Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (503)

Search Parameters:
Keywords = micro-CT scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 987 KB  
Article
Meta-Learning Enhanced 3D CNN-LSTM Framework for Predicting Durability of Mechanical Metal–Concrete Interfaces in Building Composite Materials with Limited Historical Data
by Fangyuan Cui, Lie Liang and Xiaolong Chen
Buildings 2025, 15(21), 3848; https://doi.org/10.3390/buildings15213848 (registering DOI) - 24 Oct 2025
Abstract
We propose a novel meta-learning enhanced 3D CNN-LSTM framework for durability prediction. The framework integrates 3D microstructural data from micro-CT scanning with environmental time-series data through a dual-branch architecture: a 3D CNN branch extracts spatial degradation patterns from volumetric data, while an LSTM [...] Read more.
We propose a novel meta-learning enhanced 3D CNN-LSTM framework for durability prediction. The framework integrates 3D microstructural data from micro-CT scanning with environmental time-series data through a dual-branch architecture: a 3D CNN branch extracts spatial degradation patterns from volumetric data, while an LSTM network processes temporal environmental factors. To address data scarcity, we incorporate a prototypical network-based meta-learning module that learns class prototypes from limited support samples and generalizes predictions to new corrosion scenarios through distance-based probability estimation. Additionally, we develop a dynamic feature fusion mechanism that adaptively combines spatial, environmental, and mechanical features using trainable attention coefficients, enabling context-aware representation learning. Finally, an interface damage visualization component identifies critical degradation zones and propagation trajectories, providing interpretable engineering insights. Experimental validation on laboratory specimens demonstrates superior accuracy (74.6% in 1-shot scenarios) compared to conventional methods, particularly in aggressive corrosion environments where data scarcity typically hinders reliable prediction. The visualization system generates interpretable 3D damage maps with an average Intersection-over-Union of 0.78 compared to ground truth segmentations. This work establishes a unified computational framework bridging microstructure analysis with macroscopic durability assessment, offering practical value for infrastructure maintenance decision-making under uncertainty. The modular design facilitates extension to diverse interface types and environmental conditions. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
12 pages, 27323 KB  
Article
High-Fidelity MicroCT Reconstructions of Cardiac Devices Enable Patient-Specific Simulation for Structural Heart Interventions
by Zhongkai Zhu, Yaojia Zhou, Yong Chen, Yong Peng, Mao Chen and Yuan Feng
J. Clin. Med. 2025, 14(20), 7341; https://doi.org/10.3390/jcm14207341 - 17 Oct 2025
Viewed by 158
Abstract
Background/Objective: Precise preprocedural planning is essential for the safety and efficacy of structural heart interventions. Conventional imaging modalities, while informative, do not allow for direct and accurate visualization, limiting procedural predictability. We aimed to develop and validate a high-resolution micro-computed tomography (microCT)-based [...] Read more.
Background/Objective: Precise preprocedural planning is essential for the safety and efficacy of structural heart interventions. Conventional imaging modalities, while informative, do not allow for direct and accurate visualization, limiting procedural predictability. We aimed to develop and validate a high-resolution micro-computed tomography (microCT)-based reverse modeling workflow that integrates digital reconstructions of metallic cardiac devices into patient imaging datasets, enabling accurate, patient-specific virtual simulation for procedural planning. Methods: Clinical-grade transcatheter heart valves, septal defect occluders, patent ductus arteriosus occluders, left atrial appendage closure devices, and coronary stents were scanned using microCT (36.9 μm resolution). Agreement was assessed by intra-class correlation coefficients (ICC) and Bland–Altman analyses. Device geometries were reconstructed into 3D stereolithography files and virtually implanted within multislice CT datasets using dedicated software. Results: Devices were successfully reverse-modeled with high geometric fidelity, showing negligible dimensional deviations from manufacturer specifications (mean ΔDistance range: −0.20 to +0.20 mm). Simulated measurements demonstrated excellent concordance with postprocedural imaging (ICC 0.90–0.96). The workflow accurately predicted clinically relevant parameters such as valve-to-coronary distances and implantation depths. Notably, preprocedural simulation identified a case at high risk of coronary obstruction, confirmed clinically and managed successfully. Conclusions: The microCT-based reverse modeling workflow offers a rapid, reproducible, and clinically relevant method for patient-specific simulation in structural heart interventions. By preserving anatomical fidelity and providing detailed device–tissue spatial visualization, this approach enhances preprocedural planning accuracy, risk stratification, and procedural safety. Its resource-efficient digital nature facilitates broad adoption and iterative simulation. Full article
(This article belongs to the Special Issue Clinical Insights and Advances in Structural Heart Disease)
Show Figures

