Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,826)

Search Parameters:
Keywords = methodological relationships

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3750 KB  
Article
A Model for Mitigating Causes of Waste Effect Using Lean Management Techniques in Green Building Projects
by Ahmed Gamal AbdelHaffez, Usama Hamed Issa, Alaa Atif Abdel-Hafez and Kamal Abbas Assaf
Buildings 2025, 15(19), 3538; https://doi.org/10.3390/buildings15193538 - 1 Oct 2025
Abstract
Lean construction is considered a new methodology for minimizing the causes of waste that hinder the achievement of green building (GB) goals. The main aim of this study is to develop a lean model using fuzzy logic technique to mitigate causes of waste [...] Read more.
Lean construction is considered a new methodology for minimizing the causes of waste that hinder the achievement of green building (GB) goals. The main aim of this study is to develop a lean model using fuzzy logic technique to mitigate causes of waste effect in GB projects and to determine the most appropriate lean tools affecting these causes. The inputs of this model include GB waste and four lean tools, comprising Quality Function Deployment (QFD), Last Planner System (LPS), Value Stream Mapping (VSM), and 5S, while the outputs include four improvement level indices based on the lean tools. The model uses various logical rules to achieve several relations among the inputs and outputs, and it is applied and verified using data related to several causes of waste categorized under five groups. The strongest correlation is found between VSM and 5S indices, while an adverse relationship is observed between QFD and 5S indices. The results indicate that a cause of waste that refers to poor assessment of site conditions is considered the most substantial one due to its high improvement level indices across all lean tools. The most significant waste group is related to GB stakeholders, which contains 38% of key causes of waste. The improvement using QFD increases by 10% compared to VSM and 28.20% compared to 5S. QFD and LPS are measured as the most suitable lean tools to mitigate the causes of waste effects due to their high impact and high improvement level indices. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
19 pages, 937 KB  
Systematic Review
Is Increased Biofilm Formation Associated with Decreased Antimicrobial Susceptibility? A Systematic Literature Review
by Abhinav Madduri, Lobke Vanommeslaeghe and Tom Coenye
Microorganisms 2025, 13(10), 2292; https://doi.org/10.3390/microorganisms13102292 - 1 Oct 2025
Abstract
Biofilm formation is a key factor in microbial survival and persistence, often contributing to reduced antimicrobial susceptibility. This systematic literature review investigates whether increased biofilm formation correlates with decreased antibiotic susceptibility. The literature search was conducted in the Pubmed database and we identified [...] Read more.
Biofilm formation is a key factor in microbial survival and persistence, often contributing to reduced antimicrobial susceptibility. This systematic literature review investigates whether increased biofilm formation correlates with decreased antibiotic susceptibility. The literature search was conducted in the Pubmed database and we identified and screened 328 studies, with 35 ultimately meeting the inclusion criteria for detailed analysis. Findings reveal that the relationship between biofilm size and antimicrobial susceptibility is highly variable and influenced by multiple factors, including microbial species, strain-specific traits, antibiotic type, and experimental methodologies. While some studies report a positive correlation between biofilm biomass and reduced susceptibility, others show weak or no such relationships, and statistical support for a correlation is often lacking (also due to small sample sizes). The lack of standardized biofilm quantification methods and susceptibility metrics further complicates cross-study comparisons. These findings underscore the need for standardized protocols and more comprehensive datasets to clarify the complex interplay between biofilm formation and antibiotic susceptibility. Regardless of these difficulties, the available data clearly indicate that ‘bigger’ biofilms are not by definition less susceptible. Future research should prioritize diverse and sufficiently large strain collections and consistent methodologies to better understand and address biofilm-associated antimicrobial tolerance. Full article
24 pages, 6313 KB  
Article
Research on the Internal Force Solution for Statically Indeterminate Structures Under a Local Trapezoidal Load
by Pengyun Wei, Shunjun Hong, Lin Li, Junhong Hu and Haizhong Man
Computation 2025, 13(10), 229; https://doi.org/10.3390/computation13100229 - 1 Oct 2025
Abstract
The calculation of internal forces is a critical aspect in the design of statically indeterminate structures. Local trapezoidal loads, as a common loading configuration in practical engineering (e.g., earth pressure, uneven surcharge), make it essential to investigate how to compute the internal forces [...] Read more.
The calculation of internal forces is a critical aspect in the design of statically indeterminate structures. Local trapezoidal loads, as a common loading configuration in practical engineering (e.g., earth pressure, uneven surcharge), make it essential to investigate how to compute the internal forces of statically indeterminate structures under such loads by using the displacement method. The key to displacement-based analysis lies in deriving the fixed-end moment formulas for local trapezoidal loads. Traditional methods, such as the force method, virtual beam method, or integral method, often involve complex computations. Therefore, this study aims to derive a general formula for fixed-end moments in statically indeterminate beams subjected to local trapezoidal loads by using the integral method, providing a more efficient and clear theoretical tool for engineering practice while addressing the limitations of existing educational and applied methodologies. The integral method is employed to derive fixed-end moment expressions for three types of statically indeterminate beams: (1) a beam fixed at both ends, (2) an an-end-fixed another-end-simple-support beam, and (3) a beam fixed at one end and sliding at the other. This approach eliminates the redundant equations of the traditional force method or the indirect transformations of the virtual beam method, directly linking boundary conditions through integral operations on load distributions, thereby significantly simplifying the solving process. Three representative numerical examples validate the correctness and universality of the derived formulas. The results demonstrate that the solutions obtained via the integral method align with software-calculated results, yet the proposed method yields analytical expressions for structural internal forces. Comparative analysis shows that the integral method surpasses traditional approaches (e.g., force method, virtual beam method) in terms of conceptual clarity and computational efficiency, making it particularly suitable for instructional demonstrations and rapid engineering calculations. The proposed integral method provides a systematic analytical framework for the internal force analysis of statically indeterminate structures under local trapezoidal loads, combining mathematical rigor with engineering practicality. The derived formulas can be directly applied to real-world designs, substantially reducing computational complexity. Moreover, this method offers a more intuitive theoretical case for structural mechanics education, enhancing students’ understanding of the mathematical–mechanical relationship between loads and internal forces. The research outcomes hold both theoretical significance and practical engineering value, establishing a solving paradigm for the displacement-based analysis of statically indeterminate structures under complex local trapezoidal loading conditions. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

