Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,134)

Search Parameters:
Keywords = microbiome therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3124 KB  
Article
Diet–Microbiome Relationships in Prostate-Cancer Survivors with Prior Androgen Deprivation-Therapy Exposure and Previous Exercise Intervention Enrollment
by Jacob Raber, Abigail O’Niel, Kristin D. Kasschau, Alexandra Pederson, Naomi Robinson, Carolyn Guidarelli, Christopher Chalmers, Kerri Winters-Stone and Thomas J. Sharpton
Microorganisms 2026, 14(1), 251; https://doi.org/10.3390/microorganisms14010251 - 21 Jan 2026
Abstract
The gut microbiome is a modifiable factor in cancer survivorship. Diet represents the most practical intervention for modulating the gut microbiome. However, diet–microbiome relationships in prostate-cancer survivors remain poorly characterized. We conducted a comprehensive analysis of diet–microbiome associations in 79 prostate-cancer survivors (ages [...] Read more.
The gut microbiome is a modifiable factor in cancer survivorship. Diet represents the most practical intervention for modulating the gut microbiome. However, diet–microbiome relationships in prostate-cancer survivors remain poorly characterized. We conducted a comprehensive analysis of diet–microbiome associations in 79 prostate-cancer survivors (ages 62–81) enrolled in a randomized exercise intervention trial, 59.5% of whom still have active metastatic disease. Dietary intake was assessed using the Diet History Questionnaire (201 variables) and analyzed using three validated dietary pattern scores: Mediterranean Diet Adherence Score (MEDAS), Healthy Eating Index-2015 (HEI-2015), and the Mediterranean-Dash Intervention for Neurodegenerative Delay (MIND) diet score. Gut microbiome composition was characterized via 16S rRNA sequencing. Dimensionality reduction strategies, including theory-driven diet scores and data-driven machine learning (Random Forest, and Least Absolute Shrinkage and Selection Operator (LASSO)), were used. Statistical analyses included beta regression for alpha diversity, Permutational Multivariate Analysis of Variance (PERMANOVA) for beta diversity (both Bray–Curtis and Sørensen metrics), and Microbiome Multivariable Associations with Linear Models (MaAsLin2) with negative binomial regression for taxa-level associations. All models tested interactions with exercise intervention, APOLIPOPROTEIN E (APOE) genotype, and testosterone levels. There was an interaction between MEDAS and exercise type on gut alpha diversity (Shannon: p = 0.0022), with stronger diet–diversity associations in strength training and Tai Chi groups than flexibility controls. All three diet-quality scores predicted beta diversity (HEI p = 0.002; MIND p = 0.025; MEDAS p = 0.034) but not Bray–Curtis (abundance-weighted) distance, suggesting diet shapes community membership rather than relative abundances. Taxa-level analysis revealed 129 genera with diet associations or diet × host factor interactions. Among 297 dietary variables tested for cognitive outcomes, only caffeine significantly predicted Montreal Cognitive Assessment (MoCA) scores after False Discovery Rate (FDR) correction (p = 0.0009, q = 0.014) through direct pathways beneficial to cognitive performance without notable gut microbiome modulation. In cancer survivors, dietary recommendations should be tailored to exercise habits, genetic background, and hormonal status. Full article
(This article belongs to the Special Issue The Interactions Between Nutrients and Microbiota)
Show Figures

