Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = methane, steam/CO2 reforming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1196 KiB  
Review
Reversible Thermochemical Routes for Carbon Neutrality: A Review of CO2 Methanation and Steam Methane Reforming
by Marisa Martins, Carlos Andrade and Amadeu D. S. Borges
Physchem 2025, 5(3), 29; https://doi.org/10.3390/physchem5030029 - 23 Jul 2025
Viewed by 352
Abstract
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions, each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes, highlighting how reaction reversibility [...] Read more.
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions, each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes, highlighting how reaction reversibility can be strategically leveraged for decarbonization. The study addresses methane production via CO2 methanation and hydrogen production via SMR, focusing on their thermodynamic behaviors, catalytic systems, environmental impacts, and economic viability. CO2 methanation, when powered by renewable hydrogen, can result in emissions ranging from −471 to 1076 kg CO2-equivalent per MWh of methane produced, while hydrogen produced from SMR ranges from 90.9 to 750.75 kg CO2-equivalent per MWh. Despite SMR’s lower production costs (USD 21–69/MWh), its environmental footprint is considerably higher. In contrast, methanation offers environmental benefits but remains economically uncompetitive (EUR 93.53–204.62/MWh). Both processes rely primarily on Ni-based catalysts, though recent developments in Ru-based and bimetallic systems have demonstrated improved performance. The review also examines operational challenges such as carbon deposition and catalyst deactivation. By framing these technologies through the shared lens of reversibility, this work outlines pathways toward integrated, efficient, and circular energy systems aligned with long-term sustainability and climate neutrality goals. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

22 pages, 1515 KiB  
Article
Techno-Economic Analysis of Flare Gas to Hydrogen: A Lean and Green Sustainability Approach
by Felister Dibia, Oghenovo Okpako, Jovana Radulovic, Hom Nath Dhakal and Chinedu Dibia
Appl. Sci. 2025, 15(14), 7839; https://doi.org/10.3390/app15147839 - 13 Jul 2025
Viewed by 490
Abstract
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a [...] Read more.
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a sustainability method that uses flare gas for hydrogen production through steam methane reforming (SMR) with CCS, supported by a techno-economic analysis. Data Envelopment Analysis (DEA) was used to evaluate the oil company’s efficiency, and inverse DEA/sensitivity analysis identified maximum flare gas reduction, which was modeled in Aspen HYSYS V14. Subsequently, an economic evaluation was performed to determine the levelized cost of hydrogen (LCOH) and the cost–benefit ratio (CBR) for Nigeria. The CBR results were 2.15 (payback of 4.11 years with carbon credit) and 1.96 (payback of 4.55 years without carbon credit), indicating strong economic feasibility. These findings promote a practical approach for waste reduction, aiding Nigeria’s transition to a circular, low-carbon economy, and demonstrate a positive relationship between lean and green strategies in the petroleum sector. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

18 pages, 4443 KiB  
Article
Comparative Study on Ni/MgO-Al2O3 Catalysts for Dry and Combined Steam–CO2 Reforming of Methane
by Tingting Zheng, Yuqi Zhou, Hongjie Cui and Zhiming Zhou
Catalysts 2025, 15(7), 659; https://doi.org/10.3390/catal15070659 - 6 Jul 2025
Viewed by 396
Abstract
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 [...] Read more.
The dry reforming of methane (DRM) and the combined steam–CO2 reforming of methane (CSCRM) are promising routes for syngas production while simultaneously utilizing two major greenhouse gases—CO2 and CH4. In this study, a series of Ni/MgO-Al2O3 catalysts with varying Mg/Al molar ratios (Ni/MgAl(x), x = 0.5–0.9), along with Ni/MgO and Ni/Al2O3, were synthesized, characterized, and evaluated in both the DRM and CSCRM. Ni/MgO and Ni/Al2O3 exhibited a lower activity due to fewer active sites and a poor CH4/CO2 activation balance. In contrast, Ni/MgAl(0.6), Ni/MgAl(0.7), and Ni/MgAl(0.8) showed an enhanced activity, attributed to more abundant active sites and a more balanced activation of CH4 and CO2. Ni/MgAl(0.7) delivered the best DRM performance, whereas Ni/MgAl(0.8) was optimal for the CSCRM, likely due to its greater number of strong basic sites promoting CO2 and H2O adsorption. At 750 °C and 0.1 MPa over 100 h, Ni/MgAl(0.7) maintained a stable DRM performance (77% CH4 and 86% CO2 conversion; H2/CO = 0.9) at 120 L/(gcat·h), while Ni/MgAl(0.8) achieved a stable CSCRM performance (80% CH4 and 62% CO2 conversion; H2/CO = 2.1) at 132 L/(gcat·h). This study provides valuable insights into designing efficient Ni/MgO-Al2O3 catalysts for targeted syngas production. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

