Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (305)

Search Parameters:
Keywords = microcomputed tomography scans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5541 KB  
Article
Validation of Indocyanine Green-Methylene Blue Dye in the Lymphedema Rat Tail Model
by Joon Seok Lee, Woosung Jang, Hyun Geun Cho, Jun Sik Kim, Sang Hyun An, Sungdae Na, Byeongju Kang, Jeeyeon Lee, Ho Yong Park, Jeong Yeop Ryu, Kang Young Choi, Jung Dug Yang, Ho Yun Chung, Jeongsoo Yoo and Wonchoul Park
Biomedicines 2026, 14(2), 324; https://doi.org/10.3390/biomedicines14020324 - 30 Jan 2026
Viewed by 118
Abstract
Background/Objectives: Lymphedema is characterized by edema; in severe cases, skin changes and ulceration significantly impair patients’ quality of life. Although several experimental rodent models for lymphedema have been established, a reproducible and practical model remains essential for evaluating new therapeutic and imaging agents. [...] Read more.
Background/Objectives: Lymphedema is characterized by edema; in severe cases, skin changes and ulceration significantly impair patients’ quality of life. Although several experimental rodent models for lymphedema have been established, a reproducible and practical model remains essential for evaluating new therapeutic and imaging agents. This study aimed to establish a lymphedema animal model and to evaluate the efficacy of a newly synthesized dual-mode imaging reagent as a potential alternative to indocyanine green (ICG). Methods: Eleven Sprague-Dawley rats were classified into two groups. Full-thickness skin excision was performed on the tails of nine rats to induce lymphedema; two rats served as controls. Five rats received ICG injections for 1 week postoperatively, while the remaining six rats were administered tail injections of chemically synthesized indocyanine green-methylene blue (ICG-MB) reagent. Lymphatic flow was photographed using a SPY camera. After euthanasia, tail segments were analyzed by microcomputed tomography (micro-CT) to measure volume and by hematoxylin–eosin staining for histological evaluation. Results: On postoperative day 7, lymphatic flow was confirmed in the ICG-MB group using the SPY Elite® fluorescence imaging system. On micro-CT scans, the preoperative rat tail volume was 3992.72 ± 144.80 mm3. Rat tail volume was 5216.71 ± 1131.88 and 4614.76 ± 468.29 mm3, respectively, at 1 and 2 weeks after lymphedema was induced. Histology revealed lymphocyte infiltration, inflammatory reaction, and thickened subcutaneous adipose tissue, with no significant difference between groups. Conclusions: The rat tail lymphedema model proved valuable for studying lymphedema pathology and diagnostic agents. The ICG-MB reagents demonstrate stable performance and favorable biocompatibility. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Figure 1

24 pages, 5920 KB  
Article
Mechanical, Fatigue, and Thermal Characterization of ASA, Nylon 12, PC, and PC-ABS Manufactured by Fused Filament Fabrication (FFF)
by Ângela Rodrigues, Ricardo Branco, Margarida Franco, Rui Silva, Cândida Malça and Rui F. Martins
Polymers 2026, 18(2), 302; https://doi.org/10.3390/polym18020302 - 22 Jan 2026
Viewed by 201
Abstract
Additive manufacturing has been widely adopted in industry as an alternative to traditional manufacturing processes for complex component production. In fact, a diverse range of materials, particularly polymers, can be processed using 3D printing for biomechanical applications (e.g., prosthetics). However, in-depth evaluation of [...] Read more.
Additive manufacturing has been widely adopted in industry as an alternative to traditional manufacturing processes for complex component production. In fact, a diverse range of materials, particularly polymers, can be processed using 3D printing for biomechanical applications (e.g., prosthetics). However, in-depth evaluation of these materials is necessary to determine their suitability for demanding applications, such as those involving cyclic loading. Following previous work that studied Polylactic Acid (PLA) and Polyethylene Terephthalate Glycol-modified (PETG) under experimental fatigue testing, this study examines the fatigue behaviour of other current 3D-printed polymeric materials, namely Acrylonitrile Styrene Acrylate (ASA), Polycarbonate (PC), Polyamide 12 (Nylon 12), and Polycarbonate–Acrylonitrile Butadiene Styrene (blend) (PC-ABS), for which fatigue data remain limited or even non-existent. The findings revealed performance differences on Tensile Strength (σR), Young’s Modulus and Ultimate Strain among tensile specimens made from these materials and characterised S-N curves for both high-cycle (HCF) and low-cycle (LCF) fatigue regimes at room temperature, with a tensile load ratio (R = 0.05). These results establish relationships among fatigue limit and quasi-static mechanical properties, namely 25% × σr for ASA (8 MPa), 7% × σr for PC (3.6 MPa), 17% × σr for Nylon 12 (7.4 MPa), and 15% × σr for PC-ABS (4.7 MPa), as well as between mechanical properties and preliminary potential biomechanical applications. Main conclusions were further supported by micro-computed tomography (micro-CT), which revealed levels of porosity in between 4% and 11%, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Full article
(This article belongs to the Special Issue Research Progress on Mechanical Behavior of Polymers, 2nd Edition)
Show Figures

