Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,948)

Search Parameters:
Keywords = metric-like

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 34115 KiB  
Article
New Belgrade’s Thermal Mosaic: Investigating Climate Performance in Urban Heritage Blocks Beyond Coverage Ratios
by Saja Kosanović, Đurica Marković and Marija Stamenković
Atmosphere 2025, 16(8), 935; https://doi.org/10.3390/atmos16080935 (registering DOI) - 3 Aug 2025
Abstract
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used [...] Read more.
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used to assess two scenarios: an “asphalt-only” environment, isolating the urban structure’s impact, and a “real-world” scenario, including green infrastructure (GI). Overall, the findings emphasize that while GI offers mitigation, the inherent urban built structure fundamentally determines thermal outcomes. An urban block’s thermal performance, it turns out, is a complex interplay between morphological factors and local climate. Crucially, simple metrics like Green Area Percentage (GAP) and Building Coverage Ratio (BCR) proved unreliable predictors of thermal performance. This highlights the critical need for urban planning regulations to evolve beyond basic surface indicators and embrace sophisticated, context-sensitive design principles for effective heat mitigation. Optimal performance arises from morphologies that actively manage heat accumulation and facilitate its dissipation, a characteristic exemplified by Block 22’s integrated design. However, even the best-performing Block 22 remains warmer compared to denser central areas, suggesting that urban densification can be a strategy for heat mitigation. Given New Belgrade’s blocks are protected heritage, targeted GI reinforcements remain the only viable approach for improving the outdoor thermal comfort. Full article
25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 (registering DOI) - 3 Aug 2025
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

24 pages, 9564 KiB  
Article
Linking Optimization Success and Stability of Finite-Time Thermodynamics Heat Engines
by Julian Gonzalez-Ayala, David Pérez-Gallego, Alejandro Medina, José M. Mateos Roco, Antonio Calvo Hernández, Santiago Velasco and Fernando Angulo-Brown
Entropy 2025, 27(8), 822; https://doi.org/10.3390/e27080822 (registering DOI) - 2 Aug 2025
Abstract
In celebration of 50 years of the endoreversible Carnot-like heat engine, this work aims to link the thermodynamic success of the irreversible Carnot-like heat engine with the stability dynamics of the engine. This region of success is defined by two extreme configurations in [...] Read more.
In celebration of 50 years of the endoreversible Carnot-like heat engine, this work aims to link the thermodynamic success of the irreversible Carnot-like heat engine with the stability dynamics of the engine. This region of success is defined by two extreme configurations in the interaction between heat reservoirs and the working fluid. The first corresponds to a fully reversible limit, and the second one is the fully dissipative limit; in between both limits, the heat exchange between reservoirs and working fluid produces irreversibilities and entropy generation. The distance between these two extremal configurations is minimized, independently of the chosen metric, in the state where the efficiency is half the Carnot efficiency. This boundary encloses the region where irreversibilities dominate or the reversible behavior dominates (region of success). A general stability dynamics is proposed based on the endoreversible nature of the model and the operation parameter in charge of defining the operation regime. For this purpose, the maximum ecological and maximum Omega regimes are considered. The results show that for single perturbations, the dynamics rapidly directs the system towards the success region, and under random perturbations producing stochastic trajectories, the system remains always in this region. The results are contrasted with the case in which no restitution dynamics exist. It is shown that stability allows the system to depart from the original steady state to other states that enhance the system’s performance, which could favor the evolution and specialization of systems in nature and in artificial devices. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 (registering DOI) - 1 Aug 2025
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

