Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = microcantilever beams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2331 KiB  
Article
Design of a Piezoelectrically Actuated Ultrananocrystalline Diamond (UNCD) Microcantilever Biosensor
by Villarreal Daniel, Orlando Auciello and Elida de Obaldia
Appl. Sci. 2025, 15(12), 6902; https://doi.org/10.3390/app15126902 - 19 Jun 2025
Viewed by 1919
Abstract
This work presents the theoretical design and finite element modeling of high-sensitivity microcantilevers for biosensing applications, integrating piezoelectric actuation with novel ultrananocrystalline diamond (UNCD) structures. Microcantilevers were designed based on projections to grow a multilayer metal/AlN/metal/UNCD stack on silicon substrates, optimized to detect [...] Read more.
This work presents the theoretical design and finite element modeling of high-sensitivity microcantilevers for biosensing applications, integrating piezoelectric actuation with novel ultrananocrystalline diamond (UNCD) structures. Microcantilevers were designed based on projections to grow a multilayer metal/AlN/metal/UNCD stack on silicon substrates, optimized to detect adsorption of biomolecules on the surface of exposed UNCD microcantilevers at the picogram scale. A central design criterion was to match the microcantilever’s eigenfrequency with the resonant frequency of the AlN-based piezoelectric actuator, enabling efficient dynamic excitation. The beam length was tuned to ensure a ≥2 kHz resonant frequency shift upon adsorption of 1 pg of mass distributed on the exposed surface of a UNCD-based microcantilever. Subsequently, a Gaussian distribution mass function with a variance of 5 µm was implemented to evaluate the resonant frequency shift upon mass addition at a certain point on the microcantilever where a variation from 600 Hz to 100 Hz was observed when the mass distribution center was located at the tip of the microcantilever and the piezoelectric borderline, respectively. Both frequency and time domain analyses were performed to predict the resonance behavior, oscillation amplitude, and quality factor. To ensure the reliability of the simulations, the model was first validated using experimental results reported in the literature for an AlN/nanocrystalline diamond (NCD) microcantilever. The results confirmed that the AlN/UNCD architecture exhibits higher resonant frequencies and enhanced sensitivity compared to equivalent AlN/Si structures. The findings demonstrate that using a UNCD-based microcantilever not only improves biocompatibility but also significantly enhances the mechanical performance of the biosensor, offering a robust foundation for the development of next-generation MEMS-based biochemical detection platforms. The research reported here introduces a novel design methodology that integrates piezoelectric actuation with UNCD microcantilevers through eigenfrequency matching, enabling efficient picogram-scale mass detection. Unlike previous approaches, it combines actuator and cantilever optimization within a unified finite element framework, validated against experimental data published in the literature for similar piezo-actuated sensors using materials with inferior biocompatibility compared with the novel UNCD. The dual-domain simulation strategy offers accurate prediction of key performance metrics, establishing a robust and scalable path for next-generation MEMS biosensors. Full article
Show Figures

Figure 1

18 pages, 4359 KiB  
Article
Vortex-Induced Micro-Cantilever Vibrations with Small and Large Amplitudes in Rarefied Gas Flow
by Emil Manoach, Kiril Shterev and Simona Doneva
Appl. Sci. 2025, 15(10), 5547; https://doi.org/10.3390/app15105547 - 15 May 2025
Viewed by 385
Abstract
This study employs a fully coupled fluid–structure interaction (FSI) to investigate the vibrations of an elastic micro-cantilever induced by a rarefied gas flow. Two distinct models are employed to characterize the beam vibrations: the small deflection Euler–Bernoulli beam theory and the large deflection [...] Read more.
This study employs a fully coupled fluid–structure interaction (FSI) to investigate the vibrations of an elastic micro-cantilever induced by a rarefied gas flow. Two distinct models are employed to characterize the beam vibrations: the small deflection Euler–Bernoulli beam theory and the large deflection beam theory. The cantilever is oriented normally to the free stream, creating a regular Kármán vortex street behind the beam, resulting in vortex-induced vibrations (VIV) in the micro-cantilever. The Direct Simulation Monte Carlo (DSMC) method is used to model the rarefied gas flow to capture non-continuum effects. A hybrid numerical approach couples the beam dynamics and gas flow, enabling a fully coupled FSI simulation. A substantial number of numerical computations indicate that the range of vibration amplitudes expands when the natural frequency of the beam approaches the vortex shedding frequency. Notably, the large deflection beam theory predicts that the peak amplitude occurs at a slightly lower frequency than the vortex frequency. In this frequency range, as well as for thinner beams, the amplitude ranges predicted by the large deflection beam theory exceed those obtained from the small deflection beam theory. This finding implies that for more complex behaviours involving nonlinear effects, the large deflection theory may yield more accurate predictions. Full article
(This article belongs to the Special Issue Nonlinear Dynamics in Mechanical Engineering and Thermal Engineering)
Show Figures