Figure 1

15 pages, 2271 KB  
Technical Note
Resource-Constrained 3D Volume Estimation of Lunar Regolith Particles from 2D Imagery for In Situ Dust Characterization in a Lunar Payload
by Filip Wylęgała and Tadeusz Uhl
Remote Sens. 2025, 17(20), 3450; https://doi.org/10.3390/rs17203450 - 16 Oct 2025
Viewed by 233
Abstract
Future lunar exploration will depend on a clearer understanding of regolith behavior, as underscored by adhesion issues observed during Apollo. The Lunaris Payload, a compact instrument developed in Poland, targets in situ assessment of lunar regolith adhesion to engineering materials using a resource-constrained [...] Read more.
Future lunar exploration will depend on a clearer understanding of regolith behavior, as underscored by adhesion issues observed during Apollo. The Lunaris Payload, a compact instrument developed in Poland, targets in situ assessment of lunar regolith adhesion to engineering materials using a resource-constrained optical approach. Here we introduce and validate six lightweight 2D-to-3D geometric models for estimating particle volume from planar images, benchmarked against the high-resolution micro-computed tomography (micro-CT) ground truth. The tested methods include spherical, cylindrical, fixed-aspect-ratio ellipsoid, adaptive ellipsoid, and Feret-based models and an empirically scaled voxel proxy. Using micro-CT scans of adhered simulant particles, we evaluate accuracy across >8000 particles segmented from 2D projections. Ellipsoid-based models consistently outperform the alternatives, with absolute percentage errors of 30–35%, while fixed-aspect-ratio variants offer strong accuracy–complexity trade-offs suitable for mass- and power-limited payloads. To our knowledge, this is the first comprehensive benchmarking of six 2D-to-3D volume models against micro-CT for bulk-adhered lunar regolith analogs. The results provide a validated, efficient framework for in situ dust characterization and reliable particle mass estimation, advancing Lunaris’ capability to quantify regolith adhesion and supporting broader goals in dust mitigation, ISRU, or habitat construction. Full article
Show Figures

Graphical abstract

28 pages, 7693 KB  
Article
Precision Lost with Complexity: On an Extraordinary New Species of Pholcidae (Araneae, Smeringopinae) from Western DR Congo
by Arnaud Henrard, Rudy Jocqué, Nathalie Smitz and Virginie Grignet
Taxonomy 2025, 5(4), 57; https://doi.org/10.3390/taxonomy5040057 - 15 Oct 2025
Viewed by 596
Abstract
A remarkable new pholcid spider species is described from the Democratic Republic of the Congo: Smeringopina polychila sp. nov. The male is distinguished by a unique and previously undocumented structure, here termed the “parachila”, which has not been observed in any other spider [...] Read more.
A remarkable new pholcid spider species is described from the Democratic Republic of the Congo: Smeringopina polychila sp. nov. The male is distinguished by a unique and previously undocumented structure, here termed the “parachila”, which has not been observed in any other spider to date. The description is complemented by high-quality illustrations, including detailed drawings, photographs, micro-CT scans, and 3D reconstructions of the genitalia and the newly discovered male structure. Remarkable intraspecific variations, both somatic and genitalic, in males are also highlighted and discussed. A phylogenetic analysis based on the cytochrome c oxidase subunit I, 16S ribosomal RNA and histone H3 gene fragments is presented to tentatively place the new species into an existing phylogenetic framework. The results of the molecular analyses confirm that the new species belongs to the subfamily Smeringopinae and is nested within the genus Smeringopina Kraus, 1957. Full article
Show Figures