23 pages, 3427 KiB  
Article
Visual Narratives and Digital Engagement: Decoding Seoul and Tokyo’s Tourism Identity Through Instagram Analytics
by Seung Chul Yoo and Seung Mi Kang
Tour. Hosp. 2025, 6(3), 149; https://doi.org/10.3390/tourhosp6030149 (registering DOI) - 1 Aug 2025
Viewed by 101
Abstract
Social media platforms like Instagram significantly shape destination images and influence tourist behavior. Understanding how different cities are represented and perceived on these platforms is crucial for effective tourism marketing. This study provides a comparative analysis of Instagram content and engagement patterns in [...] Read more.
Social media platforms like Instagram significantly shape destination images and influence tourist behavior. Understanding how different cities are represented and perceived on these platforms is crucial for effective tourism marketing. This study provides a comparative analysis of Instagram content and engagement patterns in Seoul and Tokyo, two major Asian metropolises, to derive actionable marketing insights. We collected and analyzed 59,944 public Instagram posts geotagged or location-tagged within Seoul (n = 29,985) and Tokyo (n = 29,959). We employed a mixed-methods approach involving content categorization using a fine-tuned convolutional neural network (CNN) model, engagement metric analysis (likes, comments), Valence Aware Dictionary and sEntiment Reasoner (VADER) sentiment analysis and thematic classification of comments, geospatial analysis (Kernel Density Estimation [KDE], Moran’s I), and predictive modeling (Gradient Boosting with SHapley Additive exPlanations [SHAP] value analysis). A validation analysis using balanced samples (n = 2000 each) was conducted to address Tokyo’s lower geotagged data proportion. While both cities showed ‘Person’ as the dominant content category, notable differences emerged. Tokyo exhibited higher like-based engagement across categories, particularly for ‘Animal’ and ‘Food’ content, while Seoul generated slightly more comments, often expressing stronger sentiment. Qualitative comment analysis revealed Seoul comments focused more on emotional reactions, whereas Tokyo comments were often shorter, appreciative remarks. Geospatial analysis identified distinct hotspots. The validation analysis confirmed these spatial patterns despite Tokyo’s data limitations. Predictive modeling highlighted hashtag counts as the key engagement driver in Seoul and the presence of people in Tokyo. Seoul and Tokyo project distinct visual narratives and elicit different engagement patterns on Instagram. These findings offer practical implications for destination marketers, suggesting tailored content strategies and location-based campaigns targeting identified hotspots and specific content themes. This study underscores the value of integrating quantitative and qualitative analyses of social media data for nuanced destination marketing insights. Full article
Show Figures

Figure 1

14 pages, 21956 KiB  
Article
Evaluating Image Quality Metrics as Loss Functions for Image Dehazing
by Rareș Dobre-Baron, Adrian Savu-Jivanov and Cosmin Ancuți
Sensors 2025, 25(15), 4755; https://doi.org/10.3390/s25154755 (registering DOI) - 1 Aug 2025
Viewed by 44
Abstract
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio [...] Read more.
The difficulty and manual nature of procuring human evaluators for ranking the quality of images affected by various types of degradations, and of those cleaned up by developed algorithms, has lead to the widespread adoption of automated metrics, like the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index Metric (SSIM). However, disparities between rankings given by these metrics and those given by human evaluators have encouraged the development of improved image quality assessment (IQA) metrics that are a better fit for this purpose. These methods have been previously used solely for quality assessments and not as objectives in the training of neural networks for high-level vision tasks, despite the potential improvements that may come about by directly optimizing for desired metrics. This paper examines the adequacy of ten recent IQA metrics, compared with standard loss functions, within two trained dehazing neural networks, with observed broad improvement in their performance. Full article
(This article belongs to the Special Issue Sensing and Imaging in Computer Vision)
59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 (registering DOI) - 31 Jul 2025
Viewed by 313
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

24 pages, 4039 KiB  
Review
A Mathematical Survey of Image Deep Edge Detection Algorithms: From Convolution to Attention
by Gang Hu
Mathematics 2025, 13(15), 2464; https://doi.org/10.3390/math13152464 - 31 Jul 2025
Viewed by 205
Abstract
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, [...] Read more.
Edge detection, a cornerstone of computer vision, identifies intensity discontinuities in images, enabling applications from object recognition to autonomous navigation. This survey presents a mathematically grounded analysis of edge detection’s evolution, spanning traditional gradient-based methods, convolutional neural networks (CNNs), attention-driven architectures, transformer-backbone models, and generative paradigms. Beginning with Sobel and Canny’s kernel-based approaches, we trace the shift to data-driven CNNs like Holistically Nested Edge Detection (HED) and Bidirectional Cascade Network (BDCN), which leverage multi-scale supervision and achieve ODS (Optimal Dataset Scale) scores 0.788 and 0.806, respectively. Attention mechanisms, as in EdgeNAT (ODS 0.860) and RankED (ODS 0.824), enhance global context, while generative models like GED (ODS 0.870) achieve state-of-the-art precision via diffusion and GAN frameworks. Evaluated on BSDS500 and NYUDv2, these methods highlight a trajectory toward accuracy and robustness, yet challenges in efficiency, generalization, and multi-modal integration persist. By synthesizing mathematical formulations, performance metrics, and future directions, this survey equips researchers with a comprehensive understanding of edge detection’s past, present, and potential, bridging theoretical insights with practical advancements. Full article
(This article belongs to the Special Issue Artificial Intelligence and Algorithms with Their Applications)
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Viewed by 231
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

