Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,078)

Search Parameters:
Keywords = metering control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2881 KB  
Article
The Effects of Ankle Versus Plantar Vibrotactile Orthoses on Joint Position Sense and Postural Control in Individuals with Functional Ankle Instability: A Pilot Randomized Trial
by Hanieh Khaliliyan, Mahmood Bahramizadeh and Ebrahim Sadeghi-Demneh
Bioengineering 2026, 13(2), 138; https://doi.org/10.3390/bioengineering13020138 (registering DOI) - 25 Jan 2026
Abstract
Functional ankle instability (FAI) is a common consequence of lateral ankle sprains, characterized by impaired sensorimotor control. While orthoses and localized vibration have shown individual benefits for FAI, their combined application in a wearable device has not been previously investigated. This pilot randomized [...] Read more.
Functional ankle instability (FAI) is a common consequence of lateral ankle sprains, characterized by impaired sensorimotor control. While orthoses and localized vibration have shown individual benefits for FAI, their combined application in a wearable device has not been previously investigated. This pilot randomized trial compared the effects of a vibrotactile foot orthosis (VFO) and a vibrotactile ankle orthosis (VAO) on joint position sense (JPS) and postural control in individuals with FAI. Sixteen participants were randomized to receive either a VFO or a VAO, both delivering 30–50 Hz pulsed vibration in 20 min sessions, three times a week, for two weeks. Outcome measures included joint position sense (JPS) error (°), center of pressure (COP) velocity (mm/s), the Star Excursion Balance Test (SEBT), and the Six-Meter Hop Test (SMHT), which were assessed pre-intervention, immediately post-intervention, and after two weeks of use. The analysis showed a statistically significant interaction between time and intervention group for JPS error (p = 0.02, η2 = 0.42). Specifically, the VFO group improved JPS significantly more than VAO at two weeks follow-up (MD = −1.75°, p = 0.005, d = −1.68). Both groups significantly reduced in anteroposterior COP velocity after two weeks (VFO: MD = 1, p = 0.003, d = 1.47; VAO: MD = 1.39, p ˂ 0.001, d = 2.05) with no between-group differences. No changes were observed in the SEBT or SMHT. Plantar-based vibrotactile stimulation was more effective than ankle-based stimulation in enhancing proprioceptive acuity in individuals with FAI. Both interventions improved static postural stability, supporting the potential of integrated vibrotactile orthoses in FAI rehabilitation. No major practical issues were reported during the intervention. Two participants experienced minor discomfort related to the electronic housing bulk in the first week, which was resolved by week two. No further complaints regarding device weight or usability were observed. Full article
(This article belongs to the Special Issue Advanced Biomedical Signal Communication Technology)
21 pages, 2324 KB  
Article
A Seamless Mode Switching Control Method for Independent Metering Controlled Hydraulic Actuator
by Yixin Liu, Jiaqi Li and Dacheng Cong
Technologies 2026, 14(1), 63; https://doi.org/10.3390/technologies14010063 - 14 Jan 2026
Viewed by 162
Abstract
Hydraulic manipulators are vital for heavy-duty applications such as rescue robotics due to their high power density, yet these scenarios increasingly demand safe and compliant physical interaction. Impedance control is a key enabling technology for such capabilities. However, a significant challenge arises when [...] Read more.
Hydraulic manipulators are vital for heavy-duty applications such as rescue robotics due to their high power density, yet these scenarios increasingly demand safe and compliant physical interaction. Impedance control is a key enabling technology for such capabilities. However, a significant challenge arises when implementing impedance control on Independent Metering Systems (IMS), which are widely adopted for their energy efficiency. The inherent multi-mode operation of IMS relies on discrete switching logic. Crucially, when mode switching occurs during physical interaction with the environment, the unpredictable external forces can trigger frequent and abrupt switching between operating modes (e.g., resistive and overrunning), leading to severe chattering. This phenomenon not only undermines the smooth interaction that impedance control aims to achieve but also jeopardizes overall system stability. To address this critical issue, this paper proposes a seamless control framework based on a Takagi–Sugeno (T-S) fuzzy model. Two premise variables based on the physical characteristics of the system are innovatively designed to make the rule division highly consistent with the dynamic nature of the system. Asymmetric membership functions are introduced to handle direction-dependent switching, with orthogonal functions ensuring logical exclusivity between extension and retraction, and smooth complementary functions enabling seamless transitions between resistance and overrunning modes. Experimental validation on a small hydraulic manipulator validates the effectiveness of the proposed method. The controller eliminates switching-induced instability and smooths velocity transitions, even under dynamic external force disturbances. This work provides a crucial solution for high-performance, stable hydraulic interaction control, paving the way for the application of hydraulic robots in complex and dynamic environments. Full article
Show Figures