40 pages, 5193 KiB  
Review
A Comprehensive Review of the Development of Perovskite Oxide Anodes for Fossil Fuel-Based Solid Oxide Fuel Cells (SOFCs): Prospects and Challenges
by Arash Yahyazadeh
Physchem 2025, 5(3), 25; https://doi.org/10.3390/physchem5030025 - 23 Jun 2025
Viewed by 735
Abstract
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid [...] Read more.
Solid oxide fuel cells (SOFCs) represent a pivotal technology in renewable energy due to their clean and efficient power generation capabilities. Their role in potential carbon mitigation enhances their viability. SOFCs can operate via a variety of alternative fuels, including hydrocarbons, alcohols, solid carbon, and ammonia. However, several solutions have been proposed to overcome various technical issues and to allow for stable operation in dry methane, without coking in the anode layer. To avoid coke formation thermodynamically, methane is typically reformed, contributing to an increased degradation rate through the addition of oxygen-containing gases into the fuel gas to increase the O/C ratio. The performance achieved by reforming catalytic materials, comprising active sites, supports, and electrochemical testing, significantly influences catalyst performance, showing relatively high open-circuit voltages and coking-resistance of the CH4 reforming catalysts. In the next step, the operating principles and thermodynamics of methane reforming are explored, including their traditional catalyst materials and their accompanying challenges. This work explores the components and functions of SOFCs, particularly focusing on anode materials such as perovskites, Ruddlesden–Popper oxides, and spinels, along with their structure–property relationships, including their ionic and electronic conductivity, thermal expansion coefficients, and acidity/basicity. Mechanistic and kinetic studies of common reforming processes, including steam reforming, partial oxidation, CO2 reforming, and the mixed steam and dry reforming of methane, are analyzed. Furthermore, this review examines catalyst deactivation mechanisms, specifically carbon and metal sulfide formation, and the performance of methane reforming and partial oxidation catalysts in SOFCs. Single-cell performance, including that of various perovskite and related oxides, activity/stability enhancement by infiltration, and the simulation and modeling of electrochemical performance, is discussed. This review also addresses research challenges in regards to methane reforming and partial oxidation within SOFCs, such as gas composition changes and large thermal gradients in stack systems. Finally, this review investigates the modeling of catalytic and non-catalytic processes using different dimension and segment simulations of steam methane reforming, presenting new engineering designs, material developments, and the latest knowledge to guide the development of and the driving force behind an oxygen concentration gradient through the external circuit to the cathode. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 1342 KiB  
Article
Aspen Plus Simulation of a Sorption-Enhanced Steam Methane Reforming Process in a Fluidized Bed Reactor Using CaO as a Sorbent for CO2 Capture
by Fiorella Massa, Fabrizio Scala and Antonio Coppola
Appl. Sci. 2025, 15(12), 6535; https://doi.org/10.3390/app15126535 - 10 Jun 2025
Viewed by 823
Abstract
In this work, Aspen Plus was used to simulate a sorption-enhanced steam methane reforming (SE-SMR) process in a fluidized bed reformer using a Ni-based catalyst and CaO as a sorbent for CO2 removal from the reaction environment. The performances of the process [...] Read more.
In this work, Aspen Plus was used to simulate a sorption-enhanced steam methane reforming (SE-SMR) process in a fluidized bed reformer using a Ni-based catalyst and CaO as a sorbent for CO2 removal from the reaction environment. The performances of the process in terms of the outlet gas hydrogen purity (yH2), methane conversion (XCH4), and hydrogen yield (ηH2) were investigated. The process was simulated by varying the following different reformer operating parameters: pressure, temperature, steam/methane (S/C) feed ratio, and CaO/CH4 feed ratio. A clear sorption-enhanced effect occurred, where CaO was fed to the reformer, compared with traditional SMR, resulting in improvements of yH2, XCH4, and ηH2. This effect, in percentage terms, was more relevant, as expected, in conditions where the traditional process was unfavorable at higher pressures. The presence of CaO could only partially balance the negative effect of a pressure increase. This partial compensation of the negative pressure effect demonstrated that the intensification process has the potential to produce blue hydrogen while allowing for less severe operating conditions. Indeed, when moving traditional SMR from 1 to 10 bar, an average decrease of yH2, X, and η by −16%, −44%, and −41%, respectively, was recorded, while when moving from 1 bar SMR to 10 bar SE-SMR, yH2 showed an increase of +20%, while XCH4 and ηH2 still showed a decrease of −14% and −4%. Full article
(This article belongs to the Special Issue Advances and Challenges in Carbon Capture, Utilisation and Storage)
Show Figures