21 pages, 563 KiB  
Article
Optimized Interdisciplinary Research Team Formation Using a Genetic Algorithm and Publication Metadata Records
by Christian-Daniel Curiac, Mihai Micea, Traian-Radu Plosca, Daniel-Ioan Curiac and Alex Doboli
AI 2025, 6(8), 171; https://doi.org/10.3390/ai6080171 - 30 Jul 2025
Viewed by 273
Abstract
Forming interdisciplinary research teams is challenging, especially when the pool of candidates is large and/or the addressed research projects require multi-disciplinary expertise. Based on their previous research outputs, like published work, a data-driven team formation procedure selects the researchers that are likely to [...] Read more.
Forming interdisciplinary research teams is challenging, especially when the pool of candidates is large and/or the addressed research projects require multi-disciplinary expertise. Based on their previous research outputs, like published work, a data-driven team formation procedure selects the researchers that are likely to work well together while covering all areas and offering all skills required by the multi-disciplinary topic. The description of the research team formation problem proposed in this paper uses novel quantitative metrics about the team candidates computed from bibliographic metadata records. The proposed methodology first analyzes the metadata fields that provide useful information and then computes four synthetic indicators regarding candidates’ skills and their interpersonal traits. Interdisciplinary teams are formed by solving a complex combinatorial multi-objective weighted set cover optimization problem, defined as equations involving the synthetic indicators. Problem solving uses the NSGA-II genetic algorithm. The proposed methodology is validated and compared with other similar approaches using a dataset on researchers from Politehnica University of Timisoara extracted from the IEEE Xplore database. Experimental results show that the method can identify potential research teams in situations for which other related algorithms fail. Full article
Show Figures

Figure 1

17 pages, 920 KiB  
Article
Enhancing Early GI Disease Detection with Spectral Visualization and Deep Learning
by Tsung-Jung Tsai, Kun-Hua Lee, Chu-Kuang Chou, Riya Karmakar, Arvind Mukundan, Tsung-Hsien Chen, Devansh Gupta, Gargi Ghosh, Tao-Yuan Liu and Hsiang-Chen Wang
Bioengineering 2025, 12(8), 828; https://doi.org/10.3390/bioengineering12080828 - 30 Jul 2025
Viewed by 272
Abstract
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision [...] Read more.
Timely and accurate diagnosis of gastrointestinal diseases (GIDs) remains a critical bottleneck in clinical endoscopy, particularly due to the limited contrast and sensitivity of conventional white light imaging (WLI) in detecting early-stage mucosal abnormalities. To overcome this, this research presents Spectrum Aided Vision Enhancer (SAVE), an innovative, software-driven framework that transforms standard WLI into high-fidelity hyperspectral imaging (HSI) and simulated narrow-band imaging (NBI) without any hardware modification. SAVE leverages advanced spectral reconstruction techniques, including Macbeth Color Checker-based calibration, principal component analysis (PCA), and multivariate polynomial regression, achieving a root mean square error (RMSE) of 0.056 and structural similarity index (SSIM) exceeding 90%. Trained and validated on the Kvasir v2 dataset (n = 6490) using deep learning models like ResNet-50, ResNet-101, EfficientNet-B2, both EfficientNet-B5 and EfficientNetV2-B0 were used to assess diagnostic performance across six key GI conditions. Results demonstrated that SAVE enhanced imagery and consistently outperformed raw WLI across precision, recall, and F1-score metrics, with EfficientNet-B2 and EfficientNetV2-B0 achieving the highest classification accuracy. Notably, this performance gain was achieved without the need for specialized imaging hardware. These findings highlight SAVE as a transformative solution for augmenting GI diagnostics, with the potential to significantly improve early detection, streamline clinical workflows, and broaden access to advanced imaging especially in resource constrained settings. Full article
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 228
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

