3–7 October 2010. [Google Scholar]
- Deng, Y.L.; Kuo, M.Y.; Juang, Y.J. Development of Flow through Dielectrophoresis Microfluidic Chips for Biofuel Production: Sorting and Detection of Microalgae with Different Lipid Contents. Biomicrofluidics 2014, 8, 064120. [Google Scholar] [CrossRef]
- Kim, H.S.; Devarenne, T.P.; Han, A. A High-Throughput Microfluidic Single-Cell Screening Platform Capable of Selective Cell Extraction. Lab Chip 2015, 15, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.J.; Kim, J.Y.H.; Bong, K.W.; Sim, S.J. Microdroplet Photobioreactor for the Photoautotrophic Culture of Microalgal Cells. Analyst 2016, 141, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Gorbushina, A.A.; Schwibbert, K.; Bell, J. Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow. ACS Biomater. Sci. Eng. 2024, 10, 4626–4634. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, M.; Liu, S.; Wu, C.; Sun, L.; Song, Z.; Shi, J.; Yuan, Y.; Zhao, Y. Microfluidic Impedance Cytometry with Flat-End Cylindrical Electrodes for Accurate and Fast Analysis of Marine Microalgae. Lab Chip 2024, 24, 2058–2068. [Google Scholar] [CrossRef]
- Hashemi, N.; Erickson, J.S.; Golden, J.P.; Jackson, K.M.; Ligler, F.S. Microflow Cytometer for Optical Analysis of Phytoplankton. Biosens. Bioelectron. 2011, 26, 4263–4269. [Google Scholar] [CrossRef]
- Lee, S.; Thio, S.K.; Park, S.Y.; Bae, S. An Automated 3D-Printed Smartphone Platform Integrated with Optoelectrowetting (OEW) Microfluidic Chip for on-Site Monitoring of Viable Algae in Water. Harmful Algae 2019, 88, 101638. [Google Scholar] [CrossRef]
- Hou, T.; Chang, H.; Jiang, H.; Wang, P.; Li, N.; Song, Y.; Li, D. Smartphone Based Microfluidic Lab-on-Chip Device for Real-Time Detection, Counting and Sizing of Living Algae. Measurement 2022, 187, 110304. [Google Scholar] [CrossRef]
- Xu, B.; Hu, B.; Wang, J.; Lan, Y.; Zhu, Y.; Dai, X.; Huang, L.; Huang, Y.; Du, W. Virgibacillus indicus Sp. Nov. and Virgibacillus profundi Sp. Nov, Two Moderately Halophilic Bacteria Isolated from Marine Sediment by Using Microfluidic Streak Plates. Int. J. Syst. Evol. Microbiol. 2018, 68, 2015–2023. [Google Scholar] [CrossRef]
- Syed, M.S.; Rafeie, M.; Vandamme, D.; Asadnia, M.; Henderson, R.; Taylor, R.A.; Warkiani, M.E. Selective Separation of Microalgae Cells Using Inertial Microfluidics. Bioresour. Technol. 2018, 252, 91–99. [Google Scholar] [CrossRef]
- Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y. Stretchable Electronics Based on PDMS Substrates. Adv. Mater. 2021, 33, 2003155. [Google Scholar] [CrossRef] [PubMed]
- Raj, M.K.; Chakraborty, S. PDMS Microfluidics: A Mini Review. J. Appl. Polym. Sci. 2020, 137, 48958. [Google Scholar] [CrossRef]
- Wang, Z.; Volinsky, A.A.; Gallant, N.D. Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Carrillo, F.; Gupta, S.; Balooch, M.; Marshall, S.J.; Marshall, G.W.; Pruitt, L.; Puttlitz, C.M. Nanoindentation of Polydimethylsiloxane Elastomers: Effect of Crosslinking, Work of Adhesion, and Fluid Environment on Elastic Modulus. J. Mater. Res. 2005, 20, 2820–2830. [Google Scholar] [CrossRef]
- Bongaerts, J.H.H.; Fourtouni, K.; Stokes, J.R. Soft-Tribology: Lubrication in a Compliant PDMS–PDMS Contact. Tribol. Int. 2007, 40, 1531–1542. [Google Scholar] [CrossRef]
- Brown, X.Q.; Ookawa, K.; Wong, J.Y. Evaluation of Polydimethylsiloxane Scaffolds with Physiologically-Relevant Elastic Moduli: Interplay of Substrate Mechanics and Surface Chemistry Effects on Vascular Smooth Muscle Cell Response. Biomaterials 2005, 26, 3123–3129. [Google Scholar] [CrossRef]
- Moghadam, M.C. Investigation of Microparticles Behavior in Newtonian, Viscoelastic, and Shear-Thickening Flows in Straight Microfluidic Channels. Master’s Thesis, York University, Toronto, ON, USA, 2021. [Google Scholar]