23 pages, 331 KB  
Article
Breaking the Cycle of Malnutrition: The Role of Food and Nutrition Literacy in Addressing Food Insecurity Among Lebanese Adolescents
by Elie Ghadban, Tigresse Boutros, Souheil Hallit, Nikolaos Tzenios, Yonna Sacre and Maha Hoteit
Nutrients 2025, 17(19), 3140; https://doi.org/10.3390/nu17193140 - 30 Sep 2025
Abstract
Background: Undernutrition and overnutrition are considered a rising challenge among adolescents in low- and middle-income countries, including Lebanon, where overlapping economic, political, and public health crises have worsened food insecurity. Food and nutrition literacy in adolescents may serve as protective factors against food [...] Read more.
Background: Undernutrition and overnutrition are considered a rising challenge among adolescents in low- and middle-income countries, including Lebanon, where overlapping economic, political, and public health crises have worsened food insecurity. Food and nutrition literacy in adolescents may serve as protective factors against food insecurity and its nutritional consequences. This study aims to evaluate the associations between adolescent and parental food and nutrition literacy with household and adolescent food insecurity, and explores their relationship with stunting and overweight/obesity. Methodology: A cross-sectional survey was conducted between March and July 2022 among 442 Lebanese adolescents (10–18 years) and one parent/caregiver per household, recruited via snowball sampling from all eight governorates. Validated tools assessed adolescent food and nutrition literacy, parental food literacy, household/adolescent food insecurity, and anthropometric status. Chi-square, t-tests, and multivariable logistic regressions identified factors associated with food insecurity, stunting, and overweight/obesity. Results: Higher adolescent food and nutrition literacy was significantly associated with lower odds of severe food insecurity (aOR = 0.43, 95% CI: 0.26–0.70). Higher parental food literacy scores were linked to reduced odds of severe household food insecurity (aOR = 0.94, 95% CI: 0.90–0.98). Severe food insecurity was more likely in households in Akkar and among adolescents not attending school or with poor food and nutrition literacy. Overweight/obesity was positively associated with attending private school and higher parental body mass index, but inversely associated with higher child food security and household crowding index. No significant association was found between food insecurity and stunting. Conclusions: Both adolescent and parental food and nutrition literacy are protective against severe food insecurity, highlighting the value of literacy-focused interventions alongside economic support measures. Addressing both educational and structural determinants may help break the cycle of malnutrition in crisis-affected Lebanese youth. Full article
51 pages, 7232 KB  
Review
Machine Learning-Driven Design of Fluorescent Materials: Principles, Methodologies, and Future Directions
by Qihang Bian and Xiangfu Wang
Nanomaterials 2025, 15(19), 1495; https://doi.org/10.3390/nano15191495 - 30 Sep 2025
Abstract
Dual-mode fluorescent materials are vital in bioimaging, sensing, displays, and lighting, owing to their efficient emission of visible or near-infrared light. Traditional optimization methods, including empirical experiments and quantum chemical computations, suffer from high costs, high labor intensities, and difficulties capturing complex relationships [...] Read more.
Dual-mode fluorescent materials are vital in bioimaging, sensing, displays, and lighting, owing to their efficient emission of visible or near-infrared light. Traditional optimization methods, including empirical experiments and quantum chemical computations, suffer from high costs, high labor intensities, and difficulties capturing complex relationships among molecular structures, synthesis parameters, and key photophysical properties. In this review, fundamental principles, key methodologies, and representative applications of machine learning (ML) in predicting fluorescent material performance are systematically summarized. The core ML techniques covered include supervised regression, neural networks, and physics-informed hybrid frameworks. The representative fluorescent materials analyzed encompass aggregation-induced emission (AIE) luminogens, thermally activated delayed fluorescence (TADF) emitters, quantum dots, carbon dots, perovskites, and inorganic phosphors. This review details the modeling approaches and typical workflows—such as data preprocessing, descriptor selection, and model validation—and highlights algorithmic optimization strategies such as data augmentation, physical constraints embedding, and transfer learning. Finally, prevailing challenges, including limited high-quality data availability, weak model interpretability, and insufficient model transferability, are discussed. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
9 pages, 499 KB  
Conference Report
Advancing Arbovirus Research in the Caribbean and Latin America: 2025 Global Virus Network Regional Meeting
by Tiffany R. Butterfield, Joshua J. Anzinger, John Lindo, Gene D. Morse, Sten H. Vermund and Maggie L. Bartlett
Viruses 2025, 17(10), 1330; https://doi.org/10.3390/v17101330 - 30 Sep 2025
Abstract
A May 2025 symposium convened leading virology experts across Latin America and the Caribbean (LAC) to advance regional research and collaborative efforts. Sessions explored cutting-edge developments in arbovirology, pressing challenges in viral surveillance, and the complexities of vector biology. Integrated networking opportunities and [...] Read more.
A May 2025 symposium convened leading virology experts across Latin America and the Caribbean (LAC) to advance regional research and collaborative efforts. Sessions explored cutting-edge developments in arbovirology, pressing challenges in viral surveillance, and the complexities of vector biology. Integrated networking opportunities and hands-on workshops offered mentorship and training, focused on the next generation of virologists, and strengthened scientific communication within the region. The morning session included reports from the LAC Global Virus Network (GVN) Centers of Excellence. A roundtable dialogue tackled the present challenges faced in arbovirus research. The Abbott Pandemic Defense Coalition reported on its collaborative progress. Trainees from the University at Buffalo, the State University of New York, and the University of the West Indies Global Infectious Diseases Research Training program showcased their current research projects. A session concentrated on health landscapes and the capacity for viral vaccinations within the region. A mentoring workshop focused on immune evasion methodologies and obstacles associated with arboviruses. One Health perspectives on viral zoonotic diseases addressed developments in the surveillance of vector-borne viruses in the Caribbean. Studies of mosquitoes and ticks as vectors of viruses included discussion on the neurovirulence of arboviruses and symptoms occurring after viral infections. Pediatric infectious diseases were highlighted in their environmental health context. An additional mentoring workshop centered on viruses and the microbiome. The relationship between viruses and cancer was discussed in the South American context and included recent advancements in the field of vaccinology. The Jamaica Regional GVN meeting promoted collaboration, facilitated the exchange of knowledge, and advanced research efforts throughout the region. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