Figure 1

25 pages, 6384 KB  
Article
Application of Low-Altitude Imaging and Vegetation Indices in Land Consolidation Processes on Rural Areas: Cross-Border Perspective
by Katarzyna Kocur-Bera, Ľubica Hudecová, Anna Małek and Natália Faboková
Agriculture 2026, 16(2), 168; https://doi.org/10.3390/agriculture16020168 - 9 Jan 2026
Viewed by 203
Abstract
Land consolidation requires reliable and objective land valuation to ensure transparency and fairness in the reallocation process. This study introduces a data-driven method for assessing agricultural site productivity based on vegetation indices derived from multispectral imagery, supported by Sentinel satellite data and validated [...] Read more.
Land consolidation requires reliable and objective land valuation to ensure transparency and fairness in the reallocation process. This study introduces a data-driven method for assessing agricultural site productivity based on vegetation indices derived from multispectral imagery, supported by Sentinel satellite data and validated using handheld chlorophyll meter measurements. Site productivity, defined as the land’s ability to generate yield and biological value, is determined by natural and environmental factors that directly influence economic worth. Vegetation indices (NDVI, SAVI) obtained from UAV imagery showed a strong correlation with chlorophyll content, confirming the reliability of this non-invasive assessment. The analysis, conducted in Poland and Slovakia, demonstrated the method’s applicability under two different land consolidation systems: a market-based model in Poland and an ecologically oriented approach in Slovakia. The proposed framework proved easy to implement and provided consistent results even without the use of ground control points. By reducing fieldwork time and costs while improving valuation accuracy, this method enhances the objectivity and transparency of land consolidation procedures. The findings confirm the potential of vegetation indices to support data-driven and environmentally informed land valuation across diverse consolidation contexts. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

20 pages, 3259 KB  
Article
Green Transportation Planning for Smart Cities: Digital Twins and Real-Time Traffic Optimization in Urban Mobility Networks
by Marek Lis and Maksymilian Mądziel
Appl. Sci. 2026, 16(2), 678; https://doi.org/10.3390/app16020678 - 8 Jan 2026
Viewed by 363
Abstract
This paper proposes a comprehensive framework for integrating Digital Twins (DT) with real-time traffic optimization systems to enhance urban mobility management in Smart Cities. Using the Pobitno Roundabout in Rzeszów as a case study, we established a calibrated microsimulation model (validated via the [...] Read more.
This paper proposes a comprehensive framework for integrating Digital Twins (DT) with real-time traffic optimization systems to enhance urban mobility management in Smart Cities. Using the Pobitno Roundabout in Rzeszów as a case study, we established a calibrated microsimulation model (validated via the GEH statistic) that serves as the core of the proposed Digital Twin. The study goes beyond static scenario analysis by introducing an Adaptive Inflow Metering (AIM) logic designed to interact with IoT sensor data. While traditional geometrical upgrades (e.g., turbo-roundabouts) were analyzed, simulation results revealed that geometrical changes alone—without dynamic control—may fail under peak load conditions (resulting in LOS F). Consequently, the research demonstrates how the DT framework allows for the testing of “Software-in-the-Loop” (SiL) solutions where Python-based algorithms dynamically adjust inflow parameters to prevent gridlock. The findings confirm that combining physical infrastructure changes with digital, real-time optimization algorithms is essential for achieving sustainable “green transport” goals and reducing emissions in congested urban nodes. Full article
(This article belongs to the Special Issue Green Transportation and Pollution Control)
Show Figures

