Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,578)

Search Parameters:
Keywords = miRNA–disease association

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1899 KiB  
Article
MALAT1 Expression Is Deregulated in miR-34a Knockout Cell Lines
by Andrea Corsi, Tonia De Simone, Angela Valentino, Elisa Orlandi, Chiara Stefani, Cristina Patuzzo, Stefania Fochi, Maria Giusy Bruno, Elisabetta Trabetti, John Charles Rotondo, Chiara Mazziotta, Maria Teresa Valenti, Alessandra Ruggiero, Donato Zipeto, Cristina Bombieri and Maria Grazia Romanelli
Non-Coding RNA 2025, 11(4), 60; https://doi.org/10.3390/ncrna11040060 - 5 Aug 2025
Abstract
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including [...] Read more.
Background/Objectives: Non-coding microRNA-34a (miR-34a) regulates the expression of key factors involved in several cellular processes, such as differentiation, apoptosis, proliferation, cell cycle, and senescence. Deregulation of the expression of these factors is implicated in the onset and progression of several human diseases, including cancer, neurodegenerative disorders, and pathologies associated with viral infections and inflammation. Despite numerous studies, the molecular mechanisms regulated by miR-34a remain to be fully understood. The present study aimed to generate miR-34a knockout cell lines to identify novel genes potentially regulated by its expression. Methods: We employed the CRISPR-Cas9 gene editing system to knock out the hsa-miR-34a gene in HeLa and 293T cell lines, two widely used models for studying molecular and cellular mechanisms. We compared proliferation rates and gene expression profiles via RNA-seq and qPCR analyses between the wild-type and miR-34a KO cell lines. Results: Knockout of miR-34a resulted in a decreased proliferation rate in both cell lines. Noteworthy, the ablation of miR-34a resulted in increased expression of the long non-coding RNA MALAT1. Additionally, miR-34a-5p silencing in the A375 melanoma cell line led to MALAT1 overexpression. Conclusions: Our findings support the role of the miR-34a/MALAT1 axis in regulating proliferation processes. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

13 pages, 792 KiB  
Article
Association of miRNA-17-92 Cluster with Muscle Invasion in Bladder Cancer
by Mihai Ioan Pavalean, Maria Dobre, Iulia Andreea Pelisenco, Victor Lucian Madan, Elena Milanesi and Mihail Eugen Hinescu
Int. J. Mol. Sci. 2025, 26(15), 7546; https://doi.org/10.3390/ijms26157546 - 5 Aug 2025
Abstract
Bladder cancer (BC) is the most frequent cancer of the urinary system and one of the most common malignancies in the world. In the last decade, many studies have been conducted to better understand the pathophysiological mechanisms of BC to find innovative markers [...] Read more.
Bladder cancer (BC) is the most frequent cancer of the urinary system and one of the most common malignancies in the world. In the last decade, many studies have been conducted to better understand the pathophysiological mechanisms of BC to find innovative markers for disease monitoring and treatment. In this study, we aim to identify miRNAs whose expression is associated with specific tumoral characteristics and risks of disease progression. Forty-one BC patients were enrolled in this study. The expression of 84 miRNAs was evaluated by qRT-PCR analysis on tumoral and peritumoral tissues. The results highlighted the association of the miRNA-17-92 cluster with BC, with miR-17-5p, miR-18a-5p, miR-19a-3p, and miR-20a-5p (members of this cluster) being upregulated in the tumoral tissue and correlated with muscle invasion and tumor grading. Taken together, our study identified a panel of 26 dysregulated miRNAs in BC, some of which may be associated with aggressiveness and the risk of progression of this malignancy. Full article
Show Figures