Figure 1

12 pages, 5791 KiB  
Article
Vibration Analysis of Al–Al2O3 Micro-Cantilever Sandwich Beams with Porosity in Fluids
by Feixiang Tang, Xiong Yuan, Siyu He, Jize Jiang, Shaonan Shi, Yuhan Li, Wenjin Liu, Yang Zhou, Fang Dong and Sheng Liu
Micromachines 2025, 16(2), 206; https://doi.org/10.3390/mi16020206 - 11 Feb 2025
Cited by 1 | Viewed by 706
Abstract
The vibration of porous Al–Al2O3 micro-cantilever sandwich beams in fluids was studied utilizing the modified couple stress theory and the scale distribution theory (MCST and SDT). Four types of porosity distributions were defined; the uniform distribution of pores was defined [...] Read more.
The vibration of porous Al–Al2O3 micro-cantilever sandwich beams in fluids was studied utilizing the modified couple stress theory and the scale distribution theory (MCST and SDT). Four types of porosity distributions were defined; the uniform distribution of pores was defined as U-type, while O-type, V-type and X-type represented non-uniform distributions of pores. The material properties of different porous sandwich beams were calculated. The properties of the micro-cantilever sandwich beams were adjusted to account for scale effects according to MCST. With the fluid driving force taken into consideration, the amplitude-frequency response, and resonant frequencies of the FGM sandwich beams in three different fluids were calculated using the Euler–Bernoulli beam theory. The computational studies showed that the presence of gradient factor p and the pores in the micro-cantilever sandwich beams affect the temperature field distribution and amplitude-frequency response in fluids. Increasing gradient factor p leads to a more obvious thermal concentration of the one-dimensional temperature field and migrates the resonance peaks to lower frequencies. In contrast to the uniform distribution type, the non-uniformly distributed pores also cause a decrease in the resonance frequency. Full article
Show Figures

Figure 1

17 pages, 7379 KiB  
Article
Cracking Resistance of Selected PVD Hard Coatings
by Peter Panjan, Aleksandar Miletić, Aljaž Drnovšek, Pal Terek, Miha Čekada, Lazar Kovačević and Matjaž Panjan
Coatings 2024, 14(11), 1452; https://doi.org/10.3390/coatings14111452 - 14 Nov 2024
Cited by 3 | Viewed by 1334
Abstract
In this study, we used the depth-sensing indentation technique to determine the cracking resistance of different PVD hard coatings deposited on tool steel substrates. By comparison, with the load–displacement curves, measured at the sites of carbide inclusion and a tempered martensite matrix in [...] Read more.
In this study, we used the depth-sensing indentation technique to determine the cracking resistance of different PVD hard coatings deposited on tool steel substrates. By comparison, with the load–displacement curves, measured at the sites of carbide inclusion and a tempered martensite matrix in the D2 tool steel substrate surface, we observed different fracture mechanisms on TiAlN hard coating prepared by sputtering. Additional information about the deformation and fracture phenomena was obtained from the SEM images of FIB cross-sections of both types of indents. We found that the main deformation mechanism in the coating is the shear sliding along the columnar boundaries, which causes the formation of steps on the substrate surface under individual columns. Using nanoindentation test, we also analyzed the cracking resistance of a set of nl-(Cr,Al)N nanolayer coatings with different Cr/Al atomic ratios, which were sputter deposited in a single batch. From the indentation curves, we determined the loads (Fc) at which the first pop-in appears and compared them with the plasticity index H3/E2. A good correlation of both parameters was found. We also compared the indentation curves of the TiAlN coating, which were prepared by cathodic arc evaporation using 1-fold, 2-fold and 3-fold rotation of the substrates. Additionally, on the same set of samples, the fracture toughness measurements were performed by micro-cantilever deflection test. The impact of growth defects on the cracking resistance of the hard coatings was also confirmed. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