Figure 1

12 pages, 822 KB  
Article
The Impact of Concurrent Proton Pump Inhibitors on Nivolumab Response in Metastatic Non-Small Cell Lung Cancer: A Multicenter Real-Life Study
by Engin Hendem, Mehmet Zahid Koçak, Ayşegül Merç Çetinkaya, Gülhan Dinç, Melek Çağlayan, Muzaffer Uğraklı, Dilek Çağlayan, Murat Araz, Melek Karakurt Eryılmaz, Abdullah Sakin, Orhan Önder Eren, Ali Murat Tatlı, Çağlayan Geredeli and Mehmet Artaç
Medicina 2026, 62(1), 214; https://doi.org/10.3390/medicina62010214 - 20 Jan 2026
Abstract
Background and Objectives: Clinically meaningful drug–drug interactions may be overlooked in oncology. Proton pump inhibitors (PPIs) may modulate outcomes with immune checkpoint inhibitors (ICIs) by altering the gut microbiome, altering the immune milieu, and affecting transporter interactions. We evaluated whether concomitant PPI [...] Read more.
Background and Objectives: Clinically meaningful drug–drug interactions may be overlooked in oncology. Proton pump inhibitors (PPIs) may modulate outcomes with immune checkpoint inhibitors (ICIs) by altering the gut microbiome, altering the immune milieu, and affecting transporter interactions. We evaluated whether concomitant PPI use affects survival among patients with metastatic non-small cell lung cancer (NSCLC) treated with nivolumab. Materials and Methods: We retrospectively included patients with metastatic NSCLC who received second-line nivolumab across five oncology centers (January 2020–June 2023). Patients were grouped as concomitant PPI users vs. non-users. Overall survival (OS) and progression-free survival (PFS) were estimated by the Kaplan–Meier method and compared with the log-rank test; multivariable Cox models assessed independent associations. Results: A total of 194 patients were screened, of whom 30 were excluded according to predefined criteria. The final analysis included 164 patients—85 PPI users and 79 non-users. Median OS was 26.1 months (95% CI 15.5–36.7) in PPI users and 29.3 months (22.2–36.4) in non-users; this difference was not statistically significant (p = 0.54). Median PFS was 6.2 months (3.7–8.6) in PPI users vs. 10.2 months (7.1–13.2) in non-users (p = 0.04). In multivariable analysis, absence of concomitant PPI use (No vs. Yes) was independently associated with longer PFS (HR = 0.52, 95% CI 0.24–0.89, p = 0.03), whereas PPI use was not associated with OS (HR = 0.96, 95% CI 0.67–1.61, p = 0.83). Conclusions: Concomitant PPI use during nivolumab therapy was associated with significantly shorter PFS and a numerical reduction in OS in real-world metastatic NSCLC. Where clinically feasible, the need for PPIs should be re-evaluated before and during ICI therapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

27 pages, 741 KB  
Review
Advances in the Management of Pediatric Inflammatory Bowel Disease: From Biologics to Small Molecules
by Benedetta Mucci, Elisabetta Palazzolo, Flaminia Ruberti, Lorenzo Ientile, Marco Natale and Susanna Esposito
Pharmaceuticals 2026, 19(1), 176; https://doi.org/10.3390/ph19010176 - 20 Jan 2026
Abstract
Background: The management of pediatric inflammatory bowel disease (PIBD) has evolved significantly over the past two decades, transitioning from corticosteroids and immunomodulators to biologic and small-molecule therapies. These advances have aimed not only to control inflammation but also to promote mucosal healing, improve [...] Read more.
Background: The management of pediatric inflammatory bowel disease (PIBD) has evolved significantly over the past two decades, transitioning from corticosteroids and immunomodulators to biologic and small-molecule therapies. These advances have aimed not only to control inflammation but also to promote mucosal healing, improve growth, and enhance long-term quality of life. Objectives: This narrative review summarizes current evidence on the efficacy, safety, and clinical applications of biologic and novel small-molecule therapies in PIBD, highlighting emerging trends in personalized and precision-based management. Methods: A literature search was performed across PubMed, Embase, and the Cochrane Library, focusing on studies published within the last five years. Additional data were retrieved from key guidelines and position papers issued by ECCO–ESPGHAN, SIGENP, the FDA, and the EMA. Results: Anti–tumor necrosis factor (TNF) agents such as infliximab and adalimumab remain first-line biologics with proven efficacy in remission induction and maintenance. Newer biologics—vedolizumab, ustekinumab, risankizumab, and mirikizumab—offer alternatives for anti-TNF-refractory cases, showing encouraging short-term results and favorable safety profiles. Although many are approved only for adults with limited pediatric evidence, emerging small molecules—including Janus kinase (JAK) inhibitors (tofacitinib, upadacitinib) and sphingosine-1-phosphate (S1P) modulators (etrasimod)—provide oral, rapidly acting, and non-immunogenic treatment options for refractory disease. Furthermore, the gut microbiome is increasingly recognized as an emerging therapeutic target in PIBD, with growing evidence that host–microbiome interactions can influence both the efficacy and safety of biologics and small-molecule therapies. Conclusions: While biologics and small molecules have transformed PIBD management, challenges remain, including high treatment costs, limited pediatric trial data, and variable access worldwide. Future directions include multicenter pediatric studies, integration of pharmacogenomics, and biomarker-guided precision medicine to optimize early, individualized treatment and improve long-term outcomes. Full article
(This article belongs to the Special Issue Advances in Drug Treatment for Pediatric Gastroenterology)
Show Figures