Figure 1

16 pages, 7117 KB  
Article
Morphological Description and Physiological Changes in the Hindgut of Female Asiophrida xanthospilota (Chrysomelidae, Coleoptera) Across Reproductive Stages
by Jacob M. Muinde, Ze-Qun Dong, Caren A. Ochieng, Wei Wang, Esther N. Kioko, Le Zong, Wen-Jie Li, Cong-Qiao Li, Si-Pei Liu, Zheng-Zhong Huang and Si-Qin Ge
Insects 2026, 17(1), 97; https://doi.org/10.3390/insects17010097 - 14 Jan 2026
Viewed by 440
Abstract
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the [...] Read more.
Fecal retention is a distinctive reproductive strategy in certain leaf beetles, which enables females to use accumulated fecal material to protect their eggs and enhance offspring survival. The adult flea beetle Asiophrida xanthospilota (Baly, 1881) is a specialist herbivore that feeds on the leaves of Cotinus coggygria Scop. (Anacardiaceae). Using light microscopy, scanning electron microscopy, and micro-computed tomography, we described and illustrated the hindgut anatomy of adult female A. xanthospilota during the pre-mated and post-mated reproductive phases. We further examined the physiological changes in the hindgut associated with fecal retention, and assessed hindgut muscle activity across these two reproductive stages. The hindgut of adult A. xanthospilota consists of three regions: ileum, colon, and rectum. The ileum is a thin, straight or coiled, tube enclosed by malpighian tubules and supported by circular and longitudinal muscles. The colon lies between the ileum and rectum, possesses a chitinized cuticle, and is externally covered with tracheae and tracheoles. A rectal valve separates the colon from the rectum, which forms the posterior end of the alimentary canal and is characterized by intimal spines and robust circular muscles. During the post-mated phase, fecal retention causes pronounced dilation of the hindgut, substantially increasing the volume occupied by food remnants. Electromyographic recordings revealed high hindgut muscle activity in pre-mated females, characterized by short and variable bursts, whereas post-mated females exhibited reduced activity with longer and more sustained bursts. The functional implications of these specialized structural features are discussed. Overall, these morphological and physiological adaptations enhance the fecal retention strategy by increasing fecal capacity, regulating hindgut motility, and enabling the formation of a protective fecal case around the egg mass. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