23 pages, 11300 KiB  
Article
Vibration Analysis of Porous Cu-Si Microcantilever Beams in Fluids Based on Modified Couple Stress Theory
by Jize Jiang, Feixiang Tang, Siyu He, Fang Dong and Sheng Liu
Nanomaterials 2024, 14(13), 1144; https://doi.org/10.3390/nano14131144 - 3 Jul 2024
Cited by 6 | Viewed by 1456
Abstract
The vibrations in functionally graded porous Cu-Si microcantilever beams are investigated based on physical neutral plane theory, modified coupled stress theory, and scale distribution theory (MCST&SDT). Porous microcantilever beams define four pore distributions. Considering the physical neutral plane theory, the material properties of [...] Read more.
The vibrations in functionally graded porous Cu-Si microcantilever beams are investigated based on physical neutral plane theory, modified coupled stress theory, and scale distribution theory (MCST&SDT). Porous microcantilever beams define four pore distributions. Considering the physical neutral plane theory, the material properties of the beams are computed through four different power-law distributions. The material properties of microcantilever beams are corrected by scale effects based on modified coupled stress theory. Considering the fluid driving force, the amplitude-frequency response spectra and resonant frequencies of the porous microcantilever beam in three different fluids are obtained based on the Euler–Bernoulli beam theory. The quality factors of porous microcantilever beams in three different fluids are derived by estimating the equation. The computational analysis shows that the presence of pores in microcantilever beams leads to a decrease in Young’s modulus. Different pore distributions affect the material properties to different degrees. The gain effect of the scale effect is weakened, but the one-dimensional temperature field and amplitude-frequency response spectra show an increasing trend. The quality factor is decreased by porosity, and the degree of influence of porosity increases as the beam thickness increases. The gradient factor n has a greater effect on the resonant frequency. The effect of porosity on the resonant frequency is negatively correlated when the gradient factor is small (n<1) but positively correlated when the gradient factor is large (n>1). Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

12 pages, 2808 KiB  
Article
High–Speed Laser Modulation for Low–Noise Micro–Cantilever Array Deflection Measurement
by Weiwei Xue, Yong Su and Qingchuan Zhang
Photonics 2024, 11(7), 619; https://doi.org/10.3390/photonics11070619 - 28 Jun 2024
Viewed by 1214
Abstract
In this paper, an innovative approach is introduced to address the noise issues associated with micro–cantilever array deflection measurement systems employing multiple lasers. Conventional systems are affected by laser mode hopping during switching, resulting in wavelength instability and beam spot fluctuations that take [...] Read more.
In this paper, an innovative approach is introduced to address the noise issues associated with micro–cantilever array deflection measurement systems employing multiple lasers. Conventional systems are affected by laser mode hopping during switching, resulting in wavelength instability and beam spot fluctuations that take several hundred milliseconds to stabilize. To mitigate these limitations, a high–speed laser modulation technique is utilized, leveraging the averaging effect over multiple modulation cycles within the sampling window. By driving the lasers with a high–frequency carrier signal, a low–noise and stable output suitable for micro–cantilever beam deflection measurement is achieved. The effectiveness of this approach is demonstrated by simultaneously modulating the lasers and rapidly observing the spectral and centroid variations during high–speed switching using a custom–built high–speed spectrometer. The centroid fluctuations are also analyzed under different modulation frequencies. The experimental results confirm that the high–speed modulation method can reduce the standard deviation of beam spot fluctuations by more than 90%, leading to significant improvements in noise reduction compared to traditional laser switching methods. The proposed high–speed laser modulation approach offers a promising solution for enhancing the precision and stability of multi–laser micro–cantilever array deflection measurement systems. Full article
(This article belongs to the Special Issue Recent Advances in 3D Optical Measurement)
Show Figures