Figure 1

13 pages, 3032 KiB  
Article
Combined Bioinformatic and Experimental Approaches to Analyze miR-182-3p and miR-24-3p Expression and Their Target Genes in Gestational Diabetes Mellitus and Iron Deficiency Anemia During Pregnancy
by Badr Alzahrani, Bisma Rauff, Aqsa Ikram and Mariya Azam
Curr. Issues Mol. Biol. 2025, 47(8), 610; https://doi.org/10.3390/cimb47080610 - 2 Aug 2025
Viewed by 136
Abstract
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles [...] Read more.
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles in GDM and IDA are unclear. The present study aimed to analyze the expression and functional relevance of miR-182-3p and miR-24-3p in GDM and IDA. Experimental validation via RT-PCR revealed significant upregulation of both miRNAs in GDM and IDA samples. We identified common target genes and signaling pathways associated with these miRNAs, using a combination of data mining, bioinformatic tools (miRDB, TargetScan, miRTarBase, and miRWalk), and differentially expressed gene (DEGs) analysis using the GEO, OMIM, MalaCards, and GeneCards datasets. GO and KEGG pathway analyses revealed that the shared miRNA–mRNA in target genes were enriched in insulin signaling, apoptosis, and inflammatory pathways—key mechanisms implicated in GDM and IDA. Furthermore, hub genes such as IRS1, PIK3CA, CASP3, MAPK7, and PDGFRB were identified, supporting their central role in metabolic dysregulation during pregnancy. These findings demonstrate the potential of miR-182-3p and miR-24-3p as diagnostic biomarkers and therapeutic targets in managing GDM and IDA, offering new insights into the molecular interplay underlying pregnancy complications. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Graphical abstract

15 pages, 6719 KiB  
Article
circSATB1 Modulates Cell Senescence in Age-Related Acute Myeloid Leukemia: A Mechanistic Proposal
by Linxiang Han, Xi Wen, Ling Zhang, Xingcheng Yang, Ziyan Wei, Haodong Wu, Yichen Zhan, Huiting Wang and Yu Fang
Cells 2025, 14(15), 1181; https://doi.org/10.3390/cells14151181 - 31 Jul 2025
Viewed by 213
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor with a high prevalence in elderly people, and circular RNA (circRNA) plays an important role in age-related diseases. Induction of cancer cell senescence is a highly promising therapeutic strategy; however, the presence of senescence-associated [...] Read more.
Acute myeloid leukemia (AML) is a malignant hematological tumor with a high prevalence in elderly people, and circular RNA (circRNA) plays an important role in age-related diseases. Induction of cancer cell senescence is a highly promising therapeutic strategy; however, the presence of senescence-associated circRNAs in AML remains to be elucidated. Here, we show that the expression patterns of circRNAs differed between elderly AML patients and healthy volunteers. circSATB1 was significantly overexpressed in elderly patients and AML cells. Knockdown of circSATB1 resulted in the inhibition of proliferation and arrest of the cell cycle in the G0/G1 phase; no effect on apoptosis or DNA integrity was observed, and precocious cellular senescence was promoted, characterized by no change in telomere length. Database analysis revealed that there may be two miRNA and nine RNA-binding proteins (RBPs) involved in regulating the cellular functions of circSATB1. Our observations uncover circSATB1-orchestrated cell senescence in AML, which provides clues for finding more modest therapeutic targets for AML. Full article
(This article belongs to the Special Issue The Role of Cellular Senescence in Health, Disease, and Aging)
Show Figures