Graphical abstract

19 pages, 19394 KB  
Article
Physio-Mechanical Properties and Meso-Scale Damage Mechanism of Granite Under Thermal Shock
by Kai Gao, Jiamin Wang, Chi Liu, Pengyu Mu and Yun Wu
Energies 2025, 18(20), 5366; https://doi.org/10.3390/en18205366 - 11 Oct 2025
Viewed by 223
Abstract
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different [...] Read more.
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different temperatures (20 °C, 150 °C, 300 °C, 450 °C, 600 °C, and 750 °C) were subjected to rapid cooling treatment with liquid nitrogen. After the thermal treatment, a series of tests were conducted on the granite, including wave velocity test, uniaxial compression experiment, computed tomography scanning, and scanning electron microscopy test, to explore the influence of thermal shock on the physical and mechanical parameters as well as the meso-structural damage of granite. The results show that with the increase in heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of granite gradually decrease, while the peak strain gradually increases. Additionally, the failure mode of granite gradually transitions from brittle failure to ductile failure. Through CT scanning experiments, the spatial distribution characteristics of the pore–fracture structure of granite under the influence of different temperature gradients and temperature change rates were obtained, which can directly reflect the damage degree of the rock structure. When the heat treatment temperature is 450 °C or lower, the number of thermally induced cracks in the scanned sections of granite is relatively small, and the connectivity of the cracks is poor. When the temperature exceeds 450 °C, the micro-cracks inside the granite develop and expand rapidly, and there is a gradual tendency to form a fracture network, resulting in a more significant effect of fracture initiation and permeability enhancement of the rock. The research results are of great significance for the development and utilization of hot dry rock and the evaluation of thermal reservoir connectivity and can provide useful references for rock engineering involving high-temperature thermal fracturing. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

15 pages, 2257 KB  
Article
The Development and Characterization of Layered Pellets Containing a Combination of Amorphized Amlodipine Besylate and Hydrochlorothiazide Using a High-Shear Granulator
by Azza A. K. Mahmoud, Krisztina Ludasi, Dorina Gabriella Dobó, Dániel Sebők, Ákos Kukovecz, Viktória Hornok, Kadosa Sajdik, Tamás Szabó, Tamás Sovány, Géza Regdon and Katalin Kristó
Pharmaceuticals 2025, 18(10), 1496; https://doi.org/10.3390/ph18101496 - 5 Oct 2025
Viewed by 377
Abstract
Background/Objective: The high-shear granulator is considered an effective piece of equipment for layering pelletization because it enhances drug amorphization and improves drug dissolution. This study aimed to apply a high-shear granulator to prepare layered pellets containing a combination of hydrochlorothiazide and amlodipine besylate [...] Read more.
Background/Objective: The high-shear granulator is considered an effective piece of equipment for layering pelletization because it enhances drug amorphization and improves drug dissolution. This study aimed to apply a high-shear granulator to prepare layered pellets containing a combination of hydrochlorothiazide and amlodipine besylate with improved physicochemical properties. Methods: Different molar ratios (2:1, 1:1, and 1:2) of the hydrochlorothiazide and amlodipine besylate mixture were deposited on the surface of the inert spheres of the microcrystalline cellulose (MCC) core by the mechanical effect of the high impeller speed. The resulting layered pellets were characterized using X-ray powder diffractometry (XRPD) and differential scanning calorimetry (DSC) to estimate the degree of the drug amorphization, and consequently a dissolution test was performed to determine the degree of the enhancement of the percentage of release. Additionally, micro-computed tomography (micro-CT) and a texture analyzer were used to determine the morphological characteristics and hardness of the resulting pellets, and then a stability study was performed. Results: On the basis of the micro-CT images, the MCC core was successfully loaded with a uniform layer of the drug combination at the pellet surface, which exhibited higher diameters than pure cellets. Furthermore, the drug combination in layered pellets was partially amorphized with a lower crystallinity percentage, a lower intensity, a broadening of the hydrochlorothiazide melting peak, and a higher cumulative release of both drugs with good stability, except pellets with a molar ratio of 1:2 that were recrystallized with a higher crystallinity percentage of 79.9%. Conclusions: Modifying the physical form and dissolution behavior of the hydrochlorothiazide and amlodipine besylate combination was achieved by single-step layering pelletization. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