14 pages, 1270 KB  
Article
Accuracy of a Novel Desktop Micro-CT Scanner for Direct Digitization of Dental Impressions: A Comparative In Vitro Study
by Jiaying Gu, Liqing Zhu, Wenyue Yang, Yuan Zhang, Fan He, Yunwen Xu, Xiaoyu Gu, James Kit Hon Tsoi and Yuanfei Fu
Dent. J. 2026, 14(1), 16; https://doi.org/10.3390/dj14010016 - 1 Jan 2026
Viewed by 334
Abstract
Background/Objectives: This study aimed to evaluate the clinical feasibility of a novel desktop micro-computed tomography (micro-CT) scanner for digital impressions through comprehensively assessing its dimensional trueness and morphological accuracy in comparison with other optical-based scanners. Methods: A modified reference model was used [...] Read more.
Background/Objectives: This study aimed to evaluate the clinical feasibility of a novel desktop micro-computed tomography (micro-CT) scanner for digital impressions through comprehensively assessing its dimensional trueness and morphological accuracy in comparison with other optical-based scanners. Methods: A modified reference model was used to create ten silicone impressions and corresponding plaster models. Four digitization protocols were evaluated: (1) direct scanning of impressions via micro-CT scanner (MCTI), (2) extraoral scanning of impressions via F8 scanner (F8I), (3) extraoral scanning of plaster models via F8 scanner (F8PM), and (4) intraoral scanning of plaster models using Trios 5 scanner (IOSPM). Dimensional trueness was quantified via six linear measurements, and morphological accuracy (trueness and precision) was assessed by 3D surface deviation analysis. Results: Statistically significant differences in linear measurements between the digital impressions and the reference model were observed (p < 0.05). MCTI, F8PM and IOSPM demonstrated higher dimensional trueness than F8I. Although all methods showed high morphological precision, F8I (398.5 ± 43.0 µm) exhibited significantly greater root mean square (RMS) deviations for morphological trueness than MCTI (114.8 ± 42.2 µm), F8PM (142.1 ± 27.7 µm) and IOSPM (134.6 ± 12.0 µm) (p < 0.01). MCTI also demonstrated the highest reliability for morphological trueness according to relative standard deviation (RSD) analysis, with RSD values of 30.83% for MCTI, 41.80% for F8I, 37.26% for F8PM, and 42.55% for IOSPM. Conclusions: The novel micro-CT scanner enables accurate and reliable direct digitization of dental impressions. Its performance is comparable to scanning plaster models with high-end scanners and significantly superior to direct optical scanning of impressions, making it a promising alternative in digital dental workflow. Full article
(This article belongs to the Special Issue New Trends in Digital Dentistry)
Show Figures

Figure 1

10 pages, 1935 KB  
Article
Fracture Hunting in Ruby-Throated Hummingbirds (Archilochus colubris): A Comparative Study of General Radiography, Dental Radiography, Micro-CT, and 3D Reconstructed Imaging
by Haerin Rhim, Kimberly L. Boykin, Zoey Lex, Katie Bakalis, Rachel Jania, Kassandra Wilson, Devin Osterhoudt and Mark A. Mitchell
Animals 2026, 16(1), 62; https://doi.org/10.3390/ani16010062 - 25 Dec 2025
Viewed by 252
Abstract
Diagnosing fractures in hummingbirds is challenging because of their small size. This study evaluated the diagnostic performance and inter-reviewer agreement of four imaging modalities—conventional radiography, dental radiography, micro-computed tomography (micro-CT), and three-dimensional (3D)-reconstructed images from micro-CT scans—for identifying fractures in 16 ruby-throated hummingbirds [...] Read more.
Diagnosing fractures in hummingbirds is challenging because of their small size. This study evaluated the diagnostic performance and inter-reviewer agreement of four imaging modalities—conventional radiography, dental radiography, micro-computed tomography (micro-CT), and three-dimensional (3D)-reconstructed images from micro-CT scans—for identifying fractures in 16 ruby-throated hummingbirds (Archilochus colubris) admitted to a wildlife hospital. Six independent reviewers, with or in training for a specialty in veterinary radiology or wildlife medicine, assessed randomized image sets. Gross dissection of the carcasses using dermestid beetle larvae established the gold standard. Diagnostic performance metrics—sensitivity, specificity, predictive values, and likelihood ratios—were calculated for each modality. Inter-reviewer agreement was assessed using Fleiss’ kappa. Our results demonstrated that advanced imaging techniques improved diagnostic performance and inter-reviewer agreement compared to traditional radiography. While specificity (>88%) was comparable to other small animal studies, the sensitivity did not exceed 50% across all modalities. This low sensitivity reflects the challenges posed by minimal fracture displacement and hummingbirds’ extremely small size. Only 3D images achieved high positive likelihood ratios and superior inter-reviewer agreement, highlighting the unique value of 3D visualization in complex anatomical evaluations. Overall, the minute structures of hummingbirds present inherent diagnostic limitations, underscoring that negative radiographic results must be interpreted cautiously, and the possibility of false negatives should prompt consideration of advanced or follow-up imaging when clinical suspicion persists. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