40 pages, 5472 KB  
Article
Geotourism: From Theoretical Definition to Practical Analysis in the Sohodol Gorges Protected Area, Romania
by Amalia Niță, Ionuț-Adrian Drăguleasa, Emilia Constantinescu and Dorina Bonea
Geographies 2025, 5(4), 53; https://doi.org/10.3390/geographies5040053 - 30 Sep 2025
Abstract
The Sohodol Gorges has become a location of interest for tourists seeking ecological experiences and outdoor activities. The main purpose of the present study is to evaluate the attitudes of Romanian tourists toward the development of geotourism in this region following the COVID-19 [...] Read more.
The Sohodol Gorges has become a location of interest for tourists seeking ecological experiences and outdoor activities. The main purpose of the present study is to evaluate the attitudes of Romanian tourists toward the development of geotourism in this region following the COVID-19 pandemic. In conjunction with the research questions, hypotheses, variables, and research methodology, the following research objectives were emphasized in this study of the Oltenia region: (1) investigate how certain socio-demographic variables, such as age, gender, level of education, and occupation, influence tourists’ perceptions of the various aspects of geotourism development in the Sohodol Gorges; (2) analyze the different dimensions of geotourism, including its economic, ecological, and socio-cultural impacts, thus contributing to a deeper understanding of how geotourism is perceived in the study area in the post-pandemic context. For a qualitative evaluation of the information presented in this study, the authors used a qualitative survey with open questions and closed questions as a data collection method. For data processing and analysis, the EViews version 12.0 software package was used, enabling complex statistical analyses such as multiple regressions and correlation coefficient determination. These techniques were essential for identifying and interpreting the relationships between demographic variables and tourist perceptions. The research results provide a detailed picture of the influence that demographic and behavioral factors have on tourists’ perceptions in the context of post-COVID-19 geotourism development in the Sohodol Gorges of Romania. Education level and age play a significant role in shaping economic and environmental perceptions, indicating that tourists with higher education levels are more aware of the economic and ecological impact of tourism. Full article
Show Figures