Figure 1

25 pages, 2228 KiB  
Article
Green Hydrogen Production from Biogas or Landfill Gas by Steam Reforming or Dry Reforming: Specific Production and Energy Requirements
by Dhruv Singh, Piero Sirini and Lidia Lombardi
Energies 2025, 18(10), 2631; https://doi.org/10.3390/en18102631 - 20 May 2025
Cited by 1 | Viewed by 858
Abstract
Biogas is a crucial renewable energy source for green hydrogen (H2) production, reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently, methane reforming dominates H2 production to meet growing global [...] Read more.
Biogas is a crucial renewable energy source for green hydrogen (H2) production, reducing greenhouse gas emissions and serving as a carbon-free energy carrier with higher specific energy than traditional fuels. Currently, methane reforming dominates H2 production to meet growing global demand, with biogas/landfill gas (LFG) reform offering a promising alternative. This study provides a comprehensive simulation-based evaluation of Steam Methane Reforming (SMR) and Dry Methane Reforming (DMR) of biogas/LFG, using Aspen Plus. Simulations were conducted under varying operating conditions, including steam-to-carbon (S/C) for SMR and steam-to-carbon monoxide (S/CO) ratios for DMR, reforming temperatures, pressures, and LFG compositions, to optimize H2 yield and process efficiency. The comparative study showed that SMR attains higher specific H2 yields (0.14–0.19 kgH2/Nm3), with specific energy consumption between 0.048 and 0.075 MWh/kg of H2, especially at increased S/C ratios. DMR produces less H2 than SMR (0.104–0.136 kg H2/Nm3) and requires higher energy inputs (0.072–0.079 MWh/kg H2), making it less efficient. Both processes require an additional 1.4–2.1 Nm3 of biogas/LFG per Nm3 of feed for energy. These findings provide key insights for improving biogas-based H2 production for sustainable energy, with future work focusing on techno–economic and environmental assessments to evaluate its feasibility, scalability, and industrial application. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste: 3rd Edition)
Show Figures

Figure 1

21 pages, 9608 KiB  
Article
Impact of K on the Basicity and Selectivity of Pt/m-ZrO2 Catalysts for Methanol Steam Reforming with co-fed H2
by Braedon McFee, Michela Martinelli, Dali Qian, Phoenix Macfarlane, Fernanda Perez Marin and Gary Jacobs
Catalysts 2025, 15(5), 435; https://doi.org/10.3390/catal15050435 - 29 Apr 2025
Viewed by 522
Abstract
This study investigates the effect of potassium (K) promotion on Pt/m-ZrO2 catalysts in methanol steam reforming (MSR), revealing critical insights into reaction pathways and catalyst performance. While increasing K loading reduces catalytic activity, it selectively enhances the hydrogen-producing formate dehydrogenation and de-carboxylation [...] Read more.
This study investigates the effect of potassium (K) promotion on Pt/m-ZrO2 catalysts in methanol steam reforming (MSR), revealing critical insights into reaction pathways and catalyst performance. While increasing K loading reduces catalytic activity, it selectively enhances the hydrogen-producing formate dehydrogenation and de-carboxylation pathway. Structural analyses using HR-TEM and DRIFTS show that higher K concentrations block Pt sites and promote agglomeration, reshaping catalytic behavior. Notably, the 3.1% K-promoted catalyst achieves high stability at 358 °C, with a CO2 selectivity exceeding 80% and minimal methane formation, outperforming the unpromoted catalyst in terms of CO and CH4 selectivity. Temperature studies further demonstrate reduced CO selectivity at higher temperatures, highlighting distinct advantages of K-doped catalysts. These findings underscore the role of K in enhancing surface basicity and its impact on formate interaction, offering valuable insights for optimizing MSR catalysts and advancing hydrogen production technologies. Full article
(This article belongs to the Special Issue Catalytic Processes for Green Hydrogen Production)
Show Figures