15 pages, 2822 KB  
Article
Does Printing Orientation Matter in PolyJet 3D Printed Teeth for Endodontics? A Micro-CT Analysis
by Cláudia Barbosa, Tiago Reis, José B. Reis, Margarida Franco, Catarina Batista, Rui B. Ruben, Benjamín Martín-Biedma and Jose Martín-Cruces
J. Funct. Biomater. 2025, 16(12), 471; https://doi.org/10.3390/jfb16120471 - 18 Dec 2025
Viewed by 478
Abstract
This study aimed to identify the optimal printing orientation (X, Y, or Z axis) and positioning of a mandibular molar presenting an isthmus using PolyJet™ technology. The influence of these parameters on dimensional accuracy and on the behavior of 3D-printed teeth (3DPT) during [...] Read more.
This study aimed to identify the optimal printing orientation (X, Y, or Z axis) and positioning of a mandibular molar presenting an isthmus using PolyJet™ technology. The influence of these parameters on dimensional accuracy and on the behavior of 3D-printed teeth (3DPT) during endodontic preparation with ProTaper Gold® system was evaluated. Six groups (XA, XB, YA, YB, ZA, ZB; n = 10) were printed with different axis orientations and distinct isthmus positions relative to the build platform. All samples underwent micro-computed tomography scanning before and after endodontic preparation. Regarding preoperative analyses—canal volume, centroids, and total tooth volume and area—no significant differences were found between groups XA–YA or XB–YB (p > 0.05), supporting their comparability. In contrast, groups ZA and ZB differed significantly from all others (p < 0.05), failing to meet equivalence required for further comparison, and were therefore excluded. Postoperative evaluation—volume change, centroid displacement, transportation, and unprepared areas—revealed no significant differences between XA–YA and XB–YB. Within the limitations of this study, both printing orientation and position affected the accuracy and repeatability of 3DPT, with positioning exerting the greatest influence, while their behavior towards endodontic preparation remained consistent across orientations. Full article
(This article belongs to the Special Issue Digital Design and Biomechanical Analysis of Dental Materials)
Show Figures

Figure 1

21 pages, 17034 KB  
Article
From CT Imaging to 3D Representations: Digital Modelling of Fibre-Reinforced Adhesives with Image-Based FEM
by Abdul Wasay Khan, Kaixin Xu, Nikolas Manousides and Claudio Balzani
Adhesives 2025, 1(4), 14; https://doi.org/10.3390/adhesives1040014 - 3 Dec 2025
Viewed by 475
Abstract
Short fibre-reinforced adhesives (SFRAs) are increasingly used in wind turbine blades to enhance stiffness and fatigue resistance, yet their heterogeneous microstructure poses significant challenges for predictive modelling. This study presents a fully automated digital workflow that integrates micro-computed tomography (µCT), image processing, and [...] Read more.
Short fibre-reinforced adhesives (SFRAs) are increasingly used in wind turbine blades to enhance stiffness and fatigue resistance, yet their heterogeneous microstructure poses significant challenges for predictive modelling. This study presents a fully automated digital workflow that integrates micro-computed tomography (µCT), image processing, and finite element modelling (FEM) to investigate the mechanical response of SFRAs. Our aim is also to establish a computational foundation for data-driven modelling and future AI surrogates of adhesive joints in wind turbine blades. High-resolution µCT scans were denoised and segmented using a hybrid non-local means and Gaussian filtering pipeline combined with Otsu thresholding and convex hull separation, enabling robust fibre identification and orientation analysis. Two complementary modelling strategies were employed: (i) 2D slice-based FEM models to rapidly assess microstructural effects on stress localisation and (ii) 3D voxel-based FEM models to capture the full anisotropic fibre network. Linear elastic simulations were conducted under inhomogeneous uniaxial extension and torsional loading, revealing interfacial stress hotspots at fibre tips and narrow ligaments. Fibre clustering and alignment strongly influenced stress partitioning between fibres and the matrix, while isotropic regions exhibited diffuse, matrix-dominated load transfer. The results demonstrate that image-based FEM provides a powerful route for structure–property modelling of SFRAs and establish a scalable foundation for digital twin development, reliability assessment, and integration with physics-informed surrogate modelling frameworks. Full article
Show Figures

