Thermal Performance Evaluation of Encapsulated Phase Change Materials Exposed to Contact Heat and Radiant Heat
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Analysis of the Internal Structure of Macrocapsules
2.2.2. Analysis of Thermal Properties of Macrocapsules
2.2.3. Exposure of Macrocapsules to Contact Heat
2.2.4. Exposure of Macrocapsules to Radiant Heat
3. Results and Discussion
3.1. Analysis of the Internal Structure of Macrocapsules
3.2. Analysis of Thermal Properties of Macrocapsules
3.3. Exposure of Macrocapsules to Contact Heat
3.4. Exposure of Macrocapsules to Radiant Heat
4. Conclusions
- Microstructure analysis of both macrocapsules showed that PCM-16 macrocapsules contain 11% less phase change material than PCM-18 macrocapsules (n-hexadecane constitutes 77% of the macrocapsule volume while n-octadecane constitutes 88% of the macrocapsule volume).
- DSC analysis involving heating and cooling cycles of macrocapsules showed that the tested PCMs exhibit good thermal cycling stability, which was confirmed by studies conducted by other researchers. PCM-18 exhibited a significantly wider phase transition range and a greater ability to store latent heat, indicated by its higher enthalpy by 30 J·g−1 than PCM-16.
- The analysis of phase transition processes in the experiment in which macrocapsules were exposed to contact heat showed that PCM-18 macrocapsules were characterized by a higher heat capacity, melting of which lasted more than three times longer than in the case of PCM-16 microcapsules.
- The analysis of phase transition processes in the experiment in which macrocapsules were exposed to radiant heat showed that PCM-18 macrocapsules were characterized by a higher heat capacity, the phase transition (melting) of which lasted more than 1.5 times longer than in the case of PCM-16 microcapsules.
- The temperature ranges of phase transitions of PCMs and their thermal cycling stability in both types of macrocapsules determined by DSC analysis and two experiments in which the macrocapsules were exposed to two types of heat flux show the potential application of tested PCMs in the thermal packaging industry, thermal insulation building materials, or thermal protective clothing. Modifying the above-mentioned products with these PCMs can improve their functional and utility properties and thus contribute to increasing people’s safety and comfort.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldman, D.; Banu, D.; Hawes, D. Low chain esters of stearic acid as phase change materials for thermal energy storage in buildings. Sol. Energy Mater. Sol. Cells 1995, 36, 311–322. [Google Scholar] [CrossRef]
- Himran, S.; Suwono, A.; Mansoori, G.A. Characterization of Alkanes and Paraffin Waxes for Application as Phase Change Energy Storage Medium. Energy Sources 1994, 16, 117–128. [Google Scholar] [CrossRef]
- Diaconu, B.M.; Cruceru, M.; Anghelescu, L. Phase Change Materials—Applications and Systems Designs: A Literature Review. Designs 2022, 6, 117. [Google Scholar] [CrossRef]
- Reddy, V.J.; Ghazali, M.F.; Kumarasamy, S. Innovations in phase change materials for diverse industrial applications: A comprehensive review. Results Chem. 2024, 8, 101552. [Google Scholar] [CrossRef]
- Kuznik, F.; Virgone, J.; Noel, J. Optimization of a phase change material wallboard for building use. Appl. Therm. Eng. 2008, 28, 1291–1298. [Google Scholar] [CrossRef]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Y.; Liu, Y.; Liu, C.; Lin, L. Thermal Properties of the Mixed n-Octadecane/Cu Nanoparticle Nanofluids during Phase Transition: A Molecular Dynamics Study. Materials 2017, 10, 38. [Google Scholar] [CrossRef]
- Renard, M.; Machnowski, W.; Puszkarz, A.K. Assessment of Thermal Performance of Phase-Change Material-Based Multilayer Protective Clothing Exposed to Contact and Radiant Heat. Appl. Sci. 2023, 13, 9447. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim. Acta 2007, 452, 149–160. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E.; Ukuser, G. Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles. Thermochim. Acta 2015, 613, 17–27. [Google Scholar] [CrossRef]