- Amini, H.; Lee, W.; Di Carlo, D. Inertial Microfluidic Physics. Lab Chip 2014, 14, 2739–2761. [Google Scholar] [CrossRef]
- Karimi, A.; Yazdi, S.; Ardekani, A.M. Hydrodynamic Mechanisms of Cell and Particle Trapping in Microfluidics. Biomicrofluidics 2013, 7, 021501. [Google Scholar] [CrossRef]
- Park, J.S.; Song, S.H.; Jung, H. Il Continuous Focusing of Microparticles Using Inertial Lift Force and Vorticity via Multi-Orifice Microfluidic Channels. Lab Chip 2009, 9, 939–948. [Google Scholar] [CrossRef]
- Lee, M.L.; Yao, D.J. The Separation of Microalgae Using Dean Flow in a Spiral Microfluidic Device. Inventions 2018, 3, 40. [Google Scholar] [CrossRef]
- Johnston, I.D.; McDonnell, M.B.; Tan, C.K.L.; McCluskey, D.K.; Davies, M.J.; Tracey, M.C. Dean Flow Focusing and Separation of Small Microspheres within a Narrow Size Range. Microfluid. Nanofluid. 2014, 17, 509–518. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Continuous Particle Separation in Spiral Microchannels Using Dean Flows and Differential Migration. Lab Chip 2008, 8, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wu, W.; Yuan, D.; Zou, S.; Yang, F.; Zhao, Q.; Mehmood, K.; Zhang, B. Experimental Exploration on Stable Expansion Phenomenon of Sheath Flow in Viscous Microfluidics. Phys. Fluids 2022, 34, 122002. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, W.; Yuan, D.; Wang, T.; Wu, W. A Novel Microparticle Size Sorting Technology Based on Sheath Flow Stable Expansion Regimes. Phys. Fluids 2023, 35, 052018. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, W.; Zhao, Q.; Yan, S. Geometric Optimization of Double Layered Microchannel with Grooves Array for Enabling Nanoparticle Manipulation. Phys. Fluids 2023, 35, 062009. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, W.; Wang, Z.; Zhao, Q.; Wu, W. Assistance of Inertial Microfluidics in Membrane-Based Microfiltration. J. Water Process Eng. 2023, 53, 103762. [Google Scholar] [CrossRef]
- Zou, H.; Han, W.; Zhong, Y.; Yue, H.; Li, W.; Zhang, C.; Zhang, H. Numerical Simulation of the Influence of Microchannel Flow Field on Particle Separation under Changes in Geometric Structure. Phys. Fluids 2025, 37, 012004. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, N.; Tang, W.; Huang, D.; Wang, X.; Yi, H.; Ni, Z. A Passive Flow Regulator with Low Threshold Pressure for High-Throughput Inertial Isolation of Microbeads. Lab Chip 2015, 15, 3473–3480. [Google Scholar] [CrossRef]
- Yalikun, Y.; Ota, N.; Guo, B.; Tang, T.; Zhou, Y.; Lei, C.; Kobayashi, H.; Hosokawa, Y.; Li, M.; Enrique Muñoz, H.; et al. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry. Cytom. Part A 2020, 97, 909–920. [Google Scholar] [CrossRef]
- Wang, S.; Sohrabi, S.; Xu, J.; Yang, J.; Liu, Y. Geometry Design of Herringbone Structures for Cancer Cell Capture in a Microfluidic Device. Microfluid. Nanofluid. 2016, 20, 148. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, W.; Peng, C.; Liu, X.; Yu, Q.; Ni, K.; Wang, X. Characterizing the Deformation of the Polydimethylsiloxane (PDMS) Membrane for Microfluidic System through Image Processing. Micromachines 2016, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Zaari, N.; Rajagopalan, P.; Kim, S.K.; Engler, A.J.; Wong, J.Y. Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response. Adv. Mater. 2004, 16, 2133–2137. [Google Scholar] [CrossRef]
- Li, Z.; Dey, P.; Kim, S.J. Microfluidic Single Valve Oscillator for Blood Plasma Filtration. Sens. Actuators B Chem. 2019, 296, 126692. [Google Scholar] [CrossRef]
