Refraction-Based Laser Scanning Microcantilever Array System
Abstract
:1. Introduction
2. Principle and Method
2.1. Principle of Refraction-Based Scanning
2.2. Refractive-Based Laser Scanning Microcantilever Array System
2.2.1. Laser Projection Module
2.2.2. Microcantilever Chamber
2.2.3. Spot Detection Module
2.2.4. Fluid Control System
2.2.5. Control Module
2.3. Control of Rotation Angle
2.4. Experimental Procedure
2.4.1. System Start-Up and Alignment
2.4.2. Data Acquisition
2.4.3. Data Analysis
3. System Performance Analysis
3.1. Analysis of Channel Switching Time Stability
3.2. Noise Analysis and Stability Assessment
3.3. Thermal Response of the Microcantilever Systems
3.4. Biochemical Monitoring of Carcinoembryonic Antigen (CEA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, G.U.; Chrisey, L.A.; Colton, R.J. Direct Measurement of the Forces Between Complementary Strands of DNA. Science 1994, 266, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Putman, C.A.J.; De Grooth, B.G.; Van Hulst, N.F.; Greve, J. A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J. Appl. Phys. 1992, 72, 6–12. [Google Scholar] [CrossRef]
- Berger, R.; Delamarche, E.; Lang, H.P.; Gerber, C.; Gimzewski, J.K.; Meyer, E.; Guntherodt, H.J. Surface Stress in the Self-Assembly of Alkanethiols on Gold. Science 1997, 276, 2021–2024. [Google Scholar] [CrossRef]
- Jeon, S.; Thundat, T. Instant curvature measurement for microcantilever sensors. Appl. Phys. Lett. 2004, 85, 1083–1084. [Google Scholar] [CrossRef]
- Boisen, A.; Dohn, S.; Keller, S.S.; Schmid, S.; Tenje, M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 2011, 74, 036101. [Google Scholar] [CrossRef]
- Bashir, R.; Hilt, J.Z.; Elibol, O.; Gupta, A.; Peppas, N.A. Micromechanical cantilever as an ultrasensitive pH microsensor. Appl. Phys. Lett. 2002, 81, 3091–3093. [Google Scholar] [CrossRef]
- Senesac, L.; Thundat, T.G. Nanosensors for trace explosive detection. Mater. Today 2008, 11, 28–36. [Google Scholar] [CrossRef]
- Alvarez, M.; Carrascosa, L.G.; Moreno, M.; Calle, A.; Zaballos, A.; Lechuga, L.M.; Martínez-A, C.; Tamayo, J. Nanomechanics of the formation of DNA self-assembled monolayers and hybridization on microcantilevers. Langmuir ACS J. Surf. Colloids 2004, 20, 9663–9668. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.M.; Thundat, T. Microcantilever biosensors. Methods 2005, 37, 57–64. [Google Scholar] [CrossRef]
- Mistry, K.; Nguyen, V.H.; Arabi, M.; Ibrahim, K.H.; Asgarimoghaddam, H.; Yavuz, M.; Muñoz-Rojas, D.; Abdel-Rahman, E.; Musselman, K.P. Highly Sensitive Self-Actuated Zinc Oxide Resonant Microcantilever Humidity Sensor. Nano Lett. 2022, 22, 3196–3203. [Google Scholar] [CrossRef]
- Xue, C.; Zhao, H.; Liu, H.; Chen, Y.; Wang, B.; Zhang, Q.; Wu, X. Development of sulfhydrylated antibody functionalized microcantilever immunosensor for taxol. Sens. Actuators B Chem. 2011, 156, 863–866. [Google Scholar] [CrossRef]
- Martínez-Martín, D.; Fläschner, G.; Gaub, B.; Martin, S.; Newton, R.; Beerli, C.; Mercer, J.; Gerber, C.; Müller, D.J. Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 2017, 550, 500–505. [Google Scholar] [CrossRef]
- Mei, K.; Yan, T.; Wang, Y.; Rao, D.; Peng, Y.; Wu, W.; Chen, Y.; Ren, M.; Yang, J.; Wu, S.; et al. Magneto-Nanomechanical Array Biosensor for Ultrasensitive Detection of Oncogenic Exosomes for Early Diagnosis of Cancers (Small 9/2023). Small 2023, 19, 2370055. [Google Scholar] [CrossRef]