22 pages, 8922 KB  
Article
Stress Assessment of Abutment-Free and Three Implant–Abutment Connections Utilizing Various Abutment Materials: A 3D Finite Element Study of Static and Cyclic Static Loading Conditions
by Maryam H. Mugri, Nandalur Kulashekar Reddy, Mohammed E. Sayed, Khurshid Mattoo, Osama Mohammed Qomari, Mousa Mahmoud Alnaji, Waleed Abdu Mshari, Firas K. Alqarawi, Saad Saleh AlResayes and Raghdah M. Alshaibani
J. Funct. Biomater. 2025, 16(10), 372; https://doi.org/10.3390/jfb16100372 - 2 Oct 2025
Viewed by 992
Abstract
Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical [...] Read more.
Background: The implant–abutment interface has been thoroughly examined due to its impact on the success of implant healing and longevity. Removing the abutment is advantageous, but it changes the biomechanics of the implant fixture and restoration. This in vitro three-dimensional finite element analytical (FEA) study aims to evaluate the distribution of von Mises stress (VMS) in abutment-free and three additional implant abutment connections composed of various titanium alloys. Materials and methods: A three-dimensional implant-supported single-crown prosthesis model was digitally generated on the mandibular section using a combination of microcomputed tomography imaging (microCT), a computer-assisted designing (CAD) program (SolidWorks), Analysis of Systems (ANSYS), and a 3D digital scan (Visual Computing Lab). Four digital models [A (BioHorizons), B (Straumann AG), C abutment-free (Matrix), and D (TRI)] representing three different functional biomaterials [wrought Ti-6Al-4Va ELI, Roxolid (85% Ti, 15% Zr), and Ti-6Al-4V ELI] were subjected to simulated static/cyclic static loading in axial/oblique directions after being restored with highly translucent monolithic zirconia restoration. The stresses generated on the implant fixture, abutment, crown, screw, cortical, and cancellous bones were measured. Results: The highest VMSs were generated by the abutment-free (Model C, Matrix) implant system on the implant fixture [static (32.36 Mpa), cyclic static (83.34 Mpa)], screw [static (16.85 Mpa), cyclic static (30.33 Mpa), oblique (57.46 Mpa)], and cortical bone [static (26.55), cyclic static (108.99 Mpa), oblique (47.8 Mpa)]. The lowest VMSs in the implant fixture, abutment, screw, and crown were associated with the binary alloy Roxolid [83–87% Ti and 13–17% Zr]. Conclusions: Abutment-free implant systems generate twice the stress on cortical bone than other abutment implant systems while producing the highest stresses on the fixture and screw, therefore demanding further clinical investigations. Roxolid, a binary alloy of titanium and zirconia, showed the least overall stresses in different loadings and directions. Full article
(This article belongs to the Special Issue Biomaterials and Biomechanics Modelling in Dental Implantology)
Show Figures