Figure 1

16 pages, 5236 KB  
Article
Intelligent Disassembly System for PCB Components Integrating Multimodal Large Language Model and Multi-Agent Framework
by Li Wang, Liu Ouyang, Huiying Weng, Xiang Chen, Anna Wang and Kexin Zhang
Processes 2026, 14(2), 227; https://doi.org/10.3390/pr14020227 - 8 Jan 2026
Viewed by 244
Abstract
The escalating volume of waste electrical and electronic equipment (WEEE) poses a significant global environmental challenge. The disassembly of printed circuit boards (PCBs), a critical step for resource recovery, remains inefficient due to limitations in the adaptability and dexterity of existing automated systems. [...] Read more.
The escalating volume of waste electrical and electronic equipment (WEEE) poses a significant global environmental challenge. The disassembly of printed circuit boards (PCBs), a critical step for resource recovery, remains inefficient due to limitations in the adaptability and dexterity of existing automated systems. This paper proposes an intelligent disassembly system for PCB components that integrates a multimodal large language model (MLLM) with a multi-agent framework. The MLLM serves as the system’s cognitive core, enabling high-level visual-language understanding and task planning by converting images into semantic descriptions and generating disassembly strategies. A state-of-the-art object detection algorithm (YOLOv13) is incorporated to provide fine-grained component localization. This high-level intelligence is seamlessly connected to low-level execution through a multi-agent framework that orchestrates collaborative dual robotic arms. One arm controls a heater for precise solder melting, while the other performs fine “probing-grasping” actions guided by real-time force feedback. Experiments were conducted on 30 decommissioned smart electricity meter PCBs, evaluating the system on recognition rate, capture rate, melting rate, and time consumption for seven component types. Results demonstrate that the system achieved a 100% melting rate across all components and high recognition rates (90–100%), validating its strengths in perception and thermal control. However, the capture rate varied significantly, highlighting the grasping of small, low-profile components as the primary bottleneck. This research presents a significant step towards autonomous, non-destructive e-waste recycling by effectively combining high-level cognitive intelligence with low-level robotic control, while also clearly identifying key areas for future improvement. Full article
Show Figures

Figure 1

18 pages, 9181 KB  
Article
Automatic Optimization of Industrial Robotic Workstations for Sustainable Energy Consumption
by Rostislav Wierbica, Jakub Krejčí, Ján Babjak, Tomáš Kot, Václav Krys and Zdenko Bobovský
AI 2026, 7(1), 17; https://doi.org/10.3390/ai7010017 - 8 Jan 2026
Viewed by 304
Abstract
Industrial robotic workstations contribute substantially to the total energy demand of modern manufacturing, yet most existing energy-saving approaches focus on modifying robot trajectories, motion parameters, or the position of the robot’s base. This paper proposes a novel methodology for the automatic optimization of [...] Read more.
Industrial robotic workstations contribute substantially to the total energy demand of modern manufacturing, yet most existing energy-saving approaches focus on modifying robot trajectories, motion parameters, or the position of the robot’s base. This paper proposes a novel methodology for the automatic optimization of the spatial placement of a fixed technological trajectory within the robot workspace, without altering the task itself. The method combines pre-simulation filtering of infeasible configurations, large-scale energy simulation in ABB RobotStudio, and real measurement using a dual acquisition system consisting of the robot’s controller and an external power meter. A digital twin of the workstation is used to systematically evaluate thousands of candidate positions of a standardized trajectory. Experimental validation on an ABB IRB 1600–10/1.2 confirms a 23.4% difference in total energy consumption between two workspace configurations selected from the simulation study. The non-optimal configuration exhibits higher current draw, greater power variability, and a more intensive warm-up phase, indicating increased mechanical loading arising purely from geometric placement. By providing a scalable, trajectory-preserving approach grounded in digital-twin analysis and IoT-based measurement, this work establishes a data foundation for future AI-driven predictive and adaptive energy optimization in smart manufacturing environments. Full article
Show Figures