Figure 1

19 pages, 351 KB  
Article
Motherhood as a Leadership Crucible: The Transformative Power of Resilience
by Chan Hsiao and Luo Lu
Psychol. Int. 2025, 7(4), 81; https://doi.org/10.3390/psycholint7040081 - 30 Sep 2025
Abstract
This study is guided by the pivotal yet underexplored question, “How does the resilience developed through the motherhood experience, particularly within the mother/child relationship, translate into a mother’s approach to her relationships with followers in a professional context?” This study delves into the [...] Read more.
This study is guided by the pivotal yet underexplored question, “How does the resilience developed through the motherhood experience, particularly within the mother/child relationship, translate into a mother’s approach to her relationships with followers in a professional context?” This study delves into the impact of resilience fostered through motherhood on leadership styles, especially in professional interactions with subordinates. Adopting the grounded theory methodology, we collected qualitative data through in-depth interviews with 28 female leaders, each a mother of at least one child. We followed a grounded theory analytic procedure to systematically organize data and examine the intricacies of maternal leadership and its process-oriented resilience development. Our research uncovers a three-stage resilience-strengthening process among maternal leaders. The three stages involve the emergence of challenges, followed by the development of transformative resilience, culminating in the significant impact on inclusive leadership styles and the evolution of leader–follower relationships. This study contributes to the academic discourse in three key ways. First, it offers unique insights into how the challenges and adversities inherent in motherhood can be transformative for leadership development. Second, by identifying and detailing a three-stage process of resilience development in maternal leaders, the research provides a nuanced understanding of how personal experiences influence professional leadership capabilities. Third, the study broadens the current discourse on inclusive leadership by incorporating the maternal perspective, a relatively underexplored area, particularly in the context of transformed leader/follower relationships. Full article
Show Figures