Figure 1

16 pages, 3989 KB  
Case Report
Bone Mass, Microarchitecture, and Morphometric Insights on a Right Unilateral Bifid Mandibular Condyle: A Micro-CT Analysis Report and Literature Review
by Carlos Torres-Villar, Juan Pacheco Muñoz, Eva Maranillo and Nicolás E. Ottone
Diagnostics 2025, 15(19), 2440; https://doi.org/10.3390/diagnostics15192440 - 25 Sep 2025
Viewed by 503
Abstract
Background/Objectives: The bifid mandibular condyle (BMC) is a rare anatomical variation characterized by a division of the mandibular condyle into two distinct heads. Although frequently identified through radiographic studies or in dry skulls, its etiology remains unclear, and few studies have examined its [...] Read more.
Background/Objectives: The bifid mandibular condyle (BMC) is a rare anatomical variation characterized by a division of the mandibular condyle into two distinct heads. Although frequently identified through radiographic studies or in dry skulls, its etiology remains unclear, and few studies have examined its internal bone structure. This study aimed to perform a detailed morphologic and microarchitectural analysis of a right unilateral bifid mandibular condyle using micro-CT and to contrast the findings with the relevant morphological and clinical literature. Case Presentation: A human mandible from an anatomical collection was analyzed. The mandible was scanned using a Bruker 1273 micro-CT system, and a 3D reconstruction was performed. Morphometric analysis was carried out on both the bifid right and normal left condyles, evaluating cortical and trabecular components separately. Parameters included bone volume, absolute bone volume, bone surface, trabecular thickness, separation, and number. The right condyle was divided into medial and lateral heads with independent necks, displaying asymmetry in size and shape. Micro-CT revealed reduced cortical volume and greater trabecular separation in the BMC, suggesting lower bone density compared to the left condyle. Conclusions: This case reveals significant differences in bone architecture between the BMC and the contralateral condyle, indicating a potentially reduced biomechanical capacity on the affected side. These findings emphasize the importance of incorporating microstructural evaluation in anatomical and clinical assessments of BMCs and provide novel insights that may inform diagnosis, treatment planning, and understanding of temporomandibular joint disorders. Full article
(This article belongs to the Special Issue Clinical Anatomy and Diagnosis in 2025)
Show Figures

Figure 1

44 pages, 4769 KB  
Review
Porosity and Permeability in Construction Materials as Key Parameters for Their Durability and Performance: A Review
by Almudena Ortiz-Marqués, Pablo Caldevilla, Eryk Goldmann, Małgorzata Safuta, María Fernández-Raga and Marcin Górski
Buildings 2025, 15(18), 3422; https://doi.org/10.3390/buildings15183422 - 22 Sep 2025
Cited by 1 | Viewed by 1182
Abstract
This review provides a comprehensive examination of porosity and permeability as key parameters governing the durability and performance of construction materials, including natural stone, mortar, concrete, and other cementitious composites. It highlights the pivotal role of pore structure in transport phenomena and degradation [...] Read more.
This review provides a comprehensive examination of porosity and permeability as key parameters governing the durability and performance of construction materials, including natural stone, mortar, concrete, and other cementitious composites. It highlights the pivotal role of pore structure in transport phenomena and degradation mechanisms, examining how the variations in pore architecture, encompassing total vs. effective porosity, pore size distribution, and pore connectivity, dictate a material’s response to environmental stressors. A comparative evaluation of advanced pore characterization techniques is presented, including helium pycnometry, mercury intrusion porosimetry (MIP), nitrogen adsorption (BET/BJH), nuclear magnetic resonance (NMR) relaxometry, and imaging methods such as optical microscopy, scanning electron microscopy (SEM), and X-ray micro-computed tomography (micro-CT). Furthermore, it assesses how these porosity and permeability characteristics influence durability-related processes like freeze–thaw cycling, chloride ingress, sulphate attack, and carbonation. Case studies are discussed in which various additives have been employed to refine the pore structure of cement-based materials, and pervious concrete is highlighted as an example where deliberately high porosity and permeability confer functional benefits (e.g., enhanced drainage). Overall, these insights underscore the importance of tailoring porosity and permeability in material design to enhance durability and sustainability in construction engineering. Full article
Show Figures