Figure 1

11 pages, 716 KB  
Perspective
Microbial Metabolism of Levodopa as an Adjunct Therapeutic Target in Parkinson’s Disease
by Jimmy B. Feix, Gang Cheng, Micael Hardy and Balaraman Kalyanaraman
Antioxidants 2026, 15(1), 120; https://doi.org/10.3390/antiox15010120 - 17 Jan 2026
Viewed by 220
Abstract
Parkinson’s disease is the second leading neurodegenerative disease of aging. For over five decades, oral levodopa has been used to manage the progressive motor deficits that are the hallmark of the disease. However, individual dose requirements are highly variable, and patients typically require [...] Read more.
Parkinson’s disease is the second leading neurodegenerative disease of aging. For over five decades, oral levodopa has been used to manage the progressive motor deficits that are the hallmark of the disease. However, individual dose requirements are highly variable, and patients typically require increased levodopa dosage as the disease progresses, which can cause undesirable side effects. It has become increasingly apparent that the gut microbiome can have a major impact on the metabolism and efficacy of therapeutic drugs. In this Perspective, we examine recent studies highlighting the impact of metabolism by Enterococcus faecalis, a common commensal gut bacterium, on levodopa bioavailability. E. faecalis expresses a highly conserved tyrosine decarboxylase that promiscuously converts levodopa to dopamine in the gut, resulting in decreased neuronal uptake of levodopa and reduced dopamine formation in the brain. Mitochondria-targeted antioxidants conjugated to a triphenylphosphonium moiety have shown promise in transiently suppressing the growth of E. faecalis and decreasing microbial levodopa metabolism, providing an approach to modulating the microbiome that is less perturbing than conventional antibiotics. Thus, mitigating metabolism by the gut microbiota is an attractive therapeutic target to preserve and potentiate the efficacy of oral levodopa therapy in Parkinson’s disease. Full article
(This article belongs to the Special Issue Oxidative Stress and Its Mitigation in Neurodegenerative Disorders)
Show Figures

Figure 1

18 pages, 924 KB  
Review
Beyond Oral Health: Personalized Strategies for Managing Oral Infections in Neutropenic Patients
by Anca Elena Duduveche, Luminita Ocroteala and Adina Andreea Mirea
J. Pers. Med. 2026, 16(1), 53; https://doi.org/10.3390/jpm16010053 - 16 Jan 2026
Viewed by 110
Abstract
Oral infections in neutropenic patients are an underestimated but likely fatal cause of infectious complications, with clinical manifestations often diminished or absent due to immune deficiency. The evaluation and management of these infections requires a personalized multidisciplinary strategy, including prevention through pre-therapy dental [...] Read more.
Oral infections in neutropenic patients are an underestimated but likely fatal cause of infectious complications, with clinical manifestations often diminished or absent due to immune deficiency. The evaluation and management of these infections requires a personalized multidisciplinary strategy, including prevention through pre-therapy dental assessment, individualized oral hygiene protocols, and rapid treatment of dental lesions. Antimicrobial strategies should be adapted not only to the local resistance profile and individual risk, with a priority on antibiotic stewardship and rapid de-escalation when possible, but also to individual patterns of colonization and comorbidities. Dental procedures can be performed without risk in neutropenic patients with a low complication rate, but further studies are key to stratifying risk. Future research directions include the application of artificial intelligence for infectious risk stratification, the use of salivary or microbiome biomarkers for early detection, and the development of innovative technologies for targeted antimicrobial delivery. This narrative review aims to provide an overview of the common clinical manifestations in neutropenic patients and also the potential progression of dental infections into sepsis in this category of patients. Full article
(This article belongs to the Special Issue Advances in Oral Health: Innovative and Personalized Approaches)
Show Figures