Figure 1

12 pages, 2659 KiB  
Article
Refraction-Based Laser Scanning Microcantilever Array System
by Weiwei Xue, Yong Su and Qingchuan Zhang
Photonics 2024, 11(7), 592; https://doi.org/10.3390/photonics11070592 - 25 Jun 2024
Cited by 1 | Viewed by 1508
Abstract
Microcantilever arrays are valuable tools for detecting minute physical and chemical changes. Traditional microcantilever array systems, including our previous work utilizing multiple laser arrays, frequently encounter high complexity, significant costs, and increased noise caused by laser switching. This study introduces a refraction-based laser [...] Read more.
Microcantilever arrays are valuable tools for detecting minute physical and chemical changes. Traditional microcantilever array systems, including our previous work utilizing multiple laser arrays, frequently encounter high complexity, significant costs, and increased noise caused by laser switching. This study introduces a refraction-based laser scanning system that significantly mitigates these issues by employing a rotating glass optical block for multiplex scanning. This innovative approach not only simplifies the scanning process by eliminating the need to move the laser source or the microcantilever array but also enhances scanning speed and reduces noise, as demonstrated by our experiments. Overall, this research implements a new optical scanning strategy for microcantilever array systems, which is promising due to its direct application potential as it paves the way for more accurate, high-performing, and cost-effective sensing solutions. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

12 pages, 2759 KiB  
Article
MEMS Resonant Beam with Outstanding Uniformity of Sensitivity and Temperature Distribution for Accurate Gas Sensing and On-Chip TGA
by Zheng Lu, Hao Jia, Ding Wang and Haitao Yu
Sensors 2024, 24(8), 2495; https://doi.org/10.3390/s24082495 - 13 Apr 2024
Cited by 1 | Viewed by 1289
Abstract
Micromechanical resonators have aroused growing interest as biological and chemical sensors, and microcantilever beams are the main research focus. Recently, a resonant microcantilever with an integrated heater has been applied in on-chip thermogravimetric analysis (TGA). However, there is a strong relationship between the [...] Read more.
Micromechanical resonators have aroused growing interest as biological and chemical sensors, and microcantilever beams are the main research focus. Recently, a resonant microcantilever with an integrated heater has been applied in on-chip thermogravimetric analysis (TGA). However, there is a strong relationship between the mass sensitivity of a resonant microcantilever and the location of adsorbed masses. Different sampling positions will cause sensitivity differences, which will result in an inaccurate calculation of mass change. Herein, an integrated H-shaped resonant beam with uniform mass sensitivity and temperature distribution is proposed and developed to improve the accuracy of bio/chemical sensing and TGA applications. Experiments verified that the presented resonant beam possesses much better uniformity of sensitivity and temperature distribution compared with resonant microcantilevers. Gas-sensing and TGA experiments utilizing the integrated resonant beam were also carried out and exhibited good measurement accuracy. Full article
(This article belongs to the Special Issue Micro and Nanodevices for Sensing Technology)
Show Figures

Figure 1

14 pages, 4852 KiB  
Article
The Impact of the Damping Coefficient on the Dynamic Stability of the TM-AFM Microcantilever Beam System
by Peijie Song, Xiaojuan Li, Jianjun Cui, Kai Chen and Yandong Chu
Appl. Sci. 2024, 14(7), 2910; https://doi.org/10.3390/app14072910 - 29 Mar 2024
Cited by 1 | Viewed by 1294
Abstract
The tapping-mode atomic force microscope (TM-AFM) is widely used today; however, improper matching between the operating medium and the sampling time may lead to inaccurate measurement results. The relationship between the damping coefficient and the steady state of the TM-AFM microcantilever is investigated [...] Read more.
The tapping-mode atomic force microscope (TM-AFM) is widely used today; however, improper matching between the operating medium and the sampling time may lead to inaccurate measurement results. The relationship between the damping coefficient and the steady state of the TM-AFM microcantilever is investigated in this paper using multiple stability theory. Firstly, the effects of changes in dimensionless linear damping coefficients and dimensionless piezoelectric film damping coefficients on the motion stability of the system are examined using bifurcation diagrams, phase trajectories, and domains of attraction. Subsequently, the degrees of effect of the two damping coefficients on the stability of the system are compared. Finally, the bi-parametric bifurcation characteristics of the system under a specific number of iterative cycles are investigated using the bi-parametric bifurcation diagram in conjunction with the actual working conditions, and the boundary conditions for the transition of the system’s motion from an unstable state to a stable state are obtained. The results of the study show that to ensure the accuracy and reliability of the individual measurement data in 500 iteration cycles, the dimensionless linear damping coefficient must be greater than 0.01014. Our results will provide valuable references for TM-AFM measurement media selection, improving TM-AFM imaging quality, measurement accuracy and maneuverability, and TM-AFM troubleshooting. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