Figure 1

37 pages, 3856 KB  
Article
Urban Health Assessment Through a Planetary Health Perspective: Methods and First Results from the Rome NBFC Experiment
by Carmina Sirignano, Daiane De Vargas Brondani, Gianluca Di Iulio, Chiara Anselmi, Stefania Argentini, Alessandro Bracci, Carlo Calfapietra, Silvia Canepari, Giampietro Casasanta, Giorgio Cattani, Simona Ceccarelli, Hellas Cena, Tony Christian Landi, Rosa Coluzzi, Rachele De Giuseppe, Stefano Decesari, Annalisa Di Cicco, Alessandro Domenico Di Giosa, Luca Di Liberto, Alessandro Di Menno di Bucchianico, Marisa Di Pietro, Oxana Drofa, Simone Filardo, Raffaela Gaddi, Alessandra Gaeta, Clarissa Gervasoni, Alessandro Giammona, Michele Pier Luca Guarino, Laura De Gara, Maria Cristina Facchini, Vito Imbrenda, Antonia Lai, Stefano Listrani, Alessia Lo Dico, Lorenzo Marinelli, Lorenzo Massimi, Maria Cristina Monti, Luca Mortarini, Marco Paglione, Ferdinando Pasqualini, Danilo Ranieri, Laura Restaneo, Matteo Rinaldi, Eleonora Rubin, Andrea Scartazza, Rosa Sessa, Alice Traversa, Lina Fusaro, Annamaria Altomare, Gloria Bertoli and Francesca Costabileadd Show full author list remove Hide full author list
Atmosphere 2025, 16(10), 1144; https://doi.org/10.3390/atmos16101144 - 29 Sep 2025
Abstract
Addressing the planetary crisis associated with climate change, biodiversity loss, global pollution, and public health requires novel and holistic approaches. Here, we present the methodology and initial results of an experiment conducted in Rome within the framework of the National Biodiversity Future Center [...] Read more.
Addressing the planetary crisis associated with climate change, biodiversity loss, global pollution, and public health requires novel and holistic approaches. Here, we present the methodology and initial results of an experiment conducted in Rome within the framework of the National Biodiversity Future Center (NBFC) project, Spoke 6. The major objective of this study was to outline the planetary health approach as a lens to assess urban health. This transdisciplinary case study explored the relationship between urban traffic-related external exposome and pro-oxidative responses in humans and plants. This methodology is based on the integration of atmospheric dynamics modeling, state-of-the-art aerosol measurements, biomonitoring in human cohorts, in vitro cellular assays, and the assessment of functional trait markers in urban trees. The results indicate that short-term exposure to urban aerosols, even at low concentrations, triggers rapid oxidative and inflammatory responses in bronchial epithelial cells, modulates gene and miRNA expression, alters gut microbiota diversity, and induces functional trait changes in urban trees. This study also highlights the feedback mechanisms between vegetation and atmospheric conditions, emphasizing the role of urban greenery in modulating microclimate and exposure. The methodology and initial results presented here will be further analyzed in future studies to explore proof of a cause–effect relationship between short-term exposure to traffic-related environmental stressors in urban areas and oxidative stress in humans and plants, with implications for chronic responses. In a highly urbanized world, this evidence could be pivotal in motivating the widespread implementation of planetary health approaches for assessing urban health. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