Figure 1

14 pages, 950 KiB  
Article
Circulating miRNA Profile in Inflammatory Bowel Disease Patients with Stress, Anxiety, and Depression
by Maria Dobre, Teodora Ecaterina Manuc, Mircea Manuc, Ioan-Costin Matei, Anastasia-Maria Dobre, Andrei-Daniel Dragne, Elisabetta Maffioletti, Iulia Andreea Pelisenco and Elena Milanesi
Int. J. Mol. Sci. 2025, 26(15), 7321; https://doi.org/10.3390/ijms26157321 - 29 Jul 2025
Viewed by 280
Abstract
High rates of depression and anxiety have been reported among patients with inflammatory bowel disease (IBD). The bidirectional relationship between these two conditions, with each affecting the progression of the other, leads to a reduced quality of life. The aim of this study [...] Read more.
High rates of depression and anxiety have been reported among patients with inflammatory bowel disease (IBD). The bidirectional relationship between these two conditions, with each affecting the progression of the other, leads to a reduced quality of life. The aim of this study was to identify a miRNA-based pattern that may either be unique to IBD or associated with this complex phenotype. The levels of 179 miRNAs were assessed using qRT-PCR in the plasma of individuals primarily diagnosed with recurrent depressive disorder (SAD), IBD patients (IBD), IBD patients showing symptoms of stress, anxiety, and depression (IBD + SAD), and a control group. Four miRNAs were found to be specifically associated with IBD and more than 20 miRNAs with SAD. Notably, the levels of five miRNAs (miR-223-3p, miR-1260a, miR-320d, miR-423-5p, and miR-486-5p) differed in all the comparisons. miR-342-3p and miR-125a-5p were identified as possible biomarkers able to discriminate between IBD and IBD + SAD. The identification of this pattern of miRNA specific to IBD + SAD could be useful for monitoring disease activity and progression in IBD patients struggling with psychiatric symptoms, which can negatively impact adherence to follow-up care. Full article
(This article belongs to the Special Issue Inflammatory Bowel Diseases: Molecular Mechanism and Therapeutics)
Show Figures

Figure 1

16 pages, 2293 KiB  
Article
BIM-Ken: Identifying Disease-Related miRNA Biomarkers Based on Knowledge-Enhanced Bio-Network
by Yanhui Zhang, Kunjie Dong, Wenli Sun, Zhenbo Gao, Jianjun Zhang and Xiaohui Lin
Genes 2025, 16(8), 902; https://doi.org/10.3390/genes16080902 - 28 Jul 2025
Viewed by 205
Abstract
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and [...] Read more.
The identification of microRNA (miRNA) biomarkers is crucial in advancing disease research and improving diagnostic precision. Network-based analysis methods are powerful for identifying disease-related biomarkers. However, it is a challenge to generate a robust molecular network that can accurately reflect miRNA interactions and define reliable miRNA biomarkers. To tackle this issue, we propose a disease-related miRNA biomarker identification method based on the knowledge-enhanced bio-network (BIM-Ken) by combining the miRNA expression data and prior knowledge. BIM-Ken constructs the miRNA cooperation network by examining the miRNA interactions based on the miRNA expression data, which contains characteristics about the specific disease, and the information of the network nodes (miRNAs) is enriched by miRNA knowledge (i.e., miRNA-disease associations) from databases. Further, BIM-Ken optimizes the miRNA cooperation network using the well-designed GAE (graph auto-encoder). We improve the loss function by introducing the functional consistency and the difference prompt, so as to facilitate the optimized network to keep the intrinsically important characteristics of the miRNA data about the specific disease and the prior knowledge. The experimental results on the public datasets showed the superiority of BIM-Ken in classification. Subsequently, BIM-Ken was applied to analyze renal cell carcinoma data, and the defined key modules demonstrated involvement in the cancer-related pathways with good discrimination ability. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