Figure 1

24 pages, 3270 KiB  
Article
Theoretical Analysis and Modelling of LNG Reforming to Hydrogen Marine Fuel for FLNG Applications
by We Lin Chan, Ivan C. K. Tam and Arun Dev
Gases 2025, 5(2), 8; https://doi.org/10.3390/gases5020008 - 17 Apr 2025
Viewed by 780
Abstract
The LNG maritime industry started to anticipate offshore LNG production in tandem with increasing demand for FLNG platforms as offshore gas resources were developed further. The rapid expansion of FLNG deployment demands equipment and procedures that handle challenges associated with weight and space [...] Read more.
The LNG maritime industry started to anticipate offshore LNG production in tandem with increasing demand for FLNG platforms as offshore gas resources were developed further. The rapid expansion of FLNG deployment demands equipment and procedures that handle challenges associated with weight and space constraints. The chemical composition of LNG will result in slightly fewer CO2 emissions. While not significant, another crucial aspect is that LNG predominantly comprises methane, which is acknowledged as a greenhouse gas and is more harmful than CO2. This requires investigation into clean energy fuel supply for power generation systems, carbon emissions from the process, and thermodynamic analysis and optimisation. Focus on supplying fuel for FLNG power generation to reduce the essential management of boil-off fuel gas, which can be researched on the direct reforming method of hydrogen as a marine fuel gas to support the power generation system. The principal reason for choosing hydrogen over other energy sources is its exceptional energy-to-mass ratio (H/C ratio). The most effective method for hydrogen production is the methane reforming process, recognised for generating significant quantities of hydrogen. To optimise the small-scale plant with a carbon capture system (CCS) as integrated into the reforming process to produce blue hydrogen fuel with zero carbon emissions, this research selection focuses on two alternative processes: steam methane reforming (SMR) and autothermal reforming (ATR). Furthermore, the research article will contribute to other floating production platforms, such as FPSOs and FSRUs, and will be committed to clean energy policies that mandate the support of green alternatives in substitution of hydrocarbon fuel utilisation. Full article
Show Figures

Figure 1

17 pages, 7248 KiB  
Article
Sustainable Hydrogen Production with Negative Carbon Emission Through Thermochemical Conversion of Biogas/Biomethane
by Bin Wang, Yu Shao, Lingzhi Yang, Ke Guo, Xiao Li, Mengzhu Sun and Yong Hao
Energies 2025, 18(7), 1804; https://doi.org/10.3390/en18071804 - 3 Apr 2025
Cited by 2 | Viewed by 752
Abstract
Biogas (primarily biomethane), as a carbon-neutral renewable energy source, holds great potential to replace fossil fuels for sustainable hydrogen production. Conventional biogas reforming systems adopt strategies similar to industrial natural gas reforming, posing challenges such as high temperatures, high energy consumption, and high [...] Read more.
Biogas (primarily biomethane), as a carbon-neutral renewable energy source, holds great potential to replace fossil fuels for sustainable hydrogen production. Conventional biogas reforming systems adopt strategies similar to industrial natural gas reforming, posing challenges such as high temperatures, high energy consumption, and high system complexity. In this study, we propose a novel multi-product sequential separation-enhanced reforming method for biogas-derived hydrogen production, which achieves high H2 yield and CO2 capture under mid-temperature conditions. The effects of reaction temperature, steam-to-methane ratio, and CO2/CH4 molar ratio on key performance metrics including biomethane conversion and hydrogen production are investigated. At a moderate reforming temperature of 425 °C and pressure of 0.1 MPa, the conversion rate of CH4 in biogas reaches 97.1%, the high-purity hydrogen production attains 2.15 mol-H2/mol-feed, and the hydrogen yield is 90.1%. Additionally, the first-law energy conversion efficiency from biogas to hydrogen reaches 65.6%, which is 11 percentage points higher than that of conventional biogas reforming methods. The yield of captured CO2 reaches 1.88 kg-CO2/m3-feed, effectively achieving near-complete recovery of green CO2 from biogas. The mild reaction conditions allow for a flexible integration with industrial waste heat or a wide selection of other renewable energy sources (e.g., solar heat), facilitating distributed and carbon-negative hydrogen production. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—2nd Edition)
Show Figures