17 pages, 1893 KiB  
Article
Tracking Heat Stress in Broilers: A Thermographic Analysis of Anatomical Sensitivity Across Growth Stages
by Rimena do Amaral Vercellino, Irenilza de Alencar Nääs and Daniella Jorge de Moura
Animals 2025, 15(15), 2233; https://doi.org/10.3390/ani15152233 - 29 Jul 2025
Viewed by 186
Abstract
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical [...] Read more.
This study aimed to identify anatomical regions and developmental stages in broiler chickens that serve as reliable thermographic indicators of acute heat stress. Broilers aged 14, 21, 35, and 39 days were exposed to controlled heat stress, and surface temperatures across 12 anatomical regions were recorded using infrared thermography. Thermal response metrics (maximum, minimum, and mean peak variation) were analyzed with repeated-measures ANOVA and eta squared (η2) to quantify the strength of physiological responses. Principal component and cluster analyses grouped body regions based on their thermal sensitivity. The comb and wattle consistently showed the highest temperature increases (ΔT = 2.3–4.1 °C) and strongest effect sizes (η2 ≥ 0.70), establishing them as primary thermoregulatory markers. As age increased, more body regions—especially peripheral zones like the drumstick and tail—exhibited strong responses (η2 > 0.40), indicating an expansion of thermoregulatory activity. Cluster analysis identified three distinct sensitivity groups, confirming anatomical differences in thermal regulation. Thermographic responses to heat stress in broilers depend on age and region. The comb and wattle are the most reliable biomarkers, while peripheral responses grow more prominent with maturity. These findings support the use of targeted, age-specific infrared thermography for monitoring poultry welfare. Full article
Show Figures

Graphical abstract

14 pages, 476 KiB  
Article
Extra Connectivity and Extra Diagnosability of Enhanced Folded Hypercube-like Networks
by Yihong Wang and Cheng-Kuan Lin
Mathematics 2025, 13(15), 2441; https://doi.org/10.3390/math13152441 - 29 Jul 2025
Viewed by 104
Abstract
In the design of multiprocessor systems, evaluating the reliability of interconnection networks is a critical aspect that significantly impacts system performance and functionality. When quantifying the reliability of these networks, extra connectivity and extra diagnosability serve as fundamental metric parameters, offering valuable insights [...] Read more.
In the design of multiprocessor systems, evaluating the reliability of interconnection networks is a critical aspect that significantly impacts system performance and functionality. When quantifying the reliability of these networks, extra connectivity and extra diagnosability serve as fundamental metric parameters, offering valuable insights into the network’s resilience and fault-handling capabilities. In this paper, we investigate the 1-extra connectivity and 1-extra diagnosability of the n-dimensional enhanced folded hypercube-like network. Through analysis, we show that the 1-extra connectivity of this network is 2n+2. Moreover, for n>5, we determine its 1-extra diagnosability under both the PMC model and the MM model to be 2n+3. These results show that as the dimension n increases, both the 1-extra connectivity and 1-extra diagnosability of the network approach approximately twice the value of traditional diagnosability metrics. This provides quantitative insights into the reliability properties of the enhanced folded hypercube-like network, contributing to a better understanding of its performance in terms of connectivity and fault diagnosis. Full article
Show Figures

Figure 1

13 pages, 2005 KiB  
Article
Automatic Classification of 5G Waveform-Modulated Signals Using Deep Residual Networks
by Haithem Ben Chikha, Alaa Alaerjan and Randa Jabeur
Sensors 2025, 25(15), 4682; https://doi.org/10.3390/s25154682 - 29 Jul 2025
Viewed by 198
Abstract
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. [...] Read more.
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. The approach is tailored to accurately identify advanced 5G waveform types such as Orthogonal Frequency-Division Multiplexing (OFDM), Filtered OFDM (FOFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Weighted Overlap and Add OFDM (WOLA), using both 16-QAM and 64-QAM modulation schemes. To our knowledge, this is the first application of deep learning in the classification of such a diverse set of complex 5G waveforms. The proposed model combines the deep learning capabilities of DRNs for feature extraction with Principal Component Analysis (PCA) for dimensionality reduction and feature refinement. A detailed performance evaluation is conducted using metrics like classification recall, precision, accuracy, and F-measure. When compared with traditional machine learning approaches reported in recent studies, our DRN-based method shows significantly improved classification accuracy and robustness. These results highlight the effectiveness of deep residual networks in improving adaptive signal processing and enabling automatic modulation recognition in future wireless communication technologies. Full article
(This article belongs to the Special Issue AI-Based 5G/6G Communications)
Show Figures

Figure 1

Back to TopTop