18 pages, 12011 KiB  
Article
Investigation on the Impact of Excitation Amplitude on AFM-TM Microcantilever Beam System’s Dynamic Characteristics and Implementation of an Equivalent Circuit
by Peijie Song, Xiaojuan Li, Jianjun Cui, Kai Chen and Yandong Chu
Sensors 2024, 24(1), 107; https://doi.org/10.3390/s24010107 - 25 Dec 2023
Cited by 1 | Viewed by 1378
Abstract
Alterations in the dynamical properties of an atomic force microscope microcantilever beam system in tapping mode can appreciably impact its measurement precision. Understanding the influence mechanism of dynamic parameter changes on the system’s motion characteristics is vital to improve the accuracy of the [...] Read more.
Alterations in the dynamical properties of an atomic force microscope microcantilever beam system in tapping mode can appreciably impact its measurement precision. Understanding the influence mechanism of dynamic parameter changes on the system’s motion characteristics is vital to improve the accuracy of the atomic force microscope in tapping mode (AFM-TM). In this study, we categorize the mathematical model of the AFM-TM microcantilever beam system into systems 1 and 2 based on actual working conditions. Then, we analyze the alterations in the dynamic properties of both systems due to external excitation variations using bifurcation diagrams, phase trajectories, Lyapunov indices, and attraction domains. The numerical simulation results show that when the dimensionless external excitation g < 0.183, the motion state of system 2 is period 1. When g < 0.9, the motion state of system 1 is period 1 motion. Finally, we develop the equivalent circuit model of the AFM-TM microcantilever beam and perform related software simulations, along with practical circuit experiments. Our experimental results indicate that the constructed equivalent circuit can effectively analyze the dynamic characteristics of the AFM-TM microcantilever beam system in the presence of complex external environmental factors. It is observed that the practical circuit simulation attenuates high-frequency signals, resulting in a 31.4% reduction in excitation amplitude compared to numerical simulation results. This provides an essential theoretical foundation for selecting external excitation parameters for AFM-TM cantilever beams and offers a novel method for analyzing the dynamics of micro- and nanomechanical systems, as well as other nonlinear systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 7090 KiB  
Communication
Silicon-Cantilever-Enhanced Single-Fiber Photoacoustic Acetylene Gas Sensor
by Zhengyuan Zhang, Xinhong Fan, Yufu Xu, Yongqi Wang, Yiyao Tang, Rui Zhao, Chenxi Li, Heng Wang and Ke Chen
Sensors 2023, 23(17), 7644; https://doi.org/10.3390/s23177644 - 3 Sep 2023
Cited by 8 | Viewed by 2313
Abstract
A single-fiber photoacoustic (PA) sensor with a silicon cantilever beam for trace acetylene (C2H2) gas analysis was proposed. The miniature gas sensor mainly consisted of a microcantilever and a non-resonant PA cell for the real-time detection of acetylene gas. [...] Read more.
A single-fiber photoacoustic (PA) sensor with a silicon cantilever beam for trace acetylene (C2H2) gas analysis was proposed. The miniature gas sensor mainly consisted of a microcantilever and a non-resonant PA cell for the real-time detection of acetylene gas. The gas diffused into the photoacoustic cell through the silicon cantilever beam gap. The volume of the PA cell in the sensor was about 14 μL. By using a 1 × 2 fiber optical coupler, a 1532.8 nm distributed feedback (DFB) laser and a white light interference demodulation module were connected to the single-fiber photoacoustic sensor. A silicon cantilever was utilized to improve the performance when detecting the PA signal. To eliminate the interference of the laser-reflected light, a part of the Fabry–Perot (F-P) interference spectrum was used for phase demodulation to achieve the highly sensitive detection of acetylene gas. The minimum detection limit (MDL) achieved was 0.2 ppm with 100 s averaging time. In addition, the calculated normalized noise equivalent absorption (NNEA) coefficient was 4.4 × 10−9 W·cm−1·Hz−1/2. The single-fiber photoacoustic sensor designed has great application prospects in the early warning of transformer faults. Full article
(This article belongs to the Special Issue Photoacoustic Sensing, Imaging, and Communications)
Show Figures