Figure 1

14 pages, 6919 KB  
Article
Branched Setae or Attached Macroalgae: A Case Study of an Exceptionally Preserved Brachiopod from the Early Cambrian Chengjiang Lagerstätte
by Yue Liang, Timothy P. Topper, Baopeng Song, Caibin Zhang, Oluwatoosin B. A. Agbaje, Lars E. Holmer and Zhifei Zhang
Biology 2025, 14(9), 1287; https://doi.org/10.3390/biology14091287 - 18 Sep 2025
Viewed by 1023
Abstract
The remarkable conservation of soft tissues within Cambrian fossils has significantly enhanced our comprehension of the origins and evolutionary trajectories of animals, in addition to the progression of ecological intricacy. Here, we report an exceptionally preserved specimen of the lingulid brachiopod Xianshanella haikouensis [...] Read more.
The remarkable conservation of soft tissues within Cambrian fossils has significantly enhanced our comprehension of the origins and evolutionary trajectories of animals, in addition to the progression of ecological intricacy. Here, we report an exceptionally preserved specimen of the lingulid brachiopod Xianshanella haikouensis from the lower Cambrian Chengjiang Lagerstätte, exhibiting branched fringes along the distal ends of its marginal setae. These structures may represent either branched setae or attached macroalgae. The diameter of the branched fringes is slightly larger than that of the marginal setae, and they exhibit third- or fourth-order bifurcations, forming a complex structure comparable in length to the shell. Both the branched fringes and marginal setae are preserved as iron oxides, as revealed by SEM and Micro-XRF analyses, a characteristic preservation mode in Chengjiang fossils. The results of Micro-CT scanning suggest that these branched fringes are preserved along almost the entire distal end of marginal setae. Comparable branched fringes are reminiscent of those found in annelids, and such structural analogs between annelid and brachiopod setae support the homology of brachiopod and annelid setae, representing a lophotrochozoan synapomorphy. An alternative explanation involving attached macroalgae is proposed, given that branched setae have never been documented in either extinct or extant brachiopod taxa. If these structures represent macroalgae, this association could represent a mimicry strategy to deceive predators, although comparable macroalgal fossils remain undocumented in the Chengjiang Lagerstätte. Our research highlights the potential for brachiopod setae to serve roles in sensory function or ecological interactions, offering a new perspective on early animal adaptation and community dynamics. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Graphical abstract

15 pages, 2962 KB  
Article
Thermal Performance Evaluation of Encapsulated Phase Change Materials Exposed to Contact Heat and Radiant Heat
by Adam K. Puszkarz, Emilia Śmiechowicz and Waldemar Machnowski
Materials 2025, 18(18), 4271; https://doi.org/10.3390/ma18184271 - 12 Sep 2025
Viewed by 520
Abstract
This article describes research on two encapsulated phase change materials (PCMs) from the alkane group (n-hexadecane and n-octadecane) with phase transition temperatures of 18.2 °C and 28.2 °C, respectively. The main goal of the study was to determine the internal structure and basic [...] Read more.
This article describes research on two encapsulated phase change materials (PCMs) from the alkane group (n-hexadecane and n-octadecane) with phase transition temperatures of 18.2 °C and 28.2 °C, respectively. The main goal of the study was to determine the internal structure and basic thermal properties of both types of macrocapsules in terms of their potential applications. The internal structure of the macrocapsules was characterized using non-destructive statistical quantitative analysis performed using X-ray microtomography (micro-CT). Differential scanning calorimetry (DSC) was used to determine the phase transition temperatures, thermal cycling stability, and phase transition enthalpies of both PCMs. The macrocapsules were tested in two experiments, simulating the conditions of their potential application by exposing them to contact heat and radiant heat. Structural analysis showed that the macrocapsules differ significantly in PCM content (77% n-hexadecane and 88% n-octadecane) and porosity (19% and 10%, respectively). According to the DSC results, the macrocapsules with n-octadecane exhibited a significantly wider phase transition range and a greater ability to store latent heat indicated by its higher enthalpy by about 30 J·g−1 than those with n-hexadecane. The results of experiments involving PCM exposure to contact heat and radiant heat demonstrated the potential applications of the macrocapsules in thermal packaging, building, and protective clothing. Full article
(This article belongs to the Special Issue Phase Change Materials (PCM) for Thermal Energy Storage)
Show Figures