22 pages, 2596 KiB  
Article
Cardio-Protective Effects of Microencapsulated Probiotic and Synbiotic Supplements on a Myocardial Infarction Model Through the Gut–Heart Axis
by Doha A. Mohamed, Hoda B. Mabrok, Hoda S. El-Sayed, Sherein Abdelgayed and Shaimaa E. Mohammed
Appl. Microbiol. 2025, 5(3), 72; https://doi.org/10.3390/applmicrobiol5030072 - 27 Jul 2025
Viewed by 317
Abstract
Myocardial infarction (MI) is an inflammatory disease responsible for approximately 75% of sudden cardiac deaths. In this study, we aimed to evaluate the cardio-protective influence of microencapsulated probiotic and synbiotic dietary supplements in vivo and in molecular docking studies. MI was induced in [...] Read more.
Myocardial infarction (MI) is an inflammatory disease responsible for approximately 75% of sudden cardiac deaths. In this study, we aimed to evaluate the cardio-protective influence of microencapsulated probiotic and synbiotic dietary supplements in vivo and in molecular docking studies. MI was induced in rats with the injection of isoproterenol (i.p. 67 mg/kg). Plasma lipid profiles and the levels of oxidative stress markers, inflammatory markers, and cardiac enzymes were determined. The expression levels of MMP-7 and IL-1β in the heart muscle were measured. The impact of dietary supplements on fecal bacterial counts was evaluated across all rat groups. A histopathological examination of cardiac tissue was performed. The cardio-protective potential of cyanidin 3-diglucoside 5-glucoside and arabinoxylan was studied using molecular docking. The results demonstrate that all tested dietary supplements induced an improvement in all the biochemical parameters in association with an improvement in myocardial muscle tissue. The mRNA expression levels of MMP-7 and IL-1β were significantly downregulated by all dietary supplements. All dietary supplements increased the fecal counts of probiotic strains. In the molecular docking analysis, cyanidin 3-diglucoside 5-glucoside exhibited binding affinity values of −8.8 and −10 for lactate dehydrogenase (LDH) and Paraoxonase 1 (PON1), respectively. Arabinoxylan showed similar binding affinity (−8.8) for both LDH and PON1. Conclusion: Microencapsulated probiotic and synbiotic dietary supplements demonstrated notable cardio-protective influence in vivo and in molecular docking studies. These supplements may serve as promising candidates for the prevention of myocardial infarction. Full article
Show Figures

Graphical abstract

18 pages, 2018 KiB  
Article
Engineered Glibenclamide-Loaded Nanovectors Hamper Inflammasome Activation in an Ex Vivo Alzheimer’s Disease Model—A Novel Potential Therapy for Neuroinflammation: A Pilot Study
by Francesca La Rosa, Simone Agostini, Elisabetta Bolognesi, Ivana Marventano, Roberta Mancuso, Franca Rosa Guerini, Ambra Hernis, Lorenzo Agostino Citterio, Federica Piancone, Pietro Davide Trimarchi, Jorge Navarro, Federica Rossetto, Arianna Amenta, Pierfausto Seneci, Silvia Sesana, Francesca Re, Mario Clerici and Marina Saresella
Biomolecules 2025, 15(8), 1074; https://doi.org/10.3390/biom15081074 - 24 Jul 2025
Viewed by 285
Abstract
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this [...] Read more.
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this pilot study we verified with ex vivo experiments whether a glibenclamide-loaded nanovector (GNV) could reduce the NLRP3-inflammasome cascade in cells of AD patients. Monocytes isolated from healthy controls (HC) and AD patients were cultured in medium, alone or stimulated with LPS + nigericin in presence/absence of GNV. ASC-speck positive cells and inflammasome-related genes, proteins, and miRNAs expressions were measured. The polymorphisms of ApoE (Apolipoprotein E), specifically rs7412 and rs429358, as well as those of NLRP3, namely rs35829419, rs10733113, and rs4925663, were also investigated. Results: Results showed that ASC-speck+ cells and Caspase-1, IL-1β, and IL-18 production was significantly reduced (p < 0.005 in all cases) by GNV in LPS + nigericin-stimulated cells of both AD and HC. Notably, the NLRP3 rs10733113 AG genotype was associated with excessive inflammasome-related gene and protein expression. GNV significantly down-regulates inflammasome activation in primary monocytes, at least at protein levels, and its efficacy seems to partially depend on the presence of the NLRP3 rs10733113 genotype. Conclusions: All together, these results showed that GNV is able to dampen inflammation and NLRP-3 inflammasome activation in an ex vivo monocyte model, suggesting a possible role for GNV in controlling AD-associated neuroinflammation. Full article
Show Figures