Figure 1

19 pages, 4685 KiB  
Article
Nonlinear Dynamic Response of Nanocomposite Microbeams Array for Multiple Mass Sensing
by Giovanni Formica, Walter Lacarbonara and Hiroshi Yabuno
Nanomaterials 2023, 13(11), 1808; https://doi.org/10.3390/nano13111808 - 5 Jun 2023
Cited by 4 | Viewed by 1687
Abstract
A nonlinear MEMS multimass sensor is numerically investigated, designed as a single input-single output (SISO) system consisting of an array of nonlinear microcantilevers clamped to a shuttle mass which, in turn, is constrained by a linear spring and a dashpot. The microcantilevers are [...] Read more.
A nonlinear MEMS multimass sensor is numerically investigated, designed as a single input-single output (SISO) system consisting of an array of nonlinear microcantilevers clamped to a shuttle mass which, in turn, is constrained by a linear spring and a dashpot. The microcantilevers are made of a nanostructured material, a polymeric hosting matrix reinforced by aligned carbon nanotubes (CNT). The linear as well as the nonlinear detection capabilities of the device are explored by computing the shifts of the frequency response peaks caused by the mass deposition onto one or more microcantilever tips. The frequency response curves of the device are obtained by a pathfollowing algorithm applied to the reduced-order model of the system. The microcantilevers are described by a nonlinear Euler-Bernoulli inextensible beam theory, which is enriched by a meso-scale constitutive law of the nanocomposite. In particular, the microcantilever constitutive law depends on the CNT volume fraction suitably used for each cantilever to tune the frequency bandwidth of the whole device. Through an extensive numerical campaign, the mass sensor sensitivity estimated in the linear and nonlinear dynamic range shows that, for relatively large displacements, the accuracy of the added mass detectability can be improved due to the larger nonlinear frequency shifts at resonance (up to 12%). Full article
Show Figures

Figure 1

22 pages, 4457 KiB  
Article
Gas Adsorption Response of Piezoelectrically Driven Microcantilever Beam Gas Sensors: Analytical, Numerical, and Experimental Characterizations
by Lawrence Nsubuga, Lars Duggen, Tatiana Lisboa Marcondes, Simon Høegh, Fabian Lofink, Jana Meyer, Horst-Günter Rubahn and Roana de Oliveira Hansen
Sensors 2023, 23(3), 1093; https://doi.org/10.3390/s23031093 - 17 Jan 2023
Cited by 8 | Viewed by 2553
Abstract
This work presents an approach for the estimation of the adsorbed mass of 1,5-diaminopentane (cadaverine) on a functionalized piezoelectrically driven microcantilever (PD-MC) sensor, using a polynomial developed from the characterization of the resonance frequency response to the known added mass. This work supplements [...] Read more.
This work presents an approach for the estimation of the adsorbed mass of 1,5-diaminopentane (cadaverine) on a functionalized piezoelectrically driven microcantilever (PD-MC) sensor, using a polynomial developed from the characterization of the resonance frequency response to the known added mass. This work supplements the previous studies we carried out on the development of an electronic nose for the measurement of cadaverine in meat and fish, as a determinant of its freshness. An analytical transverse vibration analysis of a chosen microcantilever beam with given dimensions and desired resonance frequency (>10 kHz) was conducted. Since the beam is considered stepped with both geometrical and material non-uniformity, a modal solution for stepped beams, extendable to clamped-free beams of any shape and structure, is derived and used for free and forced vibration analyses of the beam. The forced vibration analysis is then used for transformation to an equivalent electrical model, to address the fact that the microcantilever is both electronically actuated and read. An analytical resonance frequency response to the mass added is obtained by adding simulated masses to the free end of the beam. Experimental verification of the resonance frequency response is carried out, by applying known masses to the microcantilever while measuring the resonance frequency response using an impedance analyzer. The obtained response is then transformed into a resonance frequency to the added mass response polynomial using a polynomial fit. The resulting polynomial is then verified for performance using different masses of cantilever functionalization solution. The functionalized cantilever is then exposed to different concentrations of cadaverine while measuring the resonance frequency and mass of cadaverine adsorbed estimated using the previously obtained polynomial. The result is that there is the possibility of using this approach to estimate the mass of cadaverine gas adsorbed on a functionalized microcantilever, but the effectiveness of this approach is highly dependent on the known masses used for the development of the response polynomial model. Full article
(This article belongs to the Special Issue Recent Advancements in Olfaction and Electronic Nose)
Show Figures