Figure 1

17 pages, 4369 KB  
Article
Methodology of Mathematical Modeling of Flow Through a Real Filter Material Geometry
by Szymon Caban, Piotr Wiśniewski, Michał Kubiak and Zbigniew Buliński
Processes 2025, 13(9), 2831; https://doi.org/10.3390/pr13092831 - 4 Sep 2025
Viewed by 642
Abstract
Nowadays, there is an emphasis on reducing emissions due to industrial processes. In recent decades, filtration systems have become an integral part of the broadly understood heavy industry systems to reduce the emission of dust and other substances harmful to the environment and [...] Read more.
Nowadays, there is an emphasis on reducing emissions due to industrial processes. In recent decades, filtration systems have become an integral part of the broadly understood heavy industry systems to reduce the emission of dust and other substances harmful to the environment and humans. Filters can also be found in heating, ventilation and air conditioning (HVAC) systems, in the transport industry, and their use in households is also increasing. The effective separation of micro- or nanometer contaminants is closely related to the development of new, sophisticated filter materials. Thanks to the use of modern tools for multiphase flow modeling, it becomes possible to model the flow inside the filter material. In this study, we propose a methodology to simulate the internal flow through porous structures with a fiber size of 5–30 µm. The geometry used to build the mathematical model is the actual geometry of the filter obtained using micro-Computed Tomography (CT) imaging method. The mathematical model has been validated against experimental data. In this article, we show the methodology to adapt a geometry scan for use in commercial Computational Fluid Dynamics (CFD) software (Ansys Fluent 2021 R1). Then we present the analysis of the influence of essential parameters of numerical model, namely the size of representative elementary volume (REV) of porous material, representation quality of porous matrix and numerical mesh density on the pressure drop in the filter. Based on the conducted research, the minimum size of the REV and the numerical mesh density were determined, allowing us to obtain a representative solution of the flow structure through the filtering material. The strong agreement between the model results and experimental data highlights the potential of using a multi-fluid mathematical model to understand filtration dynamics. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

25 pages, 11592 KB  
Article
Pascua marecoralliensis, a New Species of Goby (Gobiiformes, Gobiidae) from the Central Coral Sea with Validation of the Genus Pascua
by Christopher H. R. Goatley, Andrea I. Varela, Javier Sellanes and Luke Tornabene
Fishes 2025, 10(9), 449; https://doi.org/10.3390/fishes10090449 - 4 Sep 2025
Viewed by 1125
Abstract
In this paper, we use molecular phylogenetics, micro-CT scanning, and morphological analyses to describe a new species of goby, Pascua marecoralliensis, and demonstrate that the genus Pascua is distinct from Hetereleotris, as supported by five diagnostic characters, including modified basicaudal scales [...] Read more.
In this paper, we use molecular phylogenetics, micro-CT scanning, and morphological analyses to describe a new species of goby, Pascua marecoralliensis, and demonstrate that the genus Pascua is distinct from Hetereleotris, as supported by five diagnostic characters, including modified basicaudal scales and reduced sensory papillae patterns. Phylogenetic analysis places Pascua as sister to the Gobiodon group, while Hetereleotris forms a separate clade. The new species, P. marecoralliensis, differs from congeners in fin ray counts, cephalic pore patterns, and head morphology and exhibits unique live colouration. Additionally, we reclassify Hetereleotris readerae and H. sticta as Pascua readerae and P. sticta based on shared genus-specific traits. The distribution of Pascua spans the southern Pacific, suggesting a relict lineage or undiscovered diversity in the genus. This work underscores the importance of integrative taxonomic approaches for resolving cryptic diversity in gobioid fishes and highlights the need for further sampling in understudied regions. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