Figure 1

17 pages, 4199 KiB  
Article
Evaluating the Potential and Limits of Green Electrolysis in Future Energy Scenarios with High Renewable Share
by Angelica Liponi, Gianluca Pasini, Andrea Baccioli and Lorenzo Ferrari
Energies 2025, 18(7), 1654; https://doi.org/10.3390/en18071654 - 26 Mar 2025
Viewed by 443
Abstract
Water electrolysis is a potential contributor to global decarbonization, enhancing the flexibility and resilience of the electricity system and enabling integration with different sectors, such as industry and transportation, by acting as an energy vector and storage, as well as chemical feedstock. This [...] Read more.
Water electrolysis is a potential contributor to global decarbonization, enhancing the flexibility and resilience of the electricity system and enabling integration with different sectors, such as industry and transportation, by acting as an energy vector and storage, as well as chemical feedstock. This study investigates the potential of hydrogen production by electrolysis in future national electric grid scenarios for Italy as a case study. It examines the impact of increasing photovoltaic and wind capacities up to five times the 2019 levels, considering an electricity storage capacity of up to 200 GWh. The feasibility of fully meeting current national hydrogen consumption through electrolysis in these scenarios is assessed by considering different overall electrolysis capacities. Specific CO2 emissions associated with hydrogen production are evaluated as an indicator of environmental feasibility and compared with the conventional steam methane reforming. In addition, the levelized cost of hydrogen production is evaluated as an indicator of economic feasibility. Some limitations of electrolysis emerge when it is considered the sole way to decarbonize hydrogen production. Very high renewable shares are required to make electrolysis alone a feasible solution. Aiming to maximize the use of renewable curtailment for electrolysis conflicts with maximizing the electrolyzers’ utilization factor, thus, negatively affecting hydrogen production costs. Furthermore, since priority is given to the use of renewable and stored electricity to meet electricity demand, the remaining electricity is insufficient to produce the entire hydrogen demand in most of the considered scenarios, particularly when substantial storage supports the grid, as this reduces the curtailment available for electrolysis. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

14 pages, 2289 KiB  
Article
Performance Analysis of a Calcium Looping Process Integrating Biomass Sorption-Enhanced Gasification with CaCO3-Based Methane Reforming
by Shuaijie Xue, Xudong Wang and Guofu Liu
Processes 2025, 13(3), 892; https://doi.org/10.3390/pr13030892 - 18 Mar 2025
Viewed by 617
Abstract
The growing demand for sustainable energy solutions has led to significant interest in biomass gasification and methane reforming. To address this demand, a novel calcium looping process (CaLP) is proposed, which integrates biomass sorption-enhanced gasification (BSEG) with in situ calcium CaCO3-based [...] Read more.
The growing demand for sustainable energy solutions has led to significant interest in biomass gasification and methane reforming. To address this demand, a novel calcium looping process (CaLP) is proposed, which integrates biomass sorption-enhanced gasification (BSEG) with in situ calcium CaCO3-based methane reforming (CaMR). This process eliminates the need for CaCO3 calcination and facilitates the in situ utilization of CO2. The effects of gasification temperature, steam flowrate into the gasifier αG(H2O/C), reforming temperature, and steam flowrate into the reformer αR(H2O/C) were systematically evaluated. Increasing the gasification temperature from 600 °C to 700 °C enhances CO and H2 yields from 0.653 to 11.699 kmol/h and from 43.999 to 48.536 kmol/h, respectively. However, CaO carbonation weakens, reducing CaO conversion from 79.15% to 48.38% and increasing CO2 release. A higher αG(H2O/C) promotes H2 yield while suppressing CO and CH4 formation. In the CaMR process, raising the temperature from 700 °C to 900 °C improves CH₄ conversion from 64.78% to 81.29%, with a significant increase in CO and H2 production. Furthermore, introducing steam into the reformer enhances H2 production and CH4 conversion, which reaches up to 97.30% at αR(H2O/C) = 0.5. These findings provide valuable insights for optimizing integrated biomass gasification and methane reforming systems. Full article
(This article belongs to the Special Issue Advances in Chemical Looping Technologies)
Show Figures