Figure 1

17 pages, 9893 KiB  
Article
Correlations between Microstructure and Residual Stress of Nanoscale Depth Profiles for TSV-Cu/TiW/SiO2/Si Interfaces after Different Thermal Loading
by Min Zhang, Fangzhou Chen, Fei Qin, Si Chen and Yanwei Dai
Materials 2023, 16(1), 449; https://doi.org/10.3390/ma16010449 - 3 Jan 2023
Cited by 6 | Viewed by 3715
Abstract
In this paper, the residual stresses with a nanoscale depth resolution at TSV-Cu/TiW/SiO2/Si interfaces under different thermal loadings are characterized using the ion-beam layer removal (ILR) method. Moreover, the correlations of residual stress, microstructure, and the failure modes of the interfaces [...] Read more.
In this paper, the residual stresses with a nanoscale depth resolution at TSV-Cu/TiW/SiO2/Si interfaces under different thermal loadings are characterized using the ion-beam layer removal (ILR) method. Moreover, the correlations of residual stress, microstructure, and the failure modes of the interfaces are discussed. The residual stresses at the interfaces of TSV-Cu/TiW, TiW/SiO2, and SiO2/Si are in the form of small compressive stress at room temperature, then turn into high-tensile stress after thermal cycling or annealing. In addition, the maximum residual stress inside the TSV-Cu is 478.54 MPa at room temperature, then decreases to 216.75 MPa and 90.45 MPa, respectively, after thermal cycling and annealing. The microstructural analysis indicates that thermal cycling causes an increase in the dislocation density and a decrease in the grain diameter of TSV-Cu. Thus, residual stress accumulates constantly in the TSV-Cu/TiW interface, resulting in the cracking of the interface. Furthermore, annealing leads to the cracking of more interfaces, relieving the residual stress as well as increasing the grain diameter of TSV-Cu. Besides this, the applicability of the ILR method is verified by finite element modeling (FEM). The influence of the geometric errors of the micro-cantilever beam and the damage to the materials introduced by the focused ion beam (FIB) in the experimental results are discussed. Full article
Show Figures

Figure 1

20 pages, 3166 KiB  
Review
Optical Fiber Probe Microcantilever Sensor Based on Fabry–Perot Interferometer
by Yongzhang Chen, Yiwen Zheng, Haibing Xiao, Dezhi Liang, Yufeng Zhang, Yongqin Yu, Chenlin Du and Shuangchen Ruan
Sensors 2022, 22(15), 5748; https://doi.org/10.3390/s22155748 - 1 Aug 2022
Cited by 11 | Viewed by 4427
Abstract
Optical fiber Fabry–Perot sensors have long been the focus of researchers in sensing applications because of their unique advantages, including highly effective, simple light path, low cost, compact size, and easy fabrication. Microcantilever-based devices have been extensively explored in chemical and biological fields [...] Read more.
Optical fiber Fabry–Perot sensors have long been the focus of researchers in sensing applications because of their unique advantages, including highly effective, simple light path, low cost, compact size, and easy fabrication. Microcantilever-based devices have been extensively explored in chemical and biological fields while the interrogation methods are still a challenge. The optical fiber probe microcantilever sensor is constructed with a microcantilever beam on an optical fiber, which opens the door for highly sensitive, as well as convenient readout. In this review, we summarize a wide variety of optical fiber probe microcantilever sensors based on Fabry–Perot interferometer. The operation principle of the optical fiber probe microcantilever sensor is introduced. The fabrication methods, materials, and sensing applications of an optical fiber probe microcantilever sensor with different structures are discussed in detail. The performances of different kinds of fiber probe microcantilever sensors are compared. We also prospect the possible development direction of optical fiber microcantilever sensors. Full article
(This article belongs to the Special Issue Fiber Optic Sensors and Applications 2021–2022)
Show Figures

Figure 1

Back to TopTop