Seepage Characteristics and Critical Scale in Gas-Bearing Coal Pores Under Water Injection: A Multifractal Approach
Abstract
1. Introduction
2. Research Methodology
2.1. NMR Experiment
2.2. Calculation of Fractal Parameters
3. Results and Discussion
3.1. Threshold for Water Entering Coal Borehole at Different Injection Pressures
3.2. Analysis of Multiple Fractal Results by NMR
3.3. Characterization of Multiple Fractal Features of Seepage
3.4. Analysis and Verification of Gas–Water Seepage Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Fu, Q.; Wang, K.; Guo, C.; Li, X. Effects of the deviatoric stress ratio on the coal failure and permeability during deep mining. Geotech. Geol. Eng. 2020, 38, 6093–6105. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Ge, X.; Deng, S.; Liu, H.; Gu, D. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR. Chin. J. Geophys.-Ch. 2018, 61, 1628–1638. [Google Scholar]
- Lin, J.; Ren, T.; Cheng, Y.; Nemcik, J.; Wang, G. Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study. Energy 2019, 188, 116115. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.; Chu, X.; Vandeginste, V.; Ju, W. Multifractal analysis in characterizing adsorption pore heterogeneity of middle-and high-rank coal reservoirs. ACS Omega 2020, 5, 19385–19401. [Google Scholar] [CrossRef]
- Lin, B.; Nie, W.; Zhu, C.; Wang, Z.; Li, H. Microwave irradiation on pore morphology of coal powder. Fuel 2018, 227, 434–447. [Google Scholar] [CrossRef]
- Jia, Q.F.; Liu, D.M.; Cai, Y.D.; Lu, Y.J.; Li, R.; Wu, H.; Zhou, Y.F. Nano-CT measurement of pore-fracture evolution and diffusion transport induced by fracturing in medium-high rank coal. J. Nat. Gas Sci. Eng. 2022, 106, 104769. [Google Scholar] [CrossRef]
- Ge, X.; Fan, Y.; Li, J.; Zahid, M. Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China. J. Petrol. Sci. Eng. 2015, 127, 297–304. [Google Scholar] [CrossRef]
- Zhang, J.; Ni, X.; Liu, X.; Su, E. Influences of Different Acid Solutions on Pore Structures and Fractal Features of Coal. Fractal Fract. 2024, 8, 82. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, J.; Han, L.; Liu, X. Methane Desorption—Diffusion Behaviors in Micropores of Coal under Different Water Displacement Pressures. Langmuir 2024, 40, 23081–23093. [Google Scholar] [CrossRef]
- Li, W.; Liu, H.; Song, X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals. Int. J. Coal Geol. 2015, 144, 138–152. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Z.; Cai, Y.; Sun, F. Characterizing coal gas reservoirs: A multiparametric evaluation based on geological and geophysical methods. Gondwana Res. 2024, 133, 91–107. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Fu, J.; Zhu, N.; Chen, D.; Wang, Y.; Ding, S. Experimental study on compressive behavior and failure characteristics of imitation steel fiber concrete under uniaxial load. Constr. Build. Mater. 2023, 399, 132599. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Zhang, D.; Yang, K.; Li, X.; Wang, D.; Li, Y. Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics. Energy 2023, 275, 127470. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.F.; Hu, Q.H.; Liu, L.F.; Jia, L.B.; Gao, S.S.; Wang, Y. Pore structure heterogeneity of Wufeng-Longmaxi shale, Sichuan Basin, China: Evidence from gas physisorption and multifractal geometries. J. Petrol. Sci. Eng. 2022, 208, 109313. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, D.; Cai, Y.; Sun, F.; Zhou, Y. Pathways and challenges of the application of geophysical techniques to multifaceted coalbed methane reservoir characterization. Gondwana Res. 2025, 147, 164–183. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, D.; Cai, Y.; Qiu, F.; Sun, F. Gas-Bearing Characteristics of Coal Measure Strata and Logging Evaluation of Fluid Pressure Systems. Phys. Fluids 2025, 37, 046618. [Google Scholar] [CrossRef]