- Diaconu, B.; Cruceru, M.; Anghelescu, L. Fire Retardance Methods and Materials for Phase Change Materials: Performance, Integration Methods, and Applications—A Literature Review. Fire 2023, 6, 175. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yang, R. Flame retardance property of shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 2015, 140, 439–445. [Google Scholar] [CrossRef]
- Pielichowska, K.; Paprota, N.; Pielichowski, K. Fire Retardant Phase Change Materials-Recent Developments and Future Perspectives. Materials 2023, 16, 4391. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Fan, Y.; Ma, Y.; Wang, Y.; Liu, G. Flame-retardant phase change material (PCM) for thermal protective application in firefighting protective clothing. Int. J. Therm. Sci. 2022, 185, 108075. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, H.; Wang, X. Thermal self-regulatory intelligent biosensor based on carbon-nanotubes-decorated phase-change microcapsules for enhancement of glucose detection. Biosens. Bioelectron. 2022, 195, 113586. [Google Scholar] [CrossRef]
- Dixit, P.; Konala, A.; Jagadeeswara Reddy, V.; Singh, J.; Dasari, A.; Chattopadhyay, S. Thermal performance evaluation of isopropyl stearate-expanded graphite based shape stabilized phase change material composite targeting cold chain application. J. Mol. Liq. 2022, 363, 119829. [Google Scholar] [CrossRef]
- Olson, L.; Lothian, C.; Ådén, U.; Lagercrantz, H.; Robertson, N.J.; Setterwall, F. Phase-Changing Glauber Salt Solution for Medical Applications in the 28–32 °C Interval. Materials 2021, 14, 7106. [Google Scholar] [CrossRef]
- Simão, C.; Murta-Pina, J.; Oliveira, J.P.; Coelho, L.; Pássaro, J.; Ferreira, D.; Reboredo, F.; Jorge, T.; Figueiredo, P. A Case Study for Decentralized Heat Storage Solutions in the Agroindustry Sector Using Phase Change Materials. Agriengineering 2022, 4, 255–278. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Lu, R.; Zhang, S.; Hai, A.M.; Tang, B. Form-stable cold storage phase change materials with durable cold insulation for cold chain logistics of food. Postharvest Biol. Technol. 2023, 203, 112409. [Google Scholar] [CrossRef]
- Vennapusa, J.R.; Singh, J.; Chattopadhyay, S. Curding of milk in incubator utilizing latent heat of lauric acid in winter. Energy Storage 2021, 4, 307. [Google Scholar] [CrossRef]
- Jurcevic, M.; Nizetic, S.; Marinic-Kragic, I.; Jakic, M.; Arici, M. Towards resilient operation of photovoltaic-thermal collector with incorporated organic phase change material. Sustain. Energy Technol. Assess. 2023, 60, 103465. [Google Scholar] [CrossRef]
- Sarcinella, A.; Cunha, S.; Aguiar, I.; Aguiar, J.; Frigione, M. Sustainable Organic Phase Change Materials for Sustainable Energy Efficiency Solutions. Polymers 2025, 17, 1343. [Google Scholar] [CrossRef]
- Hamada, A.; Emam, M.; Refaey, H.A.; Moawed, M.; Abdelrahman, M.A. Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study. Energy 2023, 284, 128574. [Google Scholar] [CrossRef]
- Chemeo, High Quality Chemical Properties. Available online: https://www.chemeo.com (accessed on 27 July 2025).
- NIST Chemistry WebBook. Available online: https://webbook.nist.gov (accessed on 27 July 2025).
- Vélez, C.; Khayet, M.; de Zárate, J.O. Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: N-Hexadecane, n-octadecane and n-eicosane. Appl. Energy 2015, 143, 383–394. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Chen, C.; Zhou, W.; Fielitz, T.R.; Braun, P.V.; Cahill, D.G. Thermal Conductivity of Polyurethane Thin Films. Macromolecules 2024, 57, 6838–6847. [Google Scholar] [CrossRef]
- Miśkiewicz, P.; Puszkarz, A.K.; Makówka, M. Evaluation of the Thermal Insulation Properties of Composites with ZrO2/Al Coatings Intended for the Construction of Protective Gloves. Materials 2025, 18, 242. [Google Scholar] [CrossRef]
- Miśkiewicz, P.; Puszkarz, A.K.; Machnowski, W.; Nosal, A. Evaluation of the Impact of Parylene C Deposition Method on the Functional Properties of Fabrics. Materials 2024, 17, 4073. [Google Scholar] [CrossRef]
- Tokarska, M.; Miśkiewicz, P.; Puszkarz, A.K.; Nosal, A. Evaluation of Insulation against Contact Heat, Radiant Heat and Sensory Comfort of Basalt Fabric-Based Composites with Parylene C Coating. Fibres Text. East. Eur. 2023, 31, 99–108. [Google Scholar] [CrossRef]
- The Sun and the Earth’s Climate. Available online: https://www2.mps.mpg.de/projects/sun-climate/data.html (accessed on 29 July 2025).