28 pages, 4569 KB  
Article
Physicochemical Characterization of Camellia oleifera Husks from Different Regions and Microwave-Assisted RSM Optimization of Tea Saponin Extraction
by Weixian Wu, Yuhuan Liu, Jian Huang, Xiaoyan Liu, Guangda Zhang, Zhiqiang Gu, Shuangquan Huang, Yunpu Wang and Qi Zhang
Foods 2025, 14(19), 3380; https://doi.org/10.3390/foods14193380 - 29 Sep 2025
Abstract
This study investigated the physicochemical properties of Camellia oleifera husks collected from three regions of Jiangxi Province (Ganzhou—GZ, Yichun—YC, and Jiujiang—JJ) and extracted tea saponins via microwave-assisted solvent extraction (MASE), aiming to provide a theoretical basis for the high-value utilization of this agricultural [...] Read more.
This study investigated the physicochemical properties of Camellia oleifera husks collected from three regions of Jiangxi Province (Ganzhou—GZ, Yichun—YC, and Jiujiang—JJ) and extracted tea saponins via microwave-assisted solvent extraction (MASE), aiming to provide a theoretical basis for the high-value utilization of this agricultural by-product. The husks from YC were rich in bioactive compounds such as tea saponins (16.29 ± 0.02%), with lower cellulose (21.05 ± 1.05%) and lignin (12.48 ± 1.14%) contents and higher hemicellulose (27.40 ± 0.80%) content. The husks from JJ exhibited abundant porosity and a larger specific surface area (40–60 mesh, 4.15 ± 0.04 m2/g). Single-factor extraction experiments indicated that the microstructure and chemical composition of Camellia oleifera husks significantly affected the extraction efficiency of saponins, tannins, and flavonoids. The optimal extraction conditions for tea saponins were established using Box–Behnken response surface methodology, with the liquid-to-solid ratio identified as the most critical factor. Optimal conditions for GZ husks were a liquid-to-solid ratio of 46.75 mL/g, ethanol concentration of 35.5%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 7.49 ± 0.01%. Optimal conditions for YC husks were a liquid-to-solid ratio of 50.55 mL/g, ethanol concentration of 40.13%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 16.29 ± 0.02%. Optimal conditions for JJ husks were a liquid-to-solid ratio of 47.44 mL/g, ethanol concentration of 37.28%, extraction time of 6 min, and microwave power of 350 W, with the extraction yield of 9.39 ± 0.02%. The study provides important scientific evidence for understanding the structure–function relationship of Camellia oleifera husks and offers practical guidance for developing sustainable industrial processes to convert agricultural by-products into high-value bioactive compounds, thereby promoting resource recycling and economic benefits in the Camellia oleifera industry. Full article
Show Figures

Figure 1

20 pages, 1282 KB  
Systematic Review
Identifying Circularity in Nature-Based Solutions: A Systematic Review
by Héctor Guadalupe Ramírez-Escamilla, María Concepción Martínez-Rodríguez, Diego Domínguez-Solís, Ana Laura Cervantes-Nájera and Lorena Elizabeth Campos-Villegas
Sustainability 2025, 17(19), 8722; https://doi.org/10.3390/su17198722 - 28 Sep 2025
Abstract
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to [...] Read more.
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to conduct a systematic literature review to identify and analyze the main NBS applied and explore how they are associated with CE strategies. This study performs a systematic literature review of NBS and their relationship with the CE using the PRISMA methodology, analyzing a total of 32 articles retrieved from the SCOPUS database. The main NBS include constructed wetlands, green infrastructure, and soil restoration and enrichment solutions. Constructed wetlands are linked to strategies such as recycling and reuse due to their role in treating urban and domestic wastewater for reuse, thereby increasing water availability. Green infrastructure is associated with strategies like redesign and reduction, as it involves the use of lower-impact materials and designs for rainwater harvesting and thermal comfort improvement. Soil enrichment and remediation solutions are connected to reuse and recycling strategies, as most derive from organic waste composting or microorganisms. NBS and CE strategies highlight how these solutions not only provide direct environmental benefits but also, when analyzed from a sustainability perspective, can offer social and economic benefits. Furthermore, understanding their relationship will facilitate their integration into regulations for transitioning toward circularity in industries and cities. The contribution of this article lies in synthesizing and systematizing the evidence on how NBS operationalizes CE strategies, identifying the main mechanisms and gaps, and proposing a conceptual model that can guide future research and policy design. Full article
(This article belongs to the Special Issue Green Innovation, Circular Economy and Sustainability Transition)
Show Figures