Figure 1

25 pages, 4045 KB  
Article
A Hybrid Intrusion Detection Framework for Imbalanced AMI Traffic Using GAN-Based Data Augmentation and Lightweight CNN
by Shunjiang Wang, Yang Shi, Guiping Zhou and Peng Yu
Electronics 2026, 15(1), 235; https://doi.org/10.3390/electronics15010235 - 5 Jan 2026
Viewed by 231
Abstract
With the widespread deployment of the Advanced Metering Infrastructure (AMI) in Power Industrial Control Systems (PICS), a significant and inherent property of network traffic data is its pronounced class imbalance. The continuous emergence of new types of cyberattacks significantly limits the detection accuracy [...] Read more.
With the widespread deployment of the Advanced Metering Infrastructure (AMI) in Power Industrial Control Systems (PICS), a significant and inherent property of network traffic data is its pronounced class imbalance. The continuous emergence of new types of cyberattacks significantly limits the detection accuracy of Intrusion Detection Systems (IDS). To overcome the limitations of traditional methods—particularly their poor adaptability in complex conditions and vulnerability to emerging threats—this paper introduces a novel hybrid intrusion detection framework. This framework synergistically combines data augmentation and a discriminative classification model for improved performance. Within this framework, a Multi-feature Constrained Conditional Generative Adversarial Network (MC-CGAN) is proposed. Its multi-feature constraint module (MC) preserves protocol-related invariant features, while the CGAN is responsible for conditionally generating the remaining continuous features based on class labels. By preserving the core semantic information of samples, this method reduces the risk of generating unrealistic data and decreases computational overhead. Furthermore, we develop ADS-Net, a lightweight Convolutional Neural Network that not only replaces traditional convolutions with depth-wise separable ones for efficiency, but also incorporates an attention mechanism to adaptively weight feature channels, thus improving discriminative focus. Extensive experiments demonstrate that, under conditions of extreme data imbalance, the proposed hybrid framework can generate industrially valid synthetic data while achieving accurate intrusion detection with an accuracy of 98.35%. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

19 pages, 2528 KB  
Article
A Machine Vision-Enhanced Framework for Tracking Inclusion Evolution and Enabling Intelligent Cleanliness Control in Industrial-Scale HSLA Steels
by Yong Lyu, Yunhai Jia, Lixia Yang, Weihao Wan, Danyang Zhi, Xuehua Wang, Peifeng Cheng and Haizhou Wang
Materials 2026, 19(1), 158; https://doi.org/10.3390/ma19010158 - 2 Jan 2026
Viewed by 263
Abstract
The quantity, size, and distribution of non-metallic inclusions in High-Strength Low-Alloy (HSLA) steel critically influence its service performance. Conventional detection methods often fail to adequately characterize extreme inclusion distributions in large-section components. This study developed an integrated full-process inclusion analysis system combining high-precision [...] Read more.
The quantity, size, and distribution of non-metallic inclusions in High-Strength Low-Alloy (HSLA) steel critically influence its service performance. Conventional detection methods often fail to adequately characterize extreme inclusion distributions in large-section components. This study developed an integrated full-process inclusion analysis system combining high-precision motion control, parallel optical imaging, and laser spectral analysis technologies to achieve rapid and automated identification and compositional analysis of inclusions in meter-scale samples. Through systematic investigation across the industrial process chain—from a dia. 740 mm consumable electrode to a dia. 810 mm electroslag remelting (ESR) ingot and finally to a dia. 400 mm forged billet—key process-specific insights were obtained. The results revealed the effective removal of Type D (globular oxides) inclusions during ESR, with their counts reducing from over 8000 in the electrode to approximately 4000–7000 in the ingot. Concurrently, the mechanism underlying the pronounced enrichment of Type C (silicates) in the ingot tail was elucidated, showing a nearly fourfold increase to 1767 compared to the ingot head, attributed to terminal solidification segregation and flotation dynamics. Subsequent forging further demonstrated exceptional refinement and dispersion of all inclusion types. The billet tail achieved exceptionally high purity, with counts of all inclusion types dropping to extremely low levels (e.g., Types A, B, and C were nearly eliminated), representing a reduction of approximately one order of magnitude. Based on these findings, enhanced process strategies were proposed, including shallow molten pool control, slag system optimization, and multi-dimensional quality monitoring. An intelligent analysis framework integrating a YOLOv11 detection model with spectral feedback was also established. This work provides crucial process knowledge and technological support for achieving the quality control objective of “known and controllable defects” in HSLA steel. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