- Xia, H.M.; Wang, Z.P.; Fan, W.; Wijaya, A.; Wang, W.; Wang, Z.F. Converting Steady Laminar Flow to Oscillatory Flow through a Hydroelasticity Approach at Microscales. Lab Chip 2012, 12, 60–64. [Google Scholar] [CrossRef]
- Gervais, T.; El-Ali, J.; Günther, A.; Jensen, K.F. Flow-Induced Deformation of Shallow Microfluidic Channels. Lab Chip 2006, 6, 500–507. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity; McGraw-Hill: Boston, MA, USA, 1970. [Google Scholar]
- Hardy, B.S.; Uechi, K.; Zhen, J.; Pirouz Kavehpour, H. The Deformation of Flexible PDMS Microchannels under a Pressure Driven Flow. Lab Chip 2009, 9, 935–938. [Google Scholar] [CrossRef]
- Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy. Lab Chip 2012, 12, 515–545. [Google Scholar] [CrossRef]
- Mosadegh, B.; Kuo, C.H.; Tung, Y.C.; Torisawa, Y.S.; Bersano-Begey, T.; Tavana, H.; Takayama, S. Integrated Elastomeric Components for Autonomous Regulation of Sequential and Oscillatory Flow Switching in Microfluidic Devices. Nat. Phys. 2010, 6, 433–437. [Google Scholar] [CrossRef]
- Raj, A.; Sen, A.K. Flow-Induced Deformation of Compliant Microchannels and Its Effect on Pressure–Flow Characteristics. Microfluid. Nanofluid. 2016, 20, 31. [Google Scholar] [CrossRef]
- Cheung, P.; Toda-Peters, K.; Shen, A.Q. In Situ Pressure Measurement within Deformable Rectangular Polydimethylsiloxane Microfluidic Devices. Biomicrofluidics 2012, 6, 026501. [Google Scholar] [CrossRef]
- Bruus, H. Theoretical Microfluidics; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.T.; Ebrahimi Warkiani, M.; Li, W. Fundamentals and Applications of Inertial Microfluidics: A Review. Lab Chip 2015, 16, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Peng, Z.; Papautsky, I. Mapping Inertial Migration in the Cross Section of a Microfluidic Channel with High-Speed Imaging. Microsyst. Nanoeng. 2020, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Zeming, K.K.; Salafi, T.; Chen, C.H.; Zhang, Y. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells. Sci. Rep. 2016, 6, 22934. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Wunsch, B.H.; Hu, H.; Smith, J.T.; Austin, R.H.; Stolovitzky, G. Broken Flow Symmetry Explains the Dynamics of Small Particles in Deterministic Lateral Displacement Arrays. Proc. Natl. Acad. Sci. USA 2017, 114, E5034–E5041. [Google Scholar] [CrossRef]
- Han, Y.; Zhao, K.; Lu, Y.; Zhu, D. A Method to Characterize the Compressibility and Stability of Microfiltration Membrane. Desalination 2015, 365, 1–7. [Google Scholar] [CrossRef]
- Elele, E.; Shen, Y.; Tang, J.; Lei, Q.; Khusid, B.; Tkacik, G.; Carbrello, C. Mechanical Properties of Polymeric Microfiltration Membranes. J. Memb. Sci. 2019, 591, 117351. [Google Scholar] [CrossRef]
- Sollier, E.; Murray, C.; Maoddi, P.; Di Carlo, D. Rapid Prototyping Polymers for Microfluidic Devices and High Pressure Injections. Lab Chip 2011, 11, 3752–3765. [Google Scholar] [CrossRef]
- Segré, G.; Silberberg, A. Radial Particle Displacements in Poiseuille Flow of Suspensions. Nature 1961, 189, 209–210. [Google Scholar] [CrossRef]
- Ho, B.P.; Leal, L.G. Inertial Migration of Rigid Spheres in Two-Dimensional Unidirectional Flows. J. Fluid Mech. 1974, 65, 365–400. [Google Scholar] [CrossRef]
- Asmolov, E.S. The Inertial Lift on a Spherical Particle in a Plane Poiseuille Flow at Large Channel Reynolds Number. J. Fluid Mech. 1999, 381, 63–87. [Google Scholar] [CrossRef]
- Di Carlo, D.; Irimia, D.; Tompkins, R.G.; Toner, M. Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels. Proc. Natl. Acad. Sci. USA 2007, 104, 18892–18897. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Inertial Microfluidics for Continuous Particle Filtration and Extraction. Microfluid. Nanofluid. 2009, 7, 217–226. [Google Scholar] [CrossRef]