Figure 1

18 pages, 8164 KB  
Article
Development and Characterization of a Biodegradable Radiopaque PLA/Gd2O3 Filament for Bone-Equivalent Phantom Produced via Fused Filament Fabrication
by Özkan Özmen and Sena Dursun
Polymers 2025, 17(23), 3193; https://doi.org/10.3390/polym17233193 - 30 Nov 2025
Viewed by 641
Abstract
Additive manufacturing (AM) has rapidly evolved due to its design flexibility, ability to enable personalized fabrication, and reduced material waste. In the medical field, fused filament fabrication (FFF) facilitates the production of individualized anatomical models for surgical preparation, education, medical imaging, and calibration. [...] Read more.
Additive manufacturing (AM) has rapidly evolved due to its design flexibility, ability to enable personalized fabrication, and reduced material waste. In the medical field, fused filament fabrication (FFF) facilitates the production of individualized anatomical models for surgical preparation, education, medical imaging, and calibration. However, the lack of filaments with X-ray attenuation similar to that of biological hard tissues limits their use in radiological imaging. To address this limitation, a radiopaque filament was developed by incorporating gadolinium oxide (Gd2O3) into a biodegradable poly(lactic acid) (PLA) matrix at 1, 3, and 5 wt.%. Thermal and rheological properties were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and melt flow index (MFI) analyses, revealing minor variations that did not affect printability under standard FFF conditions (200 °C nozzle, 60 °C build plate, 0.12 mm layer height). Microstructural analysis via field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), elemental mapping, and micro-computed tomography (micro-CT) confirmed homogeneous Gd2O3 dispersion without nozzle blockage. Radiopacity was evaluated using gyroid infill cubes, and increasing Gd2O3 content enhanced X-ray attenuation, with 3 wt.% Gd2O3 reaching Hounsfield Unit (HU) values comparable to cortical bone. Finally, the L1 vertebra phantom fabricated from the 3 wt.% Gd2O3 filament exhibited mean HU values of approximately +200 to +250 HU at 50% infill density (trabecular bone region) and around +1000 HU at 100% infill density (cortical bone region), demonstrating the filament’s potential for producing cost-effective, radiopaque, and biodegradable phantoms for computed tomography (CT) imaging. Full article
(This article belongs to the Special Issue Latest Progress in the Additive Manufacturing of Polymeric Materials)
Show Figures

Figure 1

16 pages, 7506 KB  
Article
Non-Enzymatic Cell Expansion and Harvesting Using a Smart Thermo-Responsive Gel
by Zhiyu Yan, Nuno Honrado, Naiwen Tan, Md Anirban Jyoti and Linh Nguyen
Gels 2025, 11(12), 962; https://doi.org/10.3390/gels11120962 - 28 Nov 2025
Viewed by 356
Abstract
Advanced cell-based therapies, including immunotherapy, regenerative medicine, and other biotechnological applications, require large quantities of viable mammalian cells for research and clinical use. Conventional enzymatic harvesting methods, such as trypsini-zation, can compromise cell integrity and reduce viability. This study investigates an al-ternative temperature-responsive [...] Read more.
Advanced cell-based therapies, including immunotherapy, regenerative medicine, and other biotechnological applications, require large quantities of viable mammalian cells for research and clinical use. Conventional enzymatic harvesting methods, such as trypsini-zation, can compromise cell integrity and reduce viability. This study investigates an al-ternative temperature-responsive approach using alginate beads incorporated with poly(N-isopropylacrylamide) (PNIPAAm), a polymer exhibiting a lower critical solution temperature (LCST) of approximately 32 °C. This system enables temperature-controlled cell detachment while preserving cellular structure and extracellular matrix components, thereby potentially improving post-harvest viability compared to trypsin treatment. Ho-mogeneous alginate hydrogel beads were synthesized using a standard infusion pump and ionically crosslinked with calcium cations. The beads were characterized by scanning electron microscopy (SEM) for morphology and by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and micro-computed tomography (µ-CT) for compositional and thermal analysis. Mouse fibroblast cells (L929 cell line) were cultured on the beads, and their proliferation and viability were assessed using CCK-8 and Live/Dead assays, demonstrating significant cell growth over seven days. The results suggest that PNIPAAm-modified alginate beads provide a promising, enzyme-free platform for efficient mammalian cell harvesting and delivery, with potential applications across advanced cell manufacturing and therapeutic technologies. Full article
(This article belongs to the Special Issue Biobased Gels for Drugs and Cells)
Show Figures