14 pages, 4360 KB  
Article
Anisotropic Thermal Conductivity in Pellet-Based 3D-Printed Polymer Structures for Advanced Heat Management in Electrical Devices
by Michal Rzepecki and Andrzej Rybak
Polymers 2026, 18(1), 93; https://doi.org/10.3390/polym18010093 - 29 Dec 2025
Viewed by 265
Abstract
Efficient thermal management is critical for modern electrical and electronic devices, where increasing power densities and miniaturization demand advanced heat dissipation solutions. This study investigates anisotropic thermal conductivity in polymer structures fabricated via pellet-based fused granulate fabrication using polyamide 6 composite filled with [...] Read more.
Efficient thermal management is critical for modern electrical and electronic devices, where increasing power densities and miniaturization demand advanced heat dissipation solutions. This study investigates anisotropic thermal conductivity in polymer structures fabricated via pellet-based fused granulate fabrication using polyamide 6 composite filled with thermally conductive, electrically insulative mineral fillers. Three sample orientations were manufactured by controlling the printing path direction to manipulate filler alignment relative to heat flow. The microscopic analysis confirmed a flake-shaped filler orientation dependent on extrusion direction. Thermal conductivity measurements using a guarded heat flow meter revealed significant anisotropy: samples with fillers aligned parallel to heat flow exhibited thermal conductivity of 4.09 W/m·K, while perpendicular alignment yielded 1.21 W/m·K, representing a 238% enhancement and an anisotropy ratio of 3.4. The dielectric measurements showed modest electrical anisotropy with maintained low dielectric loss below 0.05 at 1 kHz, confirming the suitability of the investigated materials for electrical insulation applications. The presented results demonstrate that pellet-based fused granular fabrication uniquely enables in situ control of platelet filler orientation during printing, achieving unprecedented thermal anisotropy, high through-plane thermal conductivity, and excellent electrical insulation in directly 3D-printed polymer structures, offering a breakthrough approach for advanced thermal management in electrical devices. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

30 pages, 2925 KB  
Article
Energy-Efficient Hydraulics in Heavy Machinery: Technologies, Challenges, and Future Directions
by Mohit Bhola and Gyan Wrat
Sustainability 2026, 18(1), 302; https://doi.org/10.3390/su18010302 - 27 Dec 2025
Viewed by 584
Abstract
Heavy earth-moving machinery is essential for construction, mining, and infrastructure development, but its traditional hydraulic systems, powered by diesel engines, are major contributors to energy losses and inefficiencies. Hydraulic circuits typically account for significant parasitic losses due to throttling, leakage, and low energy [...] Read more.
Heavy earth-moving machinery is essential for construction, mining, and infrastructure development, but its traditional hydraulic systems, powered by diesel engines, are major contributors to energy losses and inefficiencies. Hydraulic circuits typically account for significant parasitic losses due to throttling, leakage, and low energy recovery, resulting in high fuel consumption and emissions. Recent innovations are transforming hydraulic technology to improve energy efficiency and sustainability. This review highlights advancements such as electro-hydraulic actuators, independent metering systems, and digital hydraulics, which enable precise flow control and minimize throttling losses. The integration of energy recovery systems, including hydraulic accumulators and hybrid architectures, further enhances efficiency by capturing and reusing energy during braking and lowering operations. Additionally, the adoption of smart sensors, predictive analytics, and advanced control algorithms enables real-time optimization of hydraulic performance, reducing idle losses and improving overall system responsiveness. Emerging trends such as fluid power electrification, compact high-pressure components, and the use of eco-friendly hydraulic fluids are also discussed. By synthesizing current research and industrial practices, this paper provides insights into the challenges, opportunities, and future prospects for achieving substantial energy efficiency gains through next-generation hydraulic technologies in heavy earth-moving equipment. Full article
Show Figures