Figure 1

17 pages, 4009 KiB  
Article
Investigation of the Impact of miRNA-7151 and a Mutation in Its Target Gene lncRNA KCNQ1OT1 on the Pathogenesis of Preeclampsia
by Wuqian Wang, Xiaojia Wu, Jianmei Gu, Luan Chen, Weihua Zhang, Xiaofang Sun, Shengying Qin and Ping Tang
Biomedicines 2025, 13(8), 1813; https://doi.org/10.3390/biomedicines13081813 - 24 Jul 2025
Viewed by 310
Abstract
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between [...] Read more.
Background: Preeclampsia (PE) is a pregnancy-specific disease and hypertensive disorder with a multifactorial pathogenesis involving complex molecular regulatory networks. Recent studies highlight the critical role of non-coding RNAs, particularly miRNAs and lncRNAs, in PE development. This study investigates the molecular interaction between miR-7151-5p and the lncRNA KCNQ1OT1 and their functional contributions to PE pathogenesis. Methods: An integrative approach combining RNAhybrid-based bioinformatics, dual-luciferase reporter assays, qRT-PCR, Transwell migration and invasion assays, and RNA sequencing was employed to characterize the binding between miR-7151-5p and KCNQ1OT1 and assess their influence on trophoblast cell function and gene expression. Results: A bioinformatic analysis predicted a stable binding site between miR-7151-5p and KCNQ1OT1 (minimum free energy: –37.3 kcal/mol). The dual-luciferase reporter assay demonstrated that miR-7151-5p directly targets KCNQ1OT1, leading to suppressed transcriptional activity. In HTR8/SVneo cells, miR-7151-5p overexpression significantly downregulated both KCNQ1OT1 and Notch1 mRNA, whereas its inhibition showed no significant changes, suggesting additional regulatory mechanisms of Notch1 expression. Transwell assays indicated that miR-7151-5p overexpression suppressed trophoblast cell migration and invasion, whereas its inhibition enhanced these cellular behaviors. RNA-seq analysis further revealed that miR-7151-5p overexpression altered key signaling pathways, notably the TGF-β pathway, and significantly modulates PE-associated genes, including PLAC1, ANGPTL6, HIRA, GLA, HSF1, and BAG6. Conclusions: The regulatory effect of miR-7151-5p on KCNQ1OT1, along with its influence on trophoblast cell dynamics via Notch1 and TGF-β signaling pathways, highlights its role in PE pathogenesis and supports its potential as a biomarker in early PE screening. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

24 pages, 3224 KiB  
Review
Quercetin in Idiopathic Pulmonary Fibrosis and Its Comorbidities: Gene Regulatory Mechanisms and Therapeutic Implications
by Verónica Rocío Vásquez-Garzón, Juan Manuel Velázquez-Enríquez, Jovito Cesar Santos-Álvarez, Alma Aurora Ramírez-Hernández, Jaime Arellanes-Robledo, Cristian Jiménez-Martínez and Rafael Baltiérrez-Hoyos
Genes 2025, 16(8), 856; https://doi.org/10.3390/genes16080856 - 23 Jul 2025
Viewed by 950
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease associated with high morbidity and mortality. Both pulmonary and extrapulmonary comorbidities significantly influence disease progression and patient outcomes. Despite current therapeutic options, effective treatments remain limited. Quercetin, a naturally occurring flavonoid, has emerged as a promising compound due to its antioxidant, anti-inflammatory, and antifibrotic properties. Preclinical and clinical studies have demonstrated its ability to modulate key molecular pathways involved in IPF, including Nrf2, SIRT1/AMPK, and the regulation of fibrosis-associated microRNAs (miRNAs). Furthermore, quercetin shows therapeutic potential across a range of IPF-related comorbidities, including chronic obstructive pulmonary disease, pulmonary hypertension, lung cancer, cardiovascular disease, diabetes, and psychiatric disorders. Under these conditions, quercetin acts via epigenetic modulation of miRNAs and regulation of oxidative stress and inflammatory signaling pathways. This review highlights the multifunctional role of quercetin in IPF and its comorbidities, emphasizing its gene regulatory mechanisms and potential as an adjunctive or alternative therapeutic strategy. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 1110 KiB  
Article
The Effect of Ursodeoxycholic Acid (UDCA) on Serum Expression of miR-34a and miR-506 in Patients with Chronic Cholestatic Liver Diseases
by Eliza Cielica, Alicja Łaba, Piotr Milkiewicz, Beata Kruk, Agnieszka Kempinska-Podhorodecka, Patrycja Kłos, Pedro M. Rodrigues, Beatriz Val, Maria J. Perugorria, Jesus M. Banales and Malgorzata Milkiewicz
Cells 2025, 14(15), 1137; https://doi.org/10.3390/cells14151137 - 23 Jul 2025
Viewed by 372
Abstract
Ursodeoxycholic acid (UDCA) is widely used to treat cholestatic liver diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), yet its molecular mechanisms remain unclear. This study investigated the impact of long-term UDCA therapy on circulating levels of the microRNAs [...] Read more.
Ursodeoxycholic acid (UDCA) is widely used to treat cholestatic liver diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), yet its molecular mechanisms remain unclear. This study investigated the impact of long-term UDCA therapy on circulating levels of the microRNAs miR-34a and miR-506, which are implicated in PBC pathogenesis, and explored associated changes in inflammatory markers and signaling pathways. Serum samples from patients with PBC and PSC were collected before and after UDCA treatment and analyzed for miRNA expression as well as levels of TREM-2 and sCD163. In vitro studies using human cholangiocytes and lipopolysaccharide (LPS) stimulation assessed changes in the expression of miR-34a, TREM-2, and ADAM17. The results showed that the baseline levels of miR-34a and miR-506 were significantly elevated in PBC patients compared to controls and were significantly reduced after UDCA therapy in PBC but not in PSC. UDCA also decreased serum levels of TREM-2 and sCD163. In vitro, it suppressed the LPS-induced expression of miR-34a and ADAM17 while enhancing TREM-2 expression. Single-cell RNA sequencing of liver tissue and immunofluorescence staining confirmed TREM-2 expression in cholangiocytes. These findings suggest that UDCA modulates key inflammatory pathways and miRNAs in PBC, providing mechanistic insights into its therapeutic effect Full article
Show Figures