- Lavrik, N.; Sepaniak, M.; Datskos, P. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 2004, 75, 2229–2253. [Google Scholar] [CrossRef]
- Alvarez, M.; Calle, A.; Tamayo, J.; Lechuga, L.M.; Abad, A.; Montoya, A. Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens. Bioelectron. 2003, 18, 649–653. [Google Scholar] [CrossRef]
- Zhang, J.; Lang, H.P.; Huber, F.; Bietsch, A.; Grange, W.; Certa, U.; McKendry, R.; Güntherodt, H.J.; Hegner, M.; Gerber, C. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 2006, 1, 214–220. [Google Scholar] [CrossRef]
- Vashist, S.K. A Review of Microcantilevers for Sensing Applications. AZojono J. Nanotechnol. Online 2007, 3, 1–15. [Google Scholar] [CrossRef]
- Basu, A.K.; Basu, A.; Bhattacharya, S. Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress. Enzym. Microb. Technol. 2020, 139, 109558. [Google Scholar] [CrossRef]
- Waggoner, P.S.; Craighead, H.G. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab A Chip 2007, 7, 1238. [Google Scholar] [CrossRef] [PubMed]
- Battiston, F.M.; Ramseyer, J.-P.; Lang, H.P.; Baller, M.K.; Gerber, C.; Gimzewski, J.K.; Meyer, E.; Güntherodt, H.J. A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens. Actuators B Chem. 2001, 77, 122–131. [Google Scholar] [CrossRef]
- Lang, H.P.; Hegner, M.; Gerber, C. Nanomechanical Cantilever Array Sensors. In Springer Handbook of Nanotechnology; Bhushan, B., Ed.; Springer Handbooks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 457–485. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Li, C.; Wu, S.; Zhang, Q. Microcantilever array instrument based on optical fiber and performance analysis. Rev. Sci. Instrum. 2017, 88, 075007. [Google Scholar] [CrossRef]
- Mertens, J.; Alvarez, M.; Tamayo, J. Real-time profile of microcantilevers for sensing applications. Appl. Phys. Lett. 2005, 87, 234102. [Google Scholar] [CrossRef]
- Martínez, N.F.; Kosaka, P.M.; Tamayo, J.; Ramírez, J.; Ahumada, O.; Mertens, J.; Hien, T.D.; Rijn, C.V.; Calleja, M. High throughput optical readout of dense arrays of nanomechanical systems for sensing applications. Rev. Sci. Instrum. 2010, 81, 125109. [Google Scholar] [CrossRef]
- Alodhayb, A.; Rahman, S.M.S.; Rahman, S.; Georghiou, P.E.; Beaulieu, L.Y. A 16-microcantilever array sensing system for the rapid and simultaneous detection of analyte. Sens. Actuators B Chem. 2016, 237, 459–469. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, H.; Wu, S.; Zhang, Q.; Wu, X. Performance analysis of microcantilever array sensing. Sci. China Technol. Sci. 2017, 60, 1674–1680. [Google Scholar] [CrossRef]
- Rao, D.; Yan, T.; Qiao, Z.; Wang, Y.; Peng, Y.; Tu, H.; Wu, S.; Zhang, Q. Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever. Nano Res. 2023, 16, 3231–3239. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Su, Y.; Zhang, Q. Refraction-Based Laser Scanning Microcantilever Array System. Photonics 2024, 11, 592. https://doi.org/10.3390/photonics11070592
Xue W, Su Y, Zhang Q. Refraction-Based Laser Scanning Microcantilever Array System. Photonics. 2024; 11(7):592. https://doi.org/10.3390/photonics11070592
Chicago/Turabian StyleXue, Weiwei, Yong Su, and Qingchuan Zhang. 2024. "Refraction-Based Laser Scanning Microcantilever Array System" Photonics 11, no. 7: 592. https://doi.org/10.3390/photonics11070592
APA StyleXue, W., Su, Y., & Zhang, Q. (2024). Refraction-Based Laser Scanning Microcantilever Array System. Photonics, 11(7), 592. https://doi.org/10.3390/photonics11070592