- Jia, Q.; Liu, D.; Cai, Y.; Yao, Y.; Lu, Y.; Zhou, Y. Variation of adsorption effects in coals with different particle sizes induced by differences in microscopic adhesion. Chem. Eng. J. 2023, 452, 139511. [Google Scholar] [CrossRef]
- Si, N.; Liu, G.; Lin, J.; Chang, P.; Wang, X.; Zhang, Z.; Liu, H. Effects of CS2 Solvent Extraction on Nanopores in Coal. Energy Fuels 2023, 37, 13799–13809. [Google Scholar] [CrossRef]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Xie, Y.; Hou, M.Z.; Li, C. Anisotropic characteristics of acoustic emission and the corresponding multifractal spectrum during progressive failure of shale under cyclic loading. Int. J. Rock Mech. Min. Sci. 2023, 165, 105364. [Google Scholar] [CrossRef]
- Jia, Q.; Liu, D.; Cai, Y.; Zhou, Y.; Zhao, Z.; Yang, Y. AFM characterization of physical properties in coal adsorbed with different cations induced by electric pulse fracturing. Fuel 2022, 327, 125247. [Google Scholar] [CrossRef]
- Shi, Q.; Shi, Y.; Wang, S.; Kou, B.; Zhao, H.; Ji, R.; Yang, X.; Liu, P.; Li, Z. Experimental study on the tar and gas distribution during tar-rich coal pyrolysis with stress loading. Fuel 2024, 376, 132727. [Google Scholar] [CrossRef]
- Liu, H.; Liu, G.; Zhang, Z.; Li, B.; Si, N.; Guan, W.; Lin, J. Effects of Liquid CO2 Phase Transition Fracturing on Mesopores and Micropores in Coal. Energy Fuels 2022, 36, 10016–10025. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Cai, Y.; Wang, Y.; Jia, Q. Coal structure and its implications for coalbed methane exploitation: A review. Energy Fuels 2021, 35, 86–110. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, J.; Yang, H.; Tian, F.; Han, J.; Zhang, M. Mechanism of methane adsorption and diffusion and its influencing factors based on the fractal structure of coal-based porous media. Energy Fuels 2022, 36, 6843–6859. [Google Scholar] [CrossRef]
- Wang, L.; Wu, S.; Han, S.; Hu, B.; Wang, Q.; Zhang, K.; Song, T. Fractal analysis of coal pore structure based on low-pressure gas adsorption and its influence on methane adsorption capacity: A perspective from micropore filling model. Energy Fuels 2024, 38, 4031–4046. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, G.; Liu, H.; Wang, X.; Lin, J.; Barakos, G.; Chang, P. Fractal dynamics model of gas adsorption in porous media. Phys. Fluids 2025, 37, 016623. [Google Scholar] [CrossRef]
- Porada, S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis. Fuel 2004, 83, 1071–1078. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, B.; Li, Y.; Zhu, C.; Kong, J.; Li, Y. Enhancement effect of NaCl solution on pore structure of coal with high-voltage electrical pulse treatment. Fuel 2019, 235, 744–752. [Google Scholar] [CrossRef]
- Tong, Z.; Zhang, J.; Li, Z.; Wu, Y.; Wang, D.; Gong, D. Investigation of organic-shale nanopores in the Lower Cambrian Niutitang Formation using low temperature N2 and CO2 adsorption: Multifractality and classification. Micropor. Mesopor. Mater. 2022, 337, 111935. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Tastambek, K.; Kozhahmetova, M.; Sherelkhan, D.; Tauanov, Z. Hydrogenotrophic methanogenesis in coal-bearing environments: Methane production, carbon sequestration, and hydrogen availability. Int. J. Hydrog. Energ. 2024, 52, 1264–1277. [Google Scholar] [CrossRef]