Figure 1

23 pages, 4883 KB  
Article
Causal Matrix Long Short-Term Memory Network for Interpretable Significant Wave Height Forecasting
by Mingshen Xie, Wenjin Sun, Ying Han, Shuo Ren, Chunhui Li, Jinlin Ji, Yang Yu, Shuyi Zhou and Changming Dong
J. Mar. Sci. Eng. 2025, 13(10), 1872; https://doi.org/10.3390/jmse13101872 - 27 Sep 2025
Abstract
This study proposes a novel causality-structured matrix long short-term memory (C-mLSTM) model for significant wave height (SWH) forecasting. The framework incorporates a two-stage causal feature selection methodology using cointegration testing and Granger causality testing to identify long-term stable causal relationships among variables. These [...] Read more.
This study proposes a novel causality-structured matrix long short-term memory (C-mLSTM) model for significant wave height (SWH) forecasting. The framework incorporates a two-stage causal feature selection methodology using cointegration testing and Granger causality testing to identify long-term stable causal relationships among variables. These relationships are embedded within the C-mLSTM architecture, enabling the model to effectively capture both temporal dependencies and causal information within the data. Furthermore, the model integrates Bayesian optimization (BO) and twin delayed deep deterministic policy gradient (TD3) algorithms for synergistic optimization. This combined TD3-BO approach achieves an 11.11% improvement in the mean absolute percentage error (MAPE) on average compared to the base model without optimization. For 1–24 h SWH forecasts, the proposed TD3-BO-C-mLSTM outperforms the benchmark models TD3-BO-LSTM and TD3-BO-mLSTM in prediction accuracy. Finally, a Shapley additive explanations (SHAP) analysis was conducted on the input features of the BO-C-mLSTM model, which reveals interpretability patterns consistent with the two-stage causal feature selection methodology. This research demonstrates that integrating causal modeling with optimization strategies significantly enhances time-series forecasting performance. Full article
(This article belongs to the Special Issue AI-Empowered Marine Energy)
Show Figures

Figure 1

41 pages, 3684 KB  
Review
Chrysin as a Bioactive Scaffold: Advances in Synthesis and Pharmacological Evaluation
by Chae Yun Jeong, Chae-Eun Kim, Eui-Baek Byun and Jongho Jeon
Int. J. Mol. Sci. 2025, 26(19), 9467; https://doi.org/10.3390/ijms26199467 - 27 Sep 2025
Abstract
Chrysin (5,7-dihydroxyflavone) is a flavonoid widely distributed in propolis, honey, and various plant sources. It exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, antimicrobial, and anti-diabetic effects. However, its clinical translation is hampered by poor aqueous solubility, low bioavailability, and [...] Read more.
Chrysin (5,7-dihydroxyflavone) is a flavonoid widely distributed in propolis, honey, and various plant sources. It exhibits a wide range of pharmacological activities, including anti-inflammatory, antioxidant, anticancer, antimicrobial, and anti-diabetic effects. However, its clinical translation is hampered by poor aqueous solubility, low bioavailability, and rapid metabolic clearance. To address these limitations and expand the chemical space of this natural scaffold, extensive synthetic efforts have focused on generating structurally diverse chrysin derivatives that possess improved drug-like properties. This review systematically categorizes synthetic methodologies—such as etherification, esterification, transition-metal-mediated couplings, sigmatropic rearrangements, and electrophilic substitutions—and integrates them with corresponding biological outcomes. Particular emphasis is placed on recent (2020–present) advances that directly link structural modifications with pharmacological enhancements, thereby offering comparative structure–activity relationship (SAR) insights. In addition, transition-metal-catalyzed C–C bond-forming reactions are highlighted in a dedicated section, underscoring their growing role in accessing bioactive chrysin analogs previously unattainable by conventional chemistry. Unlike prior reviews that mainly summarized biological activities or broadly covered flavonoid scaffolds, this article bridges synthetic diversification with pharmacological evaluation. It provides both critical synthesis and mechanistic interpretation. Overall, this work consolidates current knowledge and suggests future directions that integrate synthetic innovation with pharmacological validation and address pharmacokinetic challenges in chrysin derivatives. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