Figure 1

17 pages, 4246 KB  
Article
Hydrothermal Treatment to Enhance Supercritical CO2 Polycaprolactone Foaming Processes for Tissue Engineering Scaffolds
by Belén García-Jarana, Diego Valor, Ignacio García-Casas, Jezabel Sánchez-Oneto, Casimiro Mantell, Juan R. Portela and Clara Pereyra
Polymers 2025, 17(22), 3076; https://doi.org/10.3390/polym17223076 - 20 Nov 2025
Cited by 1 | Viewed by 681
Abstract
Hydrothermal treatment was investigated as a strategy to enhance the supercritical CO2 foaming process for the fabrication of polycaprolactone (PCL) scaffolds intended for tissue engineering applications. PCL samples were subjected to supercritical foaming at 300 bar and 40 °C for 60 min, [...] Read more.
Hydrothermal treatment was investigated as a strategy to enhance the supercritical CO2 foaming process for the fabrication of polycaprolactone (PCL) scaffolds intended for tissue engineering applications. PCL samples were subjected to supercritical foaming at 300 bar and 40 °C for 60 min, combined with hydrothermal treatments performed either before or after foaming at temperatures of 70–100 °C and pressures of 10–20 bar. The effects of these treatments on scaffold morphology, porosity, and mechanical behavior were evaluated using scanning electron microscopy, micro-computed tomography, and compression testing. The results showed that hydrothermal treatment prior to foaming significantly improved scaffold porosity from 16.5% (untreated PCL) up to 57.9% while increasing pore interconnectivity (up to 156.8 throats mm−3). Conversely, post-foaming hydrothermal treatment led to pore collapse and loss of structural integrity. The pre-treated scaffolds maintained compressive moduli within 2–12 MPa, consistent with values required for bone tissue engineering. In vitro degradation in PBS revealed a moderate increase in weight loss (~10% after 90 days), indicating that the hydrothermal step slightly accelerates polymer hydrolysis without compromising stability. These findings demonstrate that combining hydrothermal pre-treatment with supercritical CO2 foaming provides a solvent-free route to tailor scaffold morphology and mechanical performance, offering a sustainable alternative for the design of bioresorbable materials in regenerative medicine. Full article
(This article belongs to the Special Issue Polymer Scaffolds for Tissue Engineering, 3rd Edition)
Show Figures

Figure 1

40 pages, 29928 KB  
Article
Enhancing the Printability of Laser Powder Bed Fusion-Processed Aluminum 7xxx Series Alloys Using Grain Refinement and Eutectic Solidification Strategies
by Chukwudalu Uchenna Uba, Huan Ding, Yehong Chen, Shengmin Guo and Jonathan Richard Raush
Materials 2025, 18(22), 5089; https://doi.org/10.3390/ma18225089 - 9 Nov 2025
Viewed by 1287
Abstract
As the most commercially developed metal additive process, laser powder bed fusion (LPBF) is vital to advancing several industry sectors, enabling high-precision part production across aerospace, biomedical, and manufacturing industries. Al 7075 alloy offers low density and high-specific strength yet faces LPBF challenges [...] Read more.
As the most commercially developed metal additive process, laser powder bed fusion (LPBF) is vital to advancing several industry sectors, enabling high-precision part production across aerospace, biomedical, and manufacturing industries. Al 7075 alloy offers low density and high-specific strength yet faces LPBF challenges such as hot cracking and porosity due to rapid solidification, thermal gradients, and a wide freezing range. To address these challenges, this study proposes an integrated computational and experimental framework to enhance the LPBF processability of Al 7xxx alloys by compositional modification. Using the Calculation of Phase Diagram approach, printable Al 7xxx compositions were designed by adding grain refiners (V and/or Ti) and a eutectic solidification enhancer (Mg) to Al 7075 alloy to enable grain refinement and eutectic solidification. Subsequent LPBF experiments and characterization tests, such as metallography (scanning electron microscopy), energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray micro-computed tomography, confirmed the production of refined microstructures with reduced defects. This study contributes to existing approaches for producing high-quality Al 7xxx alloy parts without significant compositional deviations using an integrated computational and experimental approach. Finally, aligning with the Materials Genome Initiative, this study contributes to the development and industrial adoption of advanced materials. Full article
Show Figures