Figure 1

14 pages, 1895 KiB  
Article
MicroRNA Signatures in Dental Pulp Stem Cells Following Nicotine Exposure
by David Vang, Leyla Tahrani Hardin, Nabil Abid, Der Thor and Nan Xiao
Dent. J. 2025, 13(8), 338; https://doi.org/10.3390/dj13080338 - 23 Jul 2025
Viewed by 273
Abstract
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has [...] Read more.
Background and Objectives: Nicotine is the most well-studied toxic substance in cigarette smoke and e-cigarette vape. However, smoke and vape are composed of other components that have a negative impact on health. The objective of this study is to investigate whether nicotine has a distinctive impact on molecular mechanisms in stem cells. Methods: The cellular impact of nicotine on the regenerative capacity of human dental pulp stem cells (DPSCs) and the microRNA (miRNA) profile was examined. Bioinformatic analysis was performed to identify miRNA-regulated cellular pathways associated with nicotine exposure. These pathways were then compared to those induced by cigarette smoke condensate (CSC). Results: Prolonged exposure to nicotine significantly impaired the regeneration of DPSCs and changed the expression of miRNAs. Nicotine upregulated the expression of hsa-miR-7977, hsa-miR-3178, and hsa-miR-10400-5p compared to vehicle control. Interestingly, nicotine did not change the expression of hsa-miR-29b-3p, hsa-miR-199b-5p, hsa-miR-26b-5p, or hsa-miR-26a-5p compared to the control. However, the expressions of these miRNAs were significantly altered when compared to CSC treatment. Further analysis revealed that nicotine was distinctively associated with certain miRNA-targeted pathways including apoptosis, ErbB, MAPK signaling, PI3K-Akt, TGF-b signaling, and Wnt signaling. Conclusions: Our work provides evidence on the distinctive miRNA signature induced by nicotine. The information will be important for identifying the unique molecular pathways downstream of nicotine from smoking and vaping in different individuals, providing a new direction for personalized disease prevention, prognosis, and treatment. Full article
(This article belongs to the Special Issue Recreational Drugs, Smoking, and Their Impact on Oral Health)
Show Figures