15 pages, 1988 KB  
Review
Bone Evaluation with Micro Finite Element Analysis in Animal Models
by Behnam Namiranian, Kenichiro Doi, Salem Alenezi, Sameer B. Shah, Saeed Jerban and Eric Y. Chang
Tomography 2025, 11(9), 101; https://doi.org/10.3390/tomography11090101 - 1 Sep 2025
Viewed by 844
Abstract
Micro-computed tomography (micro-CT) is a commonly used tool for bone evaluation in animal model research. Micro-scale finite element analysis (µFEA) has been proposed to account for different loading scenarios, detailed three-dimensional (3D) bone structure, material properties, and distribution obtained from micro-CT to estimate [...] Read more.
Micro-computed tomography (micro-CT) is a commonly used tool for bone evaluation in animal model research. Micro-scale finite element analysis (µFEA) has been proposed to account for different loading scenarios, detailed three-dimensional (3D) bone structure, material properties, and distribution obtained from micro-CT to estimate bone mechanical properties and to predict its potential fracture. The in vivo application of µFEA has been limited to animal models due to the smaller bore size of micro-CT and the long scan time. This narrative review article describes studies that used micro-CT-based µFEA to predict bone mechanical competence, understand bone fracture and remodeling mechanisms, and to evaluate the impacts of the therapeutics, implants, and surgical interventions. Moreover, the concept, limitations, and future potentials of micro-CT-based FEA are discussed. Full article
Show Figures

Figure 1

25 pages, 4378 KB  
Article
Mechanical Properties and Microstructure of Decellularized Brown Seaweed Scaffold for Tissue Engineering
by Svava Kristinsdottir, Ottar Rolfsson, Olafur Eysteinn Sigurjonsson, Sigurður Brynjolfsson and Sigrun Nanna Karlsdottir
Bioengineering 2025, 12(9), 943; https://doi.org/10.3390/bioengineering12090943 - 31 Aug 2025
Viewed by 1090
Abstract
In response to the growing demand for sustainable biomaterials in tissue engineering, we investigated the potential of structurally intact brown seaweed scaffolds derived from Laminaria digitata (L.D.) and Laminaria saccharina (L.S.), produced by a detergent-free, visible-light decellularization process aimed [...] Read more.
In response to the growing demand for sustainable biomaterials in tissue engineering, we investigated the potential of structurally intact brown seaweed scaffolds derived from Laminaria digitata (L.D.) and Laminaria saccharina (L.S.), produced by a detergent-free, visible-light decellularization process aimed at preserving structural integrity. Blades were submerged in cold flow-through and aerated water with red (620 nm) and blue (470 nm) light exposure for 4 weeks. Histology, scanning electron microscopy (SEM), and micro-computed tomography (micro-CT) analyses demonstrated that the light decellularization process removed cells/debris, maintained essential structural features, and significantly increased scaffold porosity. Mechanical property analysis through tensile testing revealed a substantial increase in tensile strength post decellularization, with L.D. scaffolds increasing from 3.4 MPa to 8.7 MPa and L.S. scaffolds from 2.1 MPa to 6.6 MPa. Chemical analysis indicated notable alterations in polysaccharide and protein composition following decellularization. Additionally, scaffolds retained high swelling and fluid absorption capacities, critical for biomedical uses. These findings underscore that the decellularized L.D. and L.S. scaffolds preserved structural integrity and exhibited enhanced mechanical properties, interconnected porous structures, and significant liquid retention capabilities, establishing them as promising biomaterial candidates for soft-tissue reinforcement, wound care, and broader applications in regenerative medicine. Full article
Show Figures

Figure 1

Back to TopTop