- Voronin, D.; Mendgaziev, R.; Sayfutdinova, A.; Kugai, M.; Rubtsova, M.; Cherednichenko, K.; Shchukin, D.; Vinokurov, V. Phase-Change Microcapsules with a Stable Polyurethane Shell through the Direct Crosslinking of Cellulose Nanocrystals with Polyisocyanate at the Oil/Water Interface of Pickering Emulsion. Materials 2022, 16, 29. [Google Scholar] [CrossRef]
- WHO Good Storage and Distribution Practices for Medical Products. Available online: https://iris.who.int/bitstream/handle/10665/330887/DI332-194-225-eng.pdf (accessed on 25 July 2025).
- De Paoli, F.; Bishara, R.H.; van Asselt, E.J. How to define the right ambient temperature range for storage and distribution of pharmaceutical raw materials. Biologicals 2021, 69, 66–69. [Google Scholar] [CrossRef]
- Temperature & Humidity Requirements in Pharmaceutical Facilities. Available online: https://ispe.org/pharmaceutical-engineering/september-october-2021/temperature-humidity-requirements-pharmaceutical (accessed on 25 July 2025).
- Singh, G.; Bennett, K.; Taylor, L.; Stevens, C. Core body temperature responses during competitive sporting events: A narrative review. Biol. Sport 2023, 40, 1003–1017. [Google Scholar] [CrossRef]
- Binder, M.D.; Hirokawa, N.; Windhorst, U. (Eds.) Encyclopedia of Neuroscience; Springer: Berlin, Germany, 2009; Volume 3166. [Google Scholar]
Macrocapsule | Raw Material | Specific Heat [kJ·kg−1·°C−1] | Melting Temperature [°C] | Heat of Fusion [kJ·kg−1] | Thermal Conductivity [W·m−1·°C −1] | Diameter [mm] |
---|---|---|---|---|---|---|
PCM-16 | C16H34 n-hexadecane (PCM) Polyurethane (shell) | 1.8 (solid)/2.2 (liquid) 1.7 | 18.2 210 | 232 | 0.26 (solid)/0.14 (liquid) 0.19 | 3.8 |
PCM-18 | C18H38 n-octadecane (PCM) Polyurethane (shell) | 1.9 (solid)/2.2 (liquid) 1.7 | 28.2 210 | 243 | 0.31 (solid)/0.15 (liquid) 0.19 | 4.5 |
Macrocapsule | TMb °C | TMe °C | ∆HM J·g−1 | TMmax °C | TCb °C | TCe °C | ∆HC J·g−1 | TCmax °C |
---|---|---|---|---|---|---|---|---|
PCM-16 | 15.3 | 22.7 | 150 | 18.9 | 14.7 | 6.2 | −153 | 11.6 |
PCM-18 | 31.8 | 41.6 | 183 | 37.8 | 34.9 | 19.1 | −187 | 30.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puszkarz, A.K.; Śmiechowicz, E.; Machnowski, W. Thermal Performance Evaluation of Encapsulated Phase Change Materials Exposed to Contact Heat and Radiant Heat. Materials 2025, 18, 4271. https://doi.org/10.3390/ma18184271
Puszkarz AK, Śmiechowicz E, Machnowski W. Thermal Performance Evaluation of Encapsulated Phase Change Materials Exposed to Contact Heat and Radiant Heat. Materials. 2025; 18(18):4271. https://doi.org/10.3390/ma18184271
Chicago/Turabian StylePuszkarz, Adam K., Emilia Śmiechowicz, and Waldemar Machnowski. 2025. "Thermal Performance Evaluation of Encapsulated Phase Change Materials Exposed to Contact Heat and Radiant Heat" Materials 18, no. 18: 4271. https://doi.org/10.3390/ma18184271
APA StylePuszkarz, A. K., Śmiechowicz, E., & Machnowski, W. (2025). Thermal Performance Evaluation of Encapsulated Phase Change Materials Exposed to Contact Heat and Radiant Heat. Materials, 18(18), 4271. https://doi.org/10.3390/ma18184271