Figure 1

35 pages, 2056 KiB  
Review
Review of Reforming Processes for the Production of Green Hydrogen from Landfill Gas
by Dhruv Singh, Piero Sirini and Lidia Lombardi
Energies 2025, 18(1), 15; https://doi.org/10.3390/en18010015 - 24 Dec 2024
Cited by 3 | Viewed by 3517
Abstract
The growing challenges of climate change, the depletion of fossil fuel reserves, and the urgent need for carbon-neutral energy solutions have intensified the focus on renewable energy. In this perspective, the generation of green hydrogen from renewable sources like biogas/landfill gas (LFG) offers [...] Read more.
The growing challenges of climate change, the depletion of fossil fuel reserves, and the urgent need for carbon-neutral energy solutions have intensified the focus on renewable energy. In this perspective, the generation of green hydrogen from renewable sources like biogas/landfill gas (LFG) offers an intriguing option, providing the dual benefits of a sustainable hydrogen supply and enhanced waste management through energy innovation and valorization. Thus, this review explores the production of green hydrogen from biogas/LFG through four conventional reforming processes, specifically dry methane reforming (DMR), steam methane reforming (SMR), partial oxidation reforming (POX), and autothermal reforming (ATR), focusing on their mechanisms, operating parameters, and the role of catalysts in hydrogen production. This review further delves into both the environmental aspects, specifically GWP (CO2 eq·kg−1 H2) emissions, and the economic aspects of these processes, examining their efficiency and impact. Additionally, this review also explores hydrogen purification in biogas/LFG reforming and its integration into the CO2 capture, utilization, and storage roadmap for net-negative emissions. Lastly, this review highlights future research directions, focusing on improving SMR and DMR biogas/LFG reforming technologies through simulation and modeling to enhance hydrogen production efficiency, thereby advancing understanding and informing future research and policy initiatives for sustainable energy solutions. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste: 3rd Edition)
Show Figures

Figure 1

8 pages, 1844 KiB  
Proceeding Paper
Analysis of the Pyrolysis of Methane Reaction over Molten Metals for CO2-Free Hydrogen Production: An Application of DFT and Machine Learning
by Lord Ugwu, Yasser Morgan and Hussameldin Ibrahim
Eng. Proc. 2024, 76(1), 97; https://doi.org/10.3390/engproc2024076097 - 3 Dec 2024
Viewed by 1142
Abstract
The co-production of CO2 continues to remain the bane of several hydrogen production technologies, including the steam reforming of methane and the dry reforming of methane processes. Efficient utilization of abundant greenhouse gas in the form of methane provides opportunities for the [...] Read more.
The co-production of CO2 continues to remain the bane of several hydrogen production technologies, including the steam reforming of methane and the dry reforming of methane processes. Efficient utilization of abundant greenhouse gas in the form of methane provides opportunities for the design of an innovative system that will maximize the use of such a raw material in the most environmentally friendly manner. The study of the mechanism of the pyrolysis of methane reactions over molten metals provides promise for improved hydrogen yield and methane conversion with a greater turnover frequency. Catalyst electronic properties computed via Density Functional Theory using the Quantum Espresso code provided data that were built into a database. Using Bismuth as the base metal, active transition metals including Ni, Cu, Pd, Pt, Ag, and Au of different concentrations of 5, 10, 15, and 25% were placed on 96 atoms of the base metal and relaxed to obtain the optimized geometric structures for the catalytic reaction studies. The kinetics of the individual elementary steps of the pyrolysis reaction at preset temperatures over the bi-metals were calculated using the Car-Parinello (CP) method and Nudge Elastic Band (NEB) computations. The collated data of the various pyrolysis of methane reactions over the different bi-metals was used to train machine learning models for the prediction of reaction outcome, catalytic performance, and efficient operating conditions for the pyrolysis of methane over molten metals. The turnover frequency, which is determined using the transition state energies of the fundamental reaction cycles, will be used to simulate the stability of the catalyst. Full article
Show Figures