Figure 1

31 pages, 4221 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Angiogenic Actions
by Lisa Rigassi, Mirel Adrian Popa, Ruth Stiller, Brigitte Leeners, Marinella Rosselli and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1134; https://doi.org/10.3390/cells14151134 - 23 Jul 2025
Cited by 1 | Viewed by 342
Abstract
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play [...] Read more.
Estrogens regulate many physiological processes in the human body, including the cardiovascular system. Importantly, Estradiol (E2) exerts its vascular protective actions, in part, by promoting endothelial repair via induction of endothelial cell (EC) proliferation, migration and angiogenesis. Recent evidence that microRNAs (miRNAs) play an important role in vascular health and disease as well as in regulating Estrogen actions in many cell types. We hypothesize that E2 may mediate its vascular protective actions via the regulation of miRNAs. Following initial screening, we found that E2 downregulates the levels of miR-193a-3p in ECs. Moreover, miR-193a-3p downregulation by miR-193a-3p-antimir mimicked the effects as E2 on EC growth, migration, and capillary formation. Restoring miR-193a-3p levels with mimics after E2 treatment abrogated the vasculogenic actions of E2, suggesting a key role of miR-193a-3p in E2-mediated EC-growth-promoting effects. We further investigated the cellular mechanisms involved and found that miR-193a-3p inhibits angiogenesis by blocking phosphoinositide-3-kinase (PI3K)/Akt-vascular endothelial growth factor (VEGF) and Activin receptor-like kinase 1 (ALK1)/SMAD1/5/8 signaling in ECs, both pathways that are important in E2-mediated vascular protection. Additionally, using reverse transcription polymerase chain reaction (RT-PCR), we demonstrate that E2 downregulates miR-193a-3p in ECs via Estrogen Receptor (ER)α, but not ERβ or G protein-coupled estrogen receptor (GPER). Moreover, these actions occur post-transcriptionally, as the expression of pri-miR-193a-3p was not affected. The anti-angiogenic actions of miR-193a-3p were also observed in in vivo Matrigel implant-based capillary formation studies in ovariectomized mice where E2 induced capillary formation, and these effects were abrogated in the presence of miR-193a-3p, but not in the control mimic. Assessment of miR-193a-3p levels in plasma collected from in vitro fertilization (IVF) subjects with low and high E2 levels showed significantly lower miR-193a-3p levels in responders during the high E2 period. Hence, our findings provide the first evidence that miR-193a-3p mimic inhibits angiogenesis whereas its antimir is angiogenic. Importantly, E2 mediates its regenerative actions on ECs/capillary formation by downregulating endogenous miR-193a-3p expression. Both miR-193a-3p mimic or antimir may represent important therapeutic molecules to prevent or to induce endothelial function in treating pathophysiologies associated with capillary growth. Full article
Show Figures