- Akimbekov, N.; Digel, I.; Tastambek, K.; Marat, A.; Turaliyeva, M.; Kaiyrmanova, G. Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. Biology 2022, 11, 1306. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ding, S.; Ashour, A.; Yu, F.; Lv, X.; Han, B. Micro-nano scale pore structure and fractal dimension of ultra-high performance cementitious composites modified with nanofillers. Cement. Concrete. Comp. 2023, 141, 105129. [Google Scholar] [CrossRef]
- Sun, M.; Zou, C.; Xin, D. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis. Cement. Concrete. Comp. 2020, 114, 103731. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, B.; Zhu, C.; Wang, Y.; Guo, C.; Kong, J. Improvement of the electrical disintegration of coal sample with different concentrations of NaCl solution. Fuel 2018, 222, 695–704. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, B.; Li, Y. Experimental study on the effects of electrode materials on coal breaking by plasma. Fuel 2020, 270, 117085. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, H.; Lu, Y. Study of drainage and percolation of nitrogen-water flooding in tight coal by NMR imaging. Rock Mech. Rock Eng. 2018, 51, 3421–34370. [Google Scholar] [CrossRef]
- Pan, J.; Niu, Q.; Wang, K.; Shi, X.; Li, M. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption. Micropor. Mesopor. Mat. 2016, 224, 245–252. [Google Scholar] [CrossRef]
- Niu, Q.; Pan, J.; Cao, L.; Ji, Z.; Wang, H.; Wang, K.; Wang, Z. The evolution and formation mechanisms of closed pores in coal. Fuel 2017, 200, 555–563. [Google Scholar] [CrossRef]
- Fu, X.; Zhao, C.; Lun, Z.; Wang, H.; Wang, M.; Zhang, D. Influences of controlled microwave field radiation on pore structure, surface chemistry and adsorption capability of gas-bearing shales. Mar. Petrol. Geol. 2021, 130, 105134. [Google Scholar] [CrossRef]
- Zheng, S.; Sang, S.; Yao, Y.; Liu, D.; Liu, S.; Wang, M.; Feng, G. A multifractal-based method for determination NMR dual T2 cutoffs in coals. J. Petrol. Sci. Eng. 2022, 214, 110488. [Google Scholar] [CrossRef]
- Jia, Q.; Kou, B.; Shi, Q. The evolution of closed pores induced by in situ pyrolysis of coal and its effect on volatile yield. J. Anal. Appl. Pyrol. 2026, 193, 107386. [Google Scholar] [CrossRef]
- Li, Q.; Liu, D.; Cai, Y.; Zhou, Y.; Yin, T. Investigation on the methane adsorption capacity in coals: Considerations from nanopores by multifractal analysis. Energy Fuels 2021, 35, 6633–6643. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Ning, L.; Zhao, H.; Bi, J. Pore and fracture development in coal under stress conditions based on nuclear magnetic resonance and fractal theory. Fuel 2022, 309, 122112. [Google Scholar] [CrossRef]
- Ji, S.; Lai, X.; Cui, F.; Liu, Y.; Pan, R.; Karlovšek, J. The failure of edge-cracked hard roof in underground mining: An analytical study. Int. J. Rock Mech. Min. 2024, 183, 105934. [Google Scholar] [CrossRef]
- Zhang, M.; Fu, X. Characterization of pore structure and its impact on methane adsorption capacity for semi-anthracite in Shizhuangnan Block, Qinshui Basin. J. Nat. Gas Sci. Eng. 2018, 60, 49–62. [Google Scholar] [CrossRef]
- Jia, Q.; Shen, L.; Zhou, Z.; Wang, S.; Liu, L.; Wang, Y.; Liu, L.; Wang, Y.; Li, Y.; Wang, J. Flowability, Carbon Sequestration, and Strength Properties of Carbonation-Cured Solid Waste-Based Backfilling Materials. Energy Fuels 2025, 39, 17990–18000. [Google Scholar] [CrossRef]
Samples | Surface Relaxation Rate (μm/s) | Injection Pressure (MPa) | T2 Cutoff (ms) | Cutoff Pore Size (nm) |
---|---|---|---|---|
YW | 18.7 | 5 | 0.85 | 31.79 |
18.7 | 6 | 0.81 | 30.29 | |
18.7 | 7 | 0.77 | 28.8 | |