Figure 1

19 pages, 3954 KiB  
Article
Mechanistic Study and Active Sites Investigation of Hydrogen Production from Methane and H2O Steady-State and Transient Reactivity with Ir/GDC Catalyst
by Farah Lachquer and Jamil Toyir
Hydrogen 2024, 5(4), 882-900; https://doi.org/10.3390/hydrogen5040046 - 17 Nov 2024
Viewed by 1193
Abstract
Catalytic activity, mechanisms, and active sites were determined for methane steam reforming (MSR) over gadolinium-doped ceria (GDC) supported iridium (0.1 wt%) prepared by impregnation of GDC with iridium acetylacetonate. Isothermal steady-state rate measurements followed by micro-gas chromatography analysis were performed at 660 and [...] Read more.
Catalytic activity, mechanisms, and active sites were determined for methane steam reforming (MSR) over gadolinium-doped ceria (GDC) supported iridium (0.1 wt%) prepared by impregnation of GDC with iridium acetylacetonate. Isothermal steady-state rate measurements followed by micro-gas chromatography analysis were performed at 660 and 760 °C over Ir/GDC samples pretreated in N2 or H2 at 900 °C. Transient responses to CH4 or H2O step changes in isothermal conditions were carried out at 750 °C over Ir/GDC pretreated in He or H2 using online quadrupole mass spectrometry. In the proposed mechanism, Ir/GDC proceeds through a dual-type active site associating, as follows: (i) Ir metallic particles surface as active sites for the cracking of CH4 into reactive C species, and (ii) reducible (Ce4+) sites at GDC surface responsible for a redox mechanism involving Ce4+/Ce3+ sites, being reduced by reaction with reactive C into CO (or CO2) depending on the oxidation state of GDC and re-oxidized by H2O. Full reduction of reducible oxygen species is possible with CH4 after He treatment, whereas only 80% is reached in CH4 after H2 treatment. Full article
Show Figures

Figure 1

12 pages, 8618 KiB  
Article
Hydrogen and CO Over-Equilibria in Catalytic Reactions of Methane Reforming
by Vitaliy R. Trishch, Mykhailo O. Vilboi, Gregory S. Yablonsky and Dmytro O. Kovaliuk
Catalysts 2024, 14(11), 773; https://doi.org/10.3390/catal14110773 - 31 Oct 2024
Cited by 1 | Viewed by 1044
Abstract
Hydrogen and carbon monoxide over-equilibria have been found computationally in kinetic dependencies of methane-reforming catalytic reactions (steam and dry reforming) using the conditions of the conservatively perturbed equilibrium (CPE) phenomenon, i.e., at the initial equilibrium concentration of hydrogen or carbon monoxide. The influence [...] Read more.
Hydrogen and carbon monoxide over-equilibria have been found computationally in kinetic dependencies of methane-reforming catalytic reactions (steam and dry reforming) using the conditions of the conservatively perturbed equilibrium (CPE) phenomenon, i.e., at the initial equilibrium concentration of hydrogen or carbon monoxide. The influence of the pressure, temperature, flow rate and composition of the initial mixture on the position of the CPE point (the extremum point) was investigated over a wide domain of parameters. The CPE phenomenon significantly increases the product concentration (H2 and CO) at the reactor length, which is significantly less than the reactor length required to reach equilibrium. The CPE point is interpreted as the “turning point” in kinetic behaviour. Recommendations on temperature and pressure regimes are different from the traditional ones related to Le Chatelier’s law. The obtained results provide valuable information on optimal reaction conditions for complex reversible chemical transformations, offering potential applications in chemical engineering processes. Full article
Show Figures

Graphical abstract

Back to TopTop