Figure 1

19 pages, 4788 KB  
Article
Effect of Hardening Rate on the Bendability and Fracture Response of AA6082 Aluminum Extrusions in the VDA238-100 Tight Radius Bend Test
by Jacqueline Noder, Kenneth Cheong, Cliff Butcher, Paul Rometsch and Warren J. Poole
Metals 2025, 15(11), 1199; https://doi.org/10.3390/met15111199 - 28 Oct 2025
Viewed by 735
Abstract
Understanding the microstructure–property relationship in aluminum extrusions is crucial to leverage their potential in automotive lightweighting. The sensitivity of the processing history to the microstructure and through-thickness variations poses a major challenge since it leads to strong directionality in plasticity and fracture. Reliable [...] Read more.
Understanding the microstructure–property relationship in aluminum extrusions is crucial to leverage their potential in automotive lightweighting. The sensitivity of the processing history to the microstructure and through-thickness variations poses a major challenge since it leads to strong directionality in plasticity and fracture. Reliable characterization of the mechanical response under relevant stress states is crucial for the development of modeling strategies and performance ranking in alloy design. To this end, tensile and 3-point bend tests were performed for an aluminum extrusion produced on a laboratory-scale extrusion press at Rio Tinto Aluminium. Direct measurements of surface strains during bending using stereoscopic digital image correlation revealed that a larger bend angle in the VDA238-100 test does not necessarily imply a higher fracture strain. The T4 sample tested in the extrusion direction sustained a bend angle of 104° compared to 68° in T6 for the same nominal bend severity (ratio of sheet thickness to punch radius), despite comparable major fracture strains of 0.60 and 0.58, respectively. It is proposed that the work-hardening behavior governs the strain distribution on the outer bend surface. The higher hardening rate in the T4 condition helped distribute deformation in the bend zone more uniformly. This delayed fracture to larger bend angles since strain is accumulated at a lower rate. To assess whether the effect of the hardening behavior is manifest at a microstructural lengthscale, microcomputed tomography (μ-CT) scans were conducted on interrupted bend samples. The distribution and severity of damage in the form of cracks on the outer bend surface were distinct to the temper and thus the hardening rate. Full article
Show Figures

Figure 1

12 pages, 27323 KB  
Article
High-Fidelity MicroCT Reconstructions of Cardiac Devices Enable Patient-Specific Simulation for Structural Heart Interventions
by Zhongkai Zhu, Yaojia Zhou, Yong Chen, Yong Peng, Mao Chen and Yuan Feng
J. Clin. Med. 2025, 14(20), 7341; https://doi.org/10.3390/jcm14207341 - 17 Oct 2025
Viewed by 513
Abstract
Background/Objective: Precise preprocedural planning is essential for the safety and efficacy of structural heart interventions. Conventional imaging modalities, while informative, do not allow for direct and accurate visualization, limiting procedural predictability. We aimed to develop and validate a high-resolution micro-computed tomography (microCT)-based [...] Read more.
Background/Objective: Precise preprocedural planning is essential for the safety and efficacy of structural heart interventions. Conventional imaging modalities, while informative, do not allow for direct and accurate visualization, limiting procedural predictability. We aimed to develop and validate a high-resolution micro-computed tomography (microCT)-based reverse modeling workflow that integrates digital reconstructions of metallic cardiac devices into patient imaging datasets, enabling accurate, patient-specific virtual simulation for procedural planning. Methods: Clinical-grade transcatheter heart valves, septal defect occluders, patent ductus arteriosus occluders, left atrial appendage closure devices, and coronary stents were scanned using microCT (36.9 μm resolution). Agreement was assessed by intra-class correlation coefficients (ICC) and Bland–Altman analyses. Device geometries were reconstructed into 3D stereolithography files and virtually implanted within multislice CT datasets using dedicated software. Results: Devices were successfully reverse-modeled with high geometric fidelity, showing negligible dimensional deviations from manufacturer specifications (mean ΔDistance range: −0.20 to +0.20 mm). Simulated measurements demonstrated excellent concordance with postprocedural imaging (ICC 0.90–0.96). The workflow accurately predicted clinically relevant parameters such as valve-to-coronary distances and implantation depths. Notably, preprocedural simulation identified a case at high risk of coronary obstruction, confirmed clinically and managed successfully. Conclusions: The microCT-based reverse modeling workflow offers a rapid, reproducible, and clinically relevant method for patient-specific simulation in structural heart interventions. By preserving anatomical fidelity and providing detailed device–tissue spatial visualization, this approach enhances preprocedural planning accuracy, risk stratification, and procedural safety. Its resource-efficient digital nature facilitates broad adoption and iterative simulation. Full article
(This article belongs to the Special Issue Clinical Insights and Advances in Structural Heart Disease)
Show Figures