Graphical abstract

32 pages, 10235 KiB  
Article
Estradiol Downregulates MicroRNA-193a to Mediate Its Anti-Mitogenic Actions on Human Coronary Artery Smooth Muscle Cell Growth
by Lisa Rigassi, Marinella Rosselli, Brigitte Leeners, Mirel Adrian Popa and Raghvendra Krishna Dubey
Cells 2025, 14(15), 1132; https://doi.org/10.3390/cells14151132 - 23 Jul 2025
Viewed by 303
Abstract
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs [...] Read more.
The abnormal growth of smooth muscle cells (SMCs) contributes to the vascular remodeling associated with coronary artery disease, a leading cause of death in women. Estradiol (E2) mediates cardiovascular protective actions, in part, by inhibiting the abnormal growth (proliferation and migration) of SMCs through various mechanism. Since microRNAs (miRNAs) play a major role in regulating cell growth and vascular remodeling, we hypothesize that miRNAs may mediate the protective actions of E2. Following preliminary leads from E2-regulated miRNAs, we found that platelet-derived growth factor (PDGF)-BB-induced miR-193a in SMCs is downregulated by E2 via estrogen receptor (ER)α, but not the ERβ or G-protein-coupled estrogen receptor (GPER). Importantly, miR-193a is actively involved in regulating SMC functions. The ectopic expression of miR-193a induced vascular SMC proliferation and migration, while its suppression with antimir abrogated PDGF-BB-induced growth, effects that were similar to E2. Importantly, the restoration of miR-193a abrogated the anti-mitogenic actions of E2 on PDGF-BB-induced growth, suggesting a key role of miR-193a in mediating the growth inhibitory actions of E2 in vascular SMCs. E2-abrogated PDGF-BB, but not miR-193a, induced SMC growth, suggesting that E2 blocks the PDGF-BB-induced miR-193a formation to mediate its anti-mitogenic actions. Interestingly, the PDGF-BB-induced miR-193a formation in SMCs was also abrogated by 2-methoxyestradiol (2ME), an endogenous E2 metabolite that inhibits SMC growth via an ER-independent mechanism. Furthermore, we found that miR-193a induces SMC growth by activating the phosphatidylinositol 3-kinases (PI3K)/Akt signaling pathway and promoting the G1 to S phase progression of the cell cycle, by inducing Cyclin D1, Cyclin Dependent Kinase 4 (CDK4), Cyclin E, and proliferating-cell-nuclear-antigen (PCNA) expression and Retinoblastoma-protein (RB) phosphorylation. Importantly, in mice, treatment with miR-193a antimir, but not its control, prevented cuff-induced vascular remodeling and significantly reducing the vessel-wall-to-lumen ratio in animal models. Taken together, our findings provide the first evidence that miR-193a promotes SMC proliferation and migration and may play a key role in PDGF-BB-induced vascular remodeling/occlusion. Importantly, E2 prevents PDGF-BB-induced SMC growth by downregulating miR-193a formation in SMCs. Since, miR-193a antimir prevents SMC growth as well as cuff-induced vascular remodeling, it may represent a promising therapeutic molecule against cardiovascular disease. Full article
Show Figures

Graphical abstract

38 pages, 1630 KiB  
Review
Gene Therapy Approaches for Atherosclerosis Focusing on Targeting Lipid Metabolism and Inflammation
by Evgeny Bezsonov, Nikita Chernyi, Mane Saruhanyan, Dariia Shimchenko, Nikolai Bondar, Darina Gavrilova, Mirza S. Baig and Alexander Malogolovkin
Int. J. Mol. Sci. 2025, 26(14), 6950; https://doi.org/10.3390/ijms26146950 - 19 Jul 2025
Viewed by 436
Abstract
Atherosclerosis is a complex disease characterized by pathological thickening of the arterial intima. The mechanisms underlying the induction and progression of atherosclerosis are convoluted and remain under active investigation, with key components such as lipid accumulation and local inflammation being identified. Several risk [...] Read more.
Atherosclerosis is a complex disease characterized by pathological thickening of the arterial intima. The mechanisms underlying the induction and progression of atherosclerosis are convoluted and remain under active investigation, with key components such as lipid accumulation and local inflammation being identified. Several risk factors (e.g., metabolic disorders, genetic background, diet, infections) have been shown to exacerbate disease progression, but their roles as clinically relevant markers remain to be established. Despite the growing body of evidence on the molecular pathogenesis of atherosclerosis, there is no effective preventive treatment against the development of this disease. In this review, we focus on gene targets for gene therapy as a novel potential approach to cure and prevent atherosclerosis. We critically review recent research demonstrating the therapeutic potential of viral vector-based (adeno-associated virus (AAV) and lentivirus) gene therapy for the treatment of atherosclerosis. We also summarize alternative gene targets and approaches (e.g., non-coding RNA (ncRNA), micro RNA (miRNA), small interfering RNA (siRNA), antisense oligonucleotide (ASO), CRISPR/Cas9) that aim to limit disease progression. We highlight the importance of local inflammation in the pathogenesis of atherosclerosis and propose gene targets with anti-inflammatory activity to inhibit the pathological inflammatory response. In addition, we provide perspectives on the future development of gene therapeutics and their potential applications. We anticipate that recent advances in gene therapy will help to identify new and effective targets to prevent atherosclerosis. Full article
(This article belongs to the Special Issue Genes and Human Diseases: 3rd Edition)
Show Figures

Figure 1

Back to TopTop