Graphical abstract

41 pages, 1326 KB  
Review
Synergistic Effects of Plant Polysaccharides and Probiotics: A Novel Dietary Approach for Parkinson’s Disease Intervention
by Ye Jin, Lu Wang, Ruiting Lin, Jing He, Da Liu, Yang Liu and Yongzhi Deng
Pharmaceuticals 2026, 19(1), 157; https://doi.org/10.3390/ph19010157 - 15 Jan 2026
Viewed by 129
Abstract
Parkinson’s disease (PD), the second most common neurodegenerative disorder globally, relies primarily on dopamine replacement therapy for conventional treatment. This approach fails to reverse core pathological processes and is associated with long-term side effects. Recent research on the microbiota-gut-brain axis (MGBA) has revealed [...] Read more.
Parkinson’s disease (PD), the second most common neurodegenerative disorder globally, relies primarily on dopamine replacement therapy for conventional treatment. This approach fails to reverse core pathological processes and is associated with long-term side effects. Recent research on the microbiota-gut-brain axis (MGBA) has revealed that PD pathology may originate in the gut, forming a vicious cycle from the gut to brain through α-synuclein propagation, gut dysbiosis, intestinal barrier disruption, and neuroinflammation. This offers a novel perspective for managing PD through dietary interventions that modulate the gut microbiome. However, single probiotic or prebiotic interventions show limited efficacy. This review systematically introduces the novel concept of “synbiotics combining medicinal plant polysaccharides with probiotics,” aiming to integrate traditional “medicinal food” wisdom with modern microbiome science. The article systematically elucidates the pathological mechanisms of MGBA dysfunction in PD and the intervention mechanisms of probiotics and emphasizes the structural and functional advantages of medicinal plant polysaccharide as superior prebiotics. The core section delves into the multifaceted synergistic mechanisms between these two components: enhancing probiotic colonization and vitality, optimizing microbial metabolic output, synergistically reinforcing the intestinal and blood-brain barriers, and jointly regulating immune and neuroinflammation. This approach targets the MGBA to achieve multi-level intervention for PD. Full article
Show Figures

Figure 1

16 pages, 8167 KB  
Article
Overwinter Syndrome in Grass Carp (Ctenopharyngodon idellus) Links Enteric Viral Proliferation to Mucosal Disruption via Multiomics Investigation
by Yang Feng, Yi Geng, Senyue Liu, Xiaoli Huang, Chengyan Mou, Han Zhao, Jian Zhou, Qiang Li and Yongqiang Deng
Cells 2026, 15(2), 157; https://doi.org/10.3390/cells15020157 - 15 Jan 2026
Viewed by 132
Abstract
Overwinter Syndrome (OWS) affects grass carp (Ctenopharyngodon idellus) aquaculture in China, causing high mortality and economic losses under low temperatures. Failure of antibiotic therapies shows limits of the ‘low–temperature–pathogen’ model and shifts focus to mucosal barrier dysfunction and host–microbiome interactions in [...] Read more.
Overwinter Syndrome (OWS) affects grass carp (Ctenopharyngodon idellus) aquaculture in China, causing high mortality and economic losses under low temperatures. Failure of antibiotic therapies shows limits of the ‘low–temperature–pathogen’ model and shifts focus to mucosal barrier dysfunction and host–microbiome interactions in OWS. We compared healthy and diseased grass carp collected from the same pond using histopathology, transcriptomics, proteomics, and metagenomics. This integrated approach was used to characterize intestinal structure, microbial composition, and host molecular responses at both taxonomic and functional levels. Results revealed a three-layer barrier failure in OWS fish: the physical barrier was compromised, with structural damage and reduced mucosal index; microbial dysbiosis featured increased richness without changes in diversity or evenness, and expansion of the virobiota, notably uncultured Caudovirales phage; and mucosal immune dysregulation indicated loss of local immune balance. Multi-omics integration identified downregulation of lysosome-related and glycosphingolipid biosynthesis pathways at transcript and protein levels, with disrupted nucleotide metabolism. Overall gut microbial richness, rather than individual taxa abundance, correlated most strongly with host gene changes linked to immunity, metabolism, and epithelial integrity. Although biological replicates were limited by natural outbreak sampling, matched high-depth multi-omics datasets provide exploratory insights into OWS-associated intestinal dysfunction. In summary, OWS entails a cold-triggered breakdown of intestinal barrier integrity and immune homeostasis. This breakdown is driven by a global restructuring of the gut microbiome, which is marked by increased richness, viral expansion, and functional shifts, ultimately resulting in altered host–microbe crosstalk. This ecological perspective informs future mechanistic and applied studies for disease prevention. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Graphical abstract