Figure 1

14 pages, 3840 KB  
Article
Building Polyacryronitrile Fiber/Epoxy Resin (PANER) Interleaving Film to Strengthen Flexural and Compressive Performances of Laminated CFRP Composites
by Sidra Ashfaq, Jiaxin He, Yanan Lyu, Fei Cheng, Xiang Yuan, Xueling Liang, Shuying Shi, Evgeny Lomakin, Daria Bondarchuk, Rasuljon Tojiyev, Hao Liu, Xiaozhi Hu and Xi Chen
Nanomaterials 2025, 15(20), 1576; https://doi.org/10.3390/nano15201576 - 16 Oct 2025
Cited by 1 | Viewed by 650
Abstract
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) fiber into the epoxy interlayer of the CFRP laminates. The PAN fiber/epoxy resin (PANER) interleaving film could be prepared, which was beneficial to hinder crack initiation paths and improve the load transfer. Flexural and compression performance testing results showed optimum performance was obtained when 2 wt.% PAN fiber was added, and an increment of 28.6% was obtained in the flexural strength and 11.7% increment in compressive strength. The damaged energy absorption was improved up to 21.4% and 11.3% for the flexural and compressive properties, respectively. The overall thickness increments in the interlayer with PANER interleaving film were approximately 4–9 μm. X-Ray micro-computed tomography and scanning electron microscopy observations exhibited the potential of PAN fiber in the reduction of RRR, resulting in modes replacement from delamination-dominant failure to crossing-multi-layer failure. In all, PANER interleaving film at the interlayer has been confirmed to be an effective approach to produce a simple reinforcement technology for FRP laminates. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 2271 KB  
Technical Note
Resource-Constrained 3D Volume Estimation of Lunar Regolith Particles from 2D Imagery for In Situ Dust Characterization in a Lunar Payload
by Filip Wylęgała and Tadeusz Uhl
Remote Sens. 2025, 17(20), 3450; https://doi.org/10.3390/rs17203450 - 16 Oct 2025
Viewed by 1020
Abstract
Future lunar exploration will depend on a clearer understanding of regolith behavior, as underscored by adhesion issues observed during Apollo. The Lunaris Payload, a compact instrument developed in Poland, targets in situ assessment of lunar regolith adhesion to engineering materials using a resource-constrained [...] Read more.
Future lunar exploration will depend on a clearer understanding of regolith behavior, as underscored by adhesion issues observed during Apollo. The Lunaris Payload, a compact instrument developed in Poland, targets in situ assessment of lunar regolith adhesion to engineering materials using a resource-constrained optical approach. Here we introduce and validate six lightweight 2D-to-3D geometric models for estimating particle volume from planar images, benchmarked against the high-resolution micro-computed tomography (micro-CT) ground truth. The tested methods include spherical, cylindrical, fixed-aspect-ratio ellipsoid, adaptive ellipsoid, and Feret-based models and an empirically scaled voxel proxy. Using micro-CT scans of adhered simulant particles, we evaluate accuracy across >8000 particles segmented from 2D projections. Ellipsoid-based models consistently outperform the alternatives, with absolute percentage errors of 30–35%, while fixed-aspect-ratio variants offer strong accuracy–complexity trade-offs suitable for mass- and power-limited payloads. To our knowledge, this is the first comprehensive benchmarking of six 2D-to-3D volume models against micro-CT for bulk-adhered lunar regolith analogs. The results provide a validated, efficient framework for in situ dust characterization and reliable particle mass estimation, advancing Lunaris’ capability to quantify regolith adhesion and supporting broader goals in dust mitigation, ISRU, or habitat construction. Full article
Show Figures

Graphical abstract

Back to TopTop