- Zhou, J.; Papautsky, I. Fundamentals of Inertial Focusing in Microchannels. Lab Chip 2013, 13, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Mclaughlin, J.B. Inertial Migration of a Small Sphere in Linear Shear Flows. J. Fluid Mech. 1991, 224, 261–274. [Google Scholar] [CrossRef]
- Gossett, D.R.; Di Carlo, D. Particle Focusing Mechanisms in Curving Confined Flows. Anal. Chem. 2009, 81, 8459–8465. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.C.; Choi, S.E.; Kwon, S.; Carlo, D. Di Inertial Focusing of Non-Spherical Microparticles. Appl. Phys. Lett. 2011, 99, 044101. [Google Scholar] [CrossRef]
- Masaeli, M.; Sollier, E.; Amini, H.; Mao, W.; Camacho, K.; Doshi, N.; Mitragotri, S.; Alexeev, A.; Di Carlo, D. Continuous Inertial Focusing and Separation of Particles by Shape. Phys. Rev. X 2012, 2, 031017. [Google Scholar] [CrossRef]
- Huang, L.R.; Cox, E.C.; Austin, R.H.; Sturm, J.C. Continuous Particle Separation Through Deterministic Lateral Displacement. Science 2004, 304, 987–990. [Google Scholar] [CrossRef]
- McGrath, J.; Jimenez, M.; Bridle, H. Deterministic Lateral Displacement for Particle Separation: A Review. Lab Chip 2014, 14, 4139–4158. [Google Scholar] [CrossRef]
- Bowman, T.; Frechette, J.; Drazer, G. Force Driven Separation of Drops by Deterministic Lateral Displacement. Lab Chip 2012, 12, 2903–2908. [Google Scholar] [CrossRef]
- Christov, I.C. Soft Hydraulics: From Newtonian to Complex Fluid Flows through Compliant Conduits. J. Phys. Condens. Matter 2021, 34, 063001. [Google Scholar] [CrossRef] [PubMed]
- Krüger, T.; Holmes, D.; Coveney, P.V. Deformability-Based Red Blood Cell Separation in Deterministic Lateral Displacement Devices-A Simulation Study. Biomicrofluidics 2014, 8, 054114. [Google Scholar] [CrossRef] [PubMed]
- Chien, W.; Zhang, Z.; Gompper, G.; Fedosov, D.A. Deformation and Dynamics of Erythrocytes Govern Their Traversal through Microfluidic Devices with a Deterministic Lateral Displacement Architecture. Biomicrofluidics 2019, 13, 044106. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Shao, X.; Yu, Z.; Yu, W. Effects of the Particle Deformability on the Critical Separation Diameter in the Deterministic Lateral Displacement Device. J. Fluid Mech. 2014, 743, 60–74. [Google Scholar] [CrossRef]
- Dincau, B.M.; Aghilinejad, A.; Hammersley, T.; Chen, X.; Kim, J.H. Deterministic Lateral Displacement (DLD) in the High Reynolds Number Regime: High-Throughput and Dynamic Separation Characteristics. Microfluid. Nanofluid. 2018, 22, 59. [Google Scholar] [CrossRef]
- Senf, B.; Kim, J.H. Effect of Viscosity on High-Throughput Deterministic Lateral Displacement (DLD). Micro 2022, 2, 100–112. [Google Scholar] [CrossRef]
- Mudugamuwa, A.; Roshan, U.; Hettiarachchi, S.; Cha, H.; Musharaf, H.; Kang, X.; Trinh, Q.T.; Xia, H.M.; Nguyen, N.T.; Zhang, J. Periodic Flows in Microfluidics. Small 2024, 20, 2404685. [Google Scholar] [CrossRef]
- Pariset, E.; Pudda, C.; Boizot, F.; Verplanck, N.; Berthier, J.; Thuaire, A.; Agache, V. Anticipating Cutoff Diameters in Deterministic Lateral Displacement (DLD) Microfluidic Devices for an Optimized Particle Separation. Small 2017, 13, 1701901. [Google Scholar] [CrossRef]
- Chappel, E. A Review of Passive Constant Flow Regulators for Microfluidic Applications. Appl. Sci. 2020, 10, 8858. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z. Microfluidic Passive Flow Regulatory Device with an Integrated Check Valve for Enhanced Flow Control. Micromachines 2019, 10, 653. [Google Scholar] [CrossRef]
- Sun, H.; Li, Z.; Tao, J. Integrated 3d Multi-Physical Simulation of a Microfluidic System Using Finite Element Analysis. J. Mech. Med. Biol. 2015, 15, 1540043. [Google Scholar] [CrossRef]