17 pages, 3014 KB  
Article
Species-Level Comparative Metagenomic Analysis of the Bacterial Abundance of the Gut Microbiome in Psoriasis, Hidradenitis Suppurativa, and Pemphigus Foliaceous Patients Using Shotgun Next-Generation Sequencing
by Lana Sá, Eleuza Machado, Verônica Ginani, Renata Timbó, Ricardo Romiti, Patrícia Kurizky and Ciro Gomes
Int. J. Mol. Sci. 2026, 27(2), 838; https://doi.org/10.3390/ijms27020838 - 14 Jan 2026
Viewed by 157
Abstract
Recent studies have revealed a specific relationship between gut bacteria and inflammatory skin profiles. We aimed to perform a species-level comparative metagenomic analysis of the gut microbiome in patients with psoriasis, hidradenitis suppurativa (HS), and pemphigus foliaceus (PF). We included omnivorous nonsmokers and [...] Read more.
Recent studies have revealed a specific relationship between gut bacteria and inflammatory skin profiles. We aimed to perform a species-level comparative metagenomic analysis of the gut microbiome in patients with psoriasis, hidradenitis suppurativa (HS), and pemphigus foliaceus (PF). We included omnivorous nonsmokers and nondrinkers with psoriasis (n = 24), HS (n = 10), and PF (n = 11), as well as healthy controls (n = 10). We collected faecal samples from all patients for classic parasitological analysis. Gut microbiome analysis was conducted using shotgun next-generation sequencing. We used the Deseq2, Limma_voom, LinDA, and MaAMaAsLin 2 bioinformatics tools to evaluate concordance and differential abundance between patients. Thirteen patients (23.64%) were diagnosed with active intestinal parasitosis. The presence of intestinal parasitosis was significantly related to immunosuppression (p = 0.009). The most abundant microorganism species found in the faeces of the patients evaluated was Escherichia coli. Psoriasis patients presented a greater abundance of bacteria from the Veillonellaceae family, whereas PF patients presented a greater abundance of Firmicutes bacteria. Patients with PF showed increased E. coli virulence and antibiotic resistance functional markers. Immunosuppression significantly influenced the presence of intestinal parasitosis as well as increased the virulence of functional markers in patients with PF receiving systemic corticosteroid therapy. Full article
(This article belongs to the Special Issue Skin Microbiome and Skin Health: Molecular Interactions)
Show Figures

Figure 1

19 pages, 963 KB  
Review
Impact of Menopause and Associated Hormonal Changes on Spine Health in Older Females: A Review
by Julia Chagas, Gabrielle Gilmer, Gwendolyn Sowa and Nam Vo
Cells 2026, 15(2), 148; https://doi.org/10.3390/cells15020148 - 14 Jan 2026
Viewed by 365
Abstract
Low back pain (LBP) represents a major societal and economic burden, with annual costs in the United States estimated at $90–134.5 billion. LBP disproportionately impacts postmenopausal women relative to age-matched men, suggesting a role for sex-specific biological factors. Although the mechanisms underlying this [...] Read more.
Low back pain (LBP) represents a major societal and economic burden, with annual costs in the United States estimated at $90–134.5 billion. LBP disproportionately impacts postmenopausal women relative to age-matched men, suggesting a role for sex-specific biological factors. Although the mechanisms underlying this disparity are not fully understood, hormonal imbalance during menopause may contribute to LBP pathophysiology. This narrative review aimed to elucidate the impact of menopause on LBP, with emphasis on hormonal effects on spinal tissues and systemic processes. A literature search was conducted, followed by screening of titles, abstracts, and full texts of original clinical studies, preclinical research using human or animal samples, and relevant reviews. Rigour and reproducibility were evaluated using the ARRIVE Guidelines and the Modified Downs & Black Checklist. Evidence indicates that menopause is associated with changes in intervertebral discs, facet joint, ligamentum flavum, skeletal muscle, sympathetic innervation, and systemic systems such as the gut microbiome. However, most findings are correlational rather than causal. Evidence supporting hormone replacement therapy for LBP remains inconclusive, whereas exercise and other treatments, including parathyroid hormones, show more consistent benefits. Future studies should focus on causal mechanisms and adhere to rigour guidelines to improve translational potential. Full article
Show Figures