18.7 | 8 | 0.69 | 25.81 | |
18.7 | 9 | 0.65 | 24.31 | |
WX | 16.5 | 5 | 0.91 | 30.03 |
16.5 | 6 | 0.9 | 29.7 | |
16.5 | 7 | 0.9 | 29.7 | |
16.5 | 8 | 0.85 | 28.05 | |
16.5 | 9 | 0.74 | 24.42 | |
ML | 27.5 | 5 | 1.14 | 62.7 |
27.5 | 6 | 1.03 | 56.65 | |
27.5 | 7 | 1.28 | 70.4 | |
27.5 | 8 | 1.28 | 70.4 | |
27.5 | 9 | 1.26 | 69.3 |
Samples | Stage | D−10 | D10 | ΔD | D0 | D1 | D2 | αmax | α0 | αmin | Δα | Δf | A | H |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YW | 1 | 1.75 | 0.58 | 1.18 | 1.00 | 0.81 | 0.73 | 1.92 | 1.27 | 0.52 | 1.40 | −0.03 | 1.14 | 0.87 |
2 | 1.85 | 0.74 | 1.11 | 1.00 | 0.86 | 0.81 | 1.99 | 1.22 | 0.71 | 1.28 | 0.09 | 0.65 | 0.91 | |
3 | 1.68 | 0.75 | 0.94 | 1.00 | 0.87 | 0.81 | 1.83 | 1.18 | 0.72 | 1.11 | 0.30 | 0.72 | 0.91 | |
4 | 1.89 | 0.70 | 1.18 | 1.00 | 0.83 | 0.77 | 2.07 | 1.21 | 0.67 | 1.40 | 0.37 | 0.63 | 0.89 | |
5 | 1.47 | 0.71 | 0.75 | 1.00 | 0.84 | 0.78 | 1.58 | 1.19 | 0.69 | 0.90 | 0.15 | 1.27 | 0.89 | |
6 | 1.75 | 0.77 | 0.98 | 1.00 | 0.87 | 0.83 | 1.87 | 1.25 | 0.74 | 1.13 | −0.12 | 0.83 | 0.92 | |
WX | 1 | 1.58 | 0.62 | 0.96 | 1.00 | 0.88 | 0.8 | 1.73 | 1.15 | 0.57 | 1.16 | −0.07 | 1.01 | 0.9 |
2 | 1.71 | 0.73 | 0.98 | 1.00 | 0.86 | 0.8 | 1.86 | 1.18 | 0.7 | 1.15 | 0.5 | 0.71 | 0.9 | |
3 | 1.89 | 0.7 | 1.19 | 1.00 | 0.86 | 0.79 | 2.09 | 1.18 | 0.68 | 1.41 | 0.33 | 0.55 | 0.9 | |
4 | 2.01 | 0.79 | 1.22 | 1.00 | 0.88 | 0.85 | 2.16 | 1.26 | 0.76 | 1.4 | 0.51 | 0.55 | 0.92 | |
5 | 1.58 | 0.78 | 0.8 | 1.00 | 0.9 | 0.85 | 1.72 | 1.14 | 0.76 | 0.96 | 0.08 | 0.67 | 0.92 | |
6 | 1.51 | 0.79 | 0.71 | 1.00 | 0.92 | 0.87 | 1.65 | 1.08 | 0.77 | 0.88 | 0.39 | 0.56 | 0.94 | |
ML | 1 | 1.35 | 0.93 | 0.42 | 1.00 | 0.98 | 0.97 | 1.47 | 1.03 | 0.92 | 0.56 | 0.68 | 0.24 | 0.98 |
2 | 1.77 | 0.81 | 0.96 | 1.00 | 0.91 | 0.88 | 1.89 | 1.17 | 0.78 | 1.11 | 0.07 | 0.53 | 0.94 | |
3 | 1.58 | 0.78 | 0.8 | 1.00 | 0.89 | 0.85 | 1.68 | 1.15 | 0.76 | 0.92 | 0.01 | 0.74 | 0.93 | |
4 | 1.64 | 0.82 | 0.82 | 1.00 | 0.9 | 0.87 | 1.74 | 1.17 | 0.8 | 0.95 | 0 | 0.64 | 0.94 | |
5 | 1.79 | 0.83 | 0.97 | 1.00 | 0.91 | 0.88 | 1.96 | 1.15 | 0.8 | 1.16 | 0.51 | 0.42 | 0.94 | |
6 | 2.08 | 0.82 | 1.25 | 1.00 | 0.9 | 0.87 | 2.25 | 1.23 | 0.8 | 1.44 | 0.21 | 0.43 | 0.94 |
Samples | Injection Pressure (MPa) | Water Volume (g) |
---|---|---|
YW | 5 | 0.451 |
6 | 0.749 | |
7 | 0.787 | |
8 | 0.891 | |
9 | 0.934 | |
WX | 5 | 3.002 |
6 | 3.417 | |
7 | 5.012 | |
8 | 4.642 | |
9 | 4.556 | |
ML | 5 | 0.005 |
6 | 0.028 | |
7 | 0.104 | |
8 | 0.104 | |
9 | 0.111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Ni, X.; Zhang, J.; Li, B.; Liu, L.; Wang, J. Seepage Characteristics and Critical Scale in Gas-Bearing Coal Pores Under Water Injection: A Multifractal Approach. Fractal Fract. 2025, 9, 629. https://doi.org/10.3390/fractalfract9100629
Jia Q, Ni X, Zhang J, Li B, Liu L, Wang J. Seepage Characteristics and Critical Scale in Gas-Bearing Coal Pores Under Water Injection: A Multifractal Approach. Fractal and Fractional. 2025; 9(10):629. https://doi.org/10.3390/fractalfract9100629
Chicago/Turabian StyleJia, Qifeng, Xiaoming Ni, Jingshuo Zhang, Bo Li, Lang Liu, and Jingyu Wang. 2025. "Seepage Characteristics and Critical Scale in Gas-Bearing Coal Pores Under Water Injection: A Multifractal Approach" Fractal and Fractional 9, no. 10: 629. https://doi.org/10.3390/fractalfract9100629
APA StyleJia, Q., Ni, X., Zhang, J., Li, B., Liu, L., & Wang, J. (2025). Seepage Characteristics and Critical Scale in Gas-Bearing Coal Pores Under Water Injection: A Multifractal Approach. Fractal and Fractional, 9(10), 629. https://doi.org/10.3390/fractalfract9100629