16 pages, 11267 KB  
Article
Seepage Characteristics and Critical Scale in Gas-Bearing Coal Pores Under Water Injection: A Multifractal Approach
by Qifeng Jia, Xiaoming Ni, Jingshuo Zhang, Bo Li, Lang Liu and Jingyu Wang
Fractal Fract. 2025, 9(10), 629; https://doi.org/10.3390/fractalfract9100629 - 27 Sep 2025
Abstract
To investigate the flow characteristics of movable water in coal under the influence of micro-nano pore fractures with multiple fractal structures, this study employed nuclear magnetic resonance (NMR) and multifractal theory to analyze gas–water seepage under different injection pressures. Then, the scale threshold [...] Read more.
To investigate the flow characteristics of movable water in coal under the influence of micro-nano pore fractures with multiple fractal structures, this study employed nuclear magnetic resonance (NMR) and multifractal theory to analyze gas–water seepage under different injection pressures. Then, the scale threshold for mobile water entering coal pores and fractures was determined by clarifying the relationship among “injection pressure-T2 dynamic multiple fractal parameter seepage resistance-critical pore scale”. The results indicate that coal samples from Yiwu (YW) and Wuxiang (WX) enter the nanoscale pore size range at an injection pressure of 8 MPa, while the coal sample from Malan (ML) enters the nanoscale pore size range at an injection pressure of 9 MPa. During the water injection process, there is a significant linear relationship between the multiple fractal parameters log X(q, ε) and log(ε) of the sample. The generalized fractal dimension D(q) decreases monotonically with increasing q in an inverse S-shape. This decrease occurs in two distinct stages: D(q) decreases rapidly in the low probability interval q < 0; D(q) decreases slowly in the high probability interval q > 0. The multiple fractal singularity spectrum function f(α) has an asymmetric upward parabolic convex function relationship with α, which is divided into a rapidly increasing left branch curve and a slowly decreasing right branch curve with α0 as the boundary. Supporting evidence indicates the feasibility of a methodology for identifying the variation in multiple fractal parameters of gas–water NMR seepage and the critical scale transition conditions. This investigation establishes a methodological foundation for analyzing gas–water transport pathways within porous media materials. Full article
Show Figures

Figure 1

18 pages, 788 KB  
Article
The Importance of the Protected Area for the Life of the Local Community—A Case Study of the Deliblato Sands Special Nature Reserve
by Dragan Novaković, Igor Trišić, Snežana Štetić, Adina Nicoleta Candrea and Svetlana D. Živković-Radeta
Land 2025, 14(10), 1956; https://doi.org/10.3390/land14101956 - 27 Sep 2025
Abstract
The Deliblato Sands Special Nature Reserve encompasses five municipalities and several settlements. This significantly protected region has a strong relationship between its ecosystem and the people who live there. The local population benefits from various advantages provided by this reserve. The residents’ quality [...] Read more.
The Deliblato Sands Special Nature Reserve encompasses five municipalities and several settlements. This significantly protected region has a strong relationship between its ecosystem and the people who live there. The local population benefits from various advantages provided by this reserve. The residents’ quality of life greatly depends on the reserve’s resources. When used responsibly, they can guarantee a sustainable system with assets that are renewable. Additionally, both locals and tourists benefit from the utilization of forest space for recreation. Above all, endangered plant and animal species are protected in the Deliblato Sands woodlands. Therefore, the role of the local population in protecting this reserve is crucial for the survival of these species. Visitors from both domestic and foreign countries visit this reserve each year in considerable numbers. The study included a quantitative methodology, in which data were collected using questionnaires. The study’s goal is to find out whether the nature reserve has an impact on residents’ lives, activities, and habits, i.e., whether characteristics have an impact on respondents’ contentment. This research aims to examine how the protected area (PA) affects the life of the local community. A total of 1450 residents were surveyed regarding the impact of the Deliblato Sands ecosystem on their habits and activities. Analysis of the data indicates that the inhabitants are significantly impacted by the PA. The strongest impacts are grouped into the ecological and socio-cultural dimensions, while the economic dimension is the one with the weakest impact. The study’s value is evident in the crucial information that was supplied for the creation of national and local planning documents pertaining to the development of rural areas and tourism. The active participation of communities must be the foundation of any planning for tourism growth. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Tourism Development)
Show Figures

Figure 1

Back to TopTop