Figure 1

20 pages, 4412 KB  
Article
Comparison of Stool Microbiome in Children with Cystic Fibrosis Treated with and Without Elexacaftor–Tezacaftor–Ivacaftor—A Pilot Study
by Senthilkumar Sankararaman, Ruitao Liu, Xinyu Sun, Mauricio Retuerto, Terri Schindler, Erica Roesch, Thomas J. Sferra, Mitch Drumm, Mahmoud Ghannoum and Liangliang Zhang
Int. J. Mol. Sci. 2026, 27(2), 814; https://doi.org/10.3390/ijms27020814 - 14 Jan 2026
Viewed by 96
Abstract
Prior studies in people with cystic fibrosis (CF) demonstrated a positive impact of ivacaftor on the stool microbiome. However, studies evaluating the impact of elexacaftor–tezacaftor–ivacaftor (ETI) on gut dysbiosis are limited. In this prospective, observational study, we evaluated the differences in stool microbiome [...] Read more.
Prior studies in people with cystic fibrosis (CF) demonstrated a positive impact of ivacaftor on the stool microbiome. However, studies evaluating the impact of elexacaftor–tezacaftor–ivacaftor (ETI) on gut dysbiosis are limited. In this prospective, observational study, we evaluated the differences in stool microbiome in children (aged 2–17 years) with CF who were treated with ETI for at least two months and compared with children with CF who did not receive ETI. We also included healthy siblings as controls. There were no significant differences in the demographics between the groups. There were no significant differences in alpha diversity between the groups for both bacteriome and mycobiome. Alpha diversity showed a negative trend with the duration of ETI therapy for both bacteriome and mycobiome. Firmicutes and Proteobacteria were the most abundant phyla and core members across all samples, regardless of disease status or treatment. Ascomycota and Basidiomycota were the most abundant and core members across all samples, regardless of disease status or treatment. Alpha diversity showed a negative trend with the duration of ETI therapy for both bacteriome and mycobiome in children with CF treated with ETI. Future studies are needed to confirm or refute our preliminary findings. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 733 KB  
Review
G Protein-Coupled Receptors in Irritable Bowel Syndrome: Mechanisms and Therapeutic Opportunities
by Zhenya Zhu, Ziyu Liu, Yate He, Xiaorui He, Wei Zheng and Mizu Jiang
Int. J. Mol. Sci. 2026, 27(2), 752; https://doi.org/10.3390/ijms27020752 - 12 Jan 2026
Viewed by 268
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain, altered motility, and visceral hypersensitivity. Emerging evidence implicates G protein-coupled receptors (GPCRs) as key integrators of microbial, immune, endocrine, and neural signals in IBS pathophysiology. This review summarizes recent advances [...] Read more.
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain, altered motility, and visceral hypersensitivity. Emerging evidence implicates G protein-coupled receptors (GPCRs) as key integrators of microbial, immune, endocrine, and neural signals in IBS pathophysiology. This review summarizes recent advances in understanding how GPCRs mediate gut immune regulation, microbiota–host crosstalk, metabolic signaling, and pain processing in IBS. Recent studies show that microbial metabolites (e.g., short-chain fatty acids, biogenic amines, and lipid mediators) signal through GPCRs on immune cells, epithelia, and neurons to influence intestinal homeostasis. On immune cells and neurons, GPCRs also mediate signals from external substances (such as fats, sugars, histamine, etc.) to regulate immune and neural functions. And there are challenges and future directions in targeting GPCRs for IBS, including patient heterogeneity and the complexity of host–microbiome interactions. This review provides a mechanistic framework for GPCR-based therapies in IBS. Full article
(This article belongs to the Special Issue Emerging Roles of the Gut-Brain Axis (GBA) in Health and Disease)
Show Figures