- Christov, I.C.; Cognet, V.; Shidhore, T.C.; Stone, H.A. Flow Rate--Pressure Drop Relation for Deformable Shallow Microfluidic Channels. J. Fluid Mech. 2018, 841, 267–286. [Google Scholar] [CrossRef]
- Edalatpour, M.; Liu, L.; Jacobi, A.M.; Eid, K.F.; Sommers, A.D. Managing Water on Heat Transfer Surfaces: A Critical Review of Techniques to Modify Surface Wettability for Applications with Condensation or Evaporation. Appl. Energy 2018, 222, 967–992. [Google Scholar] [CrossRef]
- Sultana, S.; Matsui, J.; Mitsuishi, M.; Miyashita, T. Flow Behavior in Surface-Modified Microchannels with Polymer Nanosheets. Thin Solid Films 2009, 518, 606–609. [Google Scholar] [CrossRef]
- Wang, L.P.; Teo, C.J.; Khoo, B.C. Effects of Interface Deformation on Flow through Microtubes Containing Superhydrophobic Surfaces with Longitudinal Ribs and Grooves. Microfluid. Nanofluid. 2014, 16, 225–236. [Google Scholar] [CrossRef]
- Yamada, T.; Hong, C.; Gregory, O.J.; Faghri, M. Fluid Flow Characteristics in Microchannels with Rib-Patterned Surface. In Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, HI, USA, 13–17 March 2011. [Google Scholar] [CrossRef]
- Sett, A.; Bano, U.; DasGupta, S.; Sarkar, D.; Mitra, A.; Das, S.; Dasgupta, S. Capillary Driven Flow in Wettability Altered Microchannel. AIChE J. 2017, 63, 4616–4627. [Google Scholar] [CrossRef]
- Zhou, S.; Shu, B.; Yu, Z.; Huang, Y.; Zhang, Y. Experimental Study and Mechanism Analysis of the Flow Boiling and Heat Transfer Characteristics in Microchannels with Different Surface Wettability. Micromachines 2021, 12, 881. [Google Scholar] [CrossRef]
- Anoop, R.; Sen, A.K. Capillary Flow Enhancement in Rectangular Polymer Microchannels with a Deformable Wall. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2015, 92, 013024. [Google Scholar] [CrossRef]
- Funayama, K.; Miura, A.; Tanaka, H. Flexibly Designable Wettability Gradient for Passive Control of Fluid Motion via Physical Surface Modification. Sci. Rep. 2023, 13, 6440. [Google Scholar] [CrossRef]
- Windows-Yule, C.R.K.; Tunuguntla, D.R.; Parker, D.J. Numerical Modelling of Granular Flows: A Reality Check. Comput. Part. Mech. 2016, 3, 311–332. [Google Scholar] [CrossRef]
- Valdez, A.; Sun, H.; Weiss, H.H.; Aranson, I. Biomechanical Modeling of Spatiotemporal Bacteria-Phage Competition. Commun. Phys. 2025, 8, 139. [Google Scholar] [CrossRef]
- Liao, W.; Aranson, I.S. Viscoelasticity Enhances Collective Motion of Bacteria. PNAS Nexus 2023, 2, pgad291. [Google Scholar] [CrossRef]
- Nishiguchi, D.; Shiratani, S.; Takeuchi, K.A.; Aranson, I.S. Vortex Reversal Is a Precursor of Confined Bacterial Turbulence. Proc. Natl. Acad. Sci. USA 2025, 122, e2414446122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yan, J.; Wang, J.; Wang, Y.; Chen, G.; Weng, Z.; Pang, H.; Wang, X.; Zhang, D. A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems. Micromachines 2025, 16, 1115. https://doi.org/10.3390/mi16101115
Wang W, Yan J, Wang J, Wang Y, Chen G, Weng Z, Pang H, Wang X, Zhang D. A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems. Micromachines. 2025; 16(10):1115. https://doi.org/10.3390/mi16101115
Chicago/Turabian StyleWang, Wei, Jin Yan, Junsheng Wang, Yuezhu Wang, Ge Chen, Zihao Weng, Hongchen Pang, Xianzhang Wang, and Dapeng Zhang. 2025. "A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems" Micromachines 16, no. 10: 1115. https://doi.org/10.3390/mi16101115
APA StyleWang, W., Yan, J., Wang, J., Wang, Y., Chen, G., Weng, Z., Pang, H., Wang, X., & Zhang, D. (2025). A Review of the Application of Compliance Phenomenon in Particle Separation Within Microfluidic Systems. Micromachines, 16(10), 1115. https://doi.org/10.3390/mi16101115