Figure 1

21 pages, 413 KB  
Review
Klebsiella pneumoniae Infections in Dogs: A One Health Review of Antimicrobial Resistance, Virulence Factors, Zoonotic Risk, and Emerging Alternatives
by Mălina Lorena Mihu, George Cosmin Nadăş, Cosmina Maria Bouari, Nicodim Iosif Fiț and Sorin Răpuntean
Microorganisms 2026, 14(1), 149; https://doi.org/10.3390/microorganisms14010149 - 9 Jan 2026
Viewed by 339
Abstract
Klebsiella pneumoniae is increasingly reported in canine medicine, with growing attention to multidrug-resistant (MDR) and hypervirulent strains. Although its overall prevalence in dogs appears relatively low, published studies indicate that affected animals may harbor clinically important resistance determinants, including extended-spectrum β-lactamases and, less [...] Read more.
Klebsiella pneumoniae is increasingly reported in canine medicine, with growing attention to multidrug-resistant (MDR) and hypervirulent strains. Although its overall prevalence in dogs appears relatively low, published studies indicate that affected animals may harbor clinically important resistance determinants, including extended-spectrum β-lactamases and, less frequently, carbapenemases. Canine isolates described in the literature also carry virulence-associated traits such as hypermucoviscosity and enhanced iron-acquisition systems, which overlap with features of high-risk human lineages and suggest potential, but largely inferred, interspecies links. These observations highlight the relevance of a One Health perspective and the importance of coordinated surveillance that includes companion animals. This narrative review synthesizes available literature on the epidemiology, clinical presentations, antimicrobial resistance, virulence traits, and molecular characteristics of K. pneumoniae in dogs. We critically evaluate evidence suggesting that dogs may function as reservoirs, sentinels, or amplifiers of MDR strains, particularly in clinical settings or following antimicrobial exposure. In addition, we summarize emerging alternative and adjunctive strategies—such as bacteriophage therapy, antimicrobial peptides, anti-virulence approaches, microbiome-based interventions, as well as strengthened antimicrobial stewardship and infection-control practices—that are under investigation as complements to conventional antibiotics. Overall, published evidence indicates that K. pneumoniae infections in dogs represent an under recognized but potentially important clinical and One Health concern. Continued surveillance, responsible antimicrobial use, and rigorous evaluation of non-antibiotic strategies will be essential to inform future veterinary practice and public health policy. Full article
(This article belongs to the Special Issue Antibiotic Resistance and Alternatives)
22 pages, 1518 KB  
Review
Adipokine Metabolic Drivers, Gut Dysbiosis, and the Prostate Microbiome: Novel Pathway Enrichment Analysis of the Adiposity-Based Chronic Disease—Prostate Cancer Network
by Zachary Dovey, Elena Tomas Bort and Jeffrey I. Mechanick
Cancers 2026, 18(2), 206; https://doi.org/10.3390/cancers18020206 - 8 Jan 2026
Viewed by 243
Abstract
Adiposity-Based Chronic Disease (ABCD) is known to increase the risk of aggressive prostate cancer (PCa), recurrent disease after treatment for localized PCa, and PCa mortality. A key mechanistic link contributing to this enhanced risk is chronic inflammation originating from excess white visceral adipose [...] Read more.
Adiposity-Based Chronic Disease (ABCD) is known to increase the risk of aggressive prostate cancer (PCa), recurrent disease after treatment for localized PCa, and PCa mortality. A key mechanistic link contributing to this enhanced risk is chronic inflammation originating from excess white visceral adipose tissue (WAT; VAT) and periprostatic adipose tissue (ppWAT). Contributing to systemic inflammation is gut dysbiosis, which itself may be caused by ABCD as well as background local inflammation (prostatitis), which is common in aging men and may be exacerbated by the urinary microbiome. Investigating the molecular biology driving inflammation and its association with increased PCa risk, a recent paper applied a network and gene set enrichment to adipokine drivers in the ABCD-PCa network. It found prominent roles for MCP-1, IL-1β, and CXCL-1 in addition to confirming the importance of exposure to lipopolysaccharides and bacterial components, corroborating the role of gut dysbiosis. To further unravel the mechanistic links between ABCD and PCa risk, this critical review will discuss the current literature on prominent inflammatory signaling pathways activated in ABCD; the influence of gut dysbiosis, the urinary microbiome, and chronic prostatitis; and current hypotheses on how these domains may result in the development of aggressive PCa over a man’s life. Moreover, we performed a novel pathway enrichment analysis to further evaluate the associations between ABCD, PCa risk, gut dysbiosis, and the prostate microbiome, the results of which were partitioned into extracellular and intracellular signaling pathways. In the extracellular space, novel mechanistic links between gut dysbiosis and MCP-1, IL-1β, CXCL1, and leptin via bacterial pathogen signaling and the intestinal immune network (for IgA production), crucial for gut immune homeostasis, were found. Within the intracellular space, there were downstream signals activating chemokine and type 2 interferon pathways, focal adhesion PI3K/Akt/mTOR pathways, as well as the JAK/STAT, NF-κB, and PI3K/Akt pathways. Overall, these findings point to an emerging molecular pathway for PCa oncogenesis influenced by ABCD, gut dysbiosis, and inflammation, and further research, possibly with lifestyle program-based clinical trials, may discover novel biomarker panels and molecular targeted therapies for the prevention and treatment of PCa. Full article
Show Figures

Figure 1

31 pages, 3161 KB  
Review
Oral Dysbiosis and Neuroinflammation: Implications for Alzheimer’s, Parkinson’s and Mood Disorders
by Laura Carolina Zavala-Medina, Joan Sebastian Salas-Leiva, Carlos Esteban Villegas-Mercado, Juan Antonio Arreguín-Cano, Uriel Soto-Barreras, Sandra Aidé Santana-Delgado, Ana Delia Larrinua-Pacheco, María Fernanda García-Vega and Mercedes Bermúdez
Microorganisms 2026, 14(1), 143; https://doi.org/10.3390/microorganisms14010143 - 8 Jan 2026
Viewed by 531
Abstract
Background: Growing evidence indicates that oral microbiome dysbiosis contributes to systemic inflammation, immune activation, and neural dysfunction. These processes may influence the onset and progression of major neuropsychiatric and neurodegenerative disorders. This review integrates clinical, epidemiological, and mechanistic findings linking periodontal pathogens and [...] Read more.
Background: Growing evidence indicates that oral microbiome dysbiosis contributes to systemic inflammation, immune activation, and neural dysfunction. These processes may influence the onset and progression of major neuropsychiatric and neurodegenerative disorders. This review integrates clinical, epidemiological, and mechanistic findings linking periodontal pathogens and oral microbial imbalance to Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, and anxiety. Methods: A narrative review was conducted using PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar to identify recent studies examining alterations in the oral microbiota, microbial translocation, systemic inflammatory responses, blood–brain barrier disruption, cytokine signaling, and neural pathways implicated in brain disorders. Results: Evidence from human and experimental models demonstrates that oral pathogens, particularly Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, can disseminate systemically, alter immune tone, and affect neural tissues. Their virulence factors promote microglial activation, cytokine release (IL-1β, IL-6, TNF-α), amyloid-β aggregation, and α-synuclein misfolding. Epidemiological studies show associations between oral dysbiosis and cognitive impairment, motor symptoms in PD, and alterations in mood-related taxa linked to stress hormone profiles. Immunometabolic pathways, HPA-axis activation, and the oral–gut–brain axis further integrate these findings into a shared neuroinflammatory framework. Conclusions: Oral dysbiosis emerges as a modifiable contributor to neuroinflammation and brain health. Periodontal therapy, probiotics, prebiotics, synbiotics, and targeted inhibitors of bacterial virulence factors represent promising strategies to reduce systemic and neural inflammation. Longitudinal human studies and standardized microbiome methodologies are still needed to clarify causality and evaluate whether restoring oral microbial balance can modify the course of neuropsychiatric and neurodegenerative disorders. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

17 pages, 559 KB  
Review
Gut and Joint Microbiome and Dysbiosis: A New Perspective on the Pathogenesis and Treatment of Osteoarthritis
by Paulina Plewa, Patryk Graczyk, Karolina Figiel, Aleksandra Dach and Andrzej Pawlik
Pathogens 2026, 15(1), 62; https://doi.org/10.3390/pathogens15010062 - 7 Jan 2026
Viewed by 325
Abstract
Osteoarthritis (OA) is one of the most common and burdensome musculoskeletal disorders and a major cause of pain, disability, and reduced quality of life worldwide. In recent years, increasing attention has been paid to extra-articular factors influencing its development and progression, opening new [...] Read more.
Osteoarthritis (OA) is one of the most common and burdensome musculoskeletal disorders and a major cause of pain, disability, and reduced quality of life worldwide. In recent years, increasing attention has been paid to extra-articular factors influencing its development and progression, opening new avenues of research into pathophysiological mechanisms and potential therapies. One of the most promising areas concerns the role of the gut–joint axis and related alterations in the gut microbiome. Numerous studies indicate that an imbalance of gut bacteria, increased intestinal permeability, and low-grade inflammation may contribute to the progression of degenerative joint processes. The mechanisms through which the microbiota influences the immune system and host metabolism are becoming increasingly well understood, including pathways involving short-chain fatty acids, tryptophan metabolites, and bile acids. Despite growing evidence linking dysbiosis to the pathogenesis of OA, effective therapeutic strategies based on microbiome modulation remain under active investigation. Among the most frequently studied approaches are probiotics, dietary interventions, and more advanced strategies such as gut microbiota transplantation and targeted modulation of microbial metabolites. However, before these methods can become part of routine treatment, extensive clinical trials and a clearer understanding of causal relationships between the microbiome and joint degeneration are required. This article summarises the current state of knowledge regarding the role of the gut microbiome in osteoarthritis, outlines key research findings, and highlights current and potential therapeutic directions. Full article
(This article belongs to the Special Issue Infections and Bone Damage)
Show Figures

Figure 1

Back to TopTop