Figure 1

24 pages, 1632 KB  
Article
Research on Risk Assessment and Prevention–Control Measures for Immersed Tunnel Construction in 100 m-Deep Water Environments
by Haiyang Xu, Zhengzhong Qiu, Sudong Xu, Liuyan Mao and Zebang Cui
J. Mar. Sci. Eng. 2026, 14(1), 53; https://doi.org/10.3390/jmse14010053 - 27 Dec 2025
Viewed by 288
Abstract
With the rapid development of cross-sea infrastructure, the immersed tube method has been increasingly applied to deep-water immersed-tube tunnel construction. However, when the construction depth reaches the scale of one hundred meters, issues such as high hydrostatic pressure, complex hydrological conditions, and limited [...] Read more.
With the rapid development of cross-sea infrastructure, the immersed tube method has been increasingly applied to deep-water immersed-tube tunnel construction. However, when the construction depth reaches the scale of one hundred meters, issues such as high hydrostatic pressure, complex hydrological conditions, and limited construction windows significantly elevate project risks. Against this backdrop, this study systematically reviews relevant domestic and international research findings in the context of 100-m-deep water environments and constructs a comprehensive risk index system covering the construction processes of the WBS breakdown system based on the WBS-RBS decomposition method within the HSE framework. A risk index weighting analysis combines quantitative and qualitative analysis, categorizing the indicators into qualitative and quantitative categories. Quantitative analysis employs threshold determination and the LEC method; qualitative analysis utilizes expert surveys and the G1 method. Ultimately, a model that combines multiple methods for a 100-m-deep water environment, integrating subjective expertise and objective data, is developed. On this basis, multi-level prevention and control measures are proposed for hundred-meter-deep water-immersed tube construction. The results demonstrate that the proposed system can effectively identify key risk sources under deep-water conditions and provide practical countermeasures, offering significant guidance for ensuring construction safety and engineering quality in hundred-meter immersed-tube tunnel projects. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 711 KB  
Article
Exoskeleton-Assisted Gait: Exploring New Rehabilitation Perspectives in Degenerative Spinal Cord Injury
by Martina Regazzetti, Mirko Zitti, Giovanni Lazzaro, Samuel Vianello, Sara Federico, Błażej Cieślik, Agnieszka Guzik, Carlos Luque-Moreno and Pawel Kiper
Technologies 2026, 14(1), 17; https://doi.org/10.3390/technologies14010017 - 25 Dec 2025
Viewed by 471
Abstract
Background: Recovery following incomplete spinal cord injury (iSCI) remains challenging, with conventional rehabilitation often emphasizing compensation over functional restoration. As most new spinal cord injury cases preserve some motor or sensory pathways, there is increasing interest in therapies that harness neuroplasticity. Robotic exoskeletons [...] Read more.
Background: Recovery following incomplete spinal cord injury (iSCI) remains challenging, with conventional rehabilitation often emphasizing compensation over functional restoration. As most new spinal cord injury cases preserve some motor or sensory pathways, there is increasing interest in therapies that harness neuroplasticity. Robotic exoskeletons provide a promising means to deliver task-specific, repetitive gait training that may promote adaptive neural reorganization. This feasibility study investigates the feasibility, safety, and short-term effects of exoskeleton-assisted walking in individuals with degenerative iSCI. Methods: Two cooperative male patients (patients A and B) with degenerative iSCI (AIS C, neurological level L1) participated in a four-week intervention consisting of one hour of neuromotor physiotherapy followed by one hour of exoskeleton-assisted gait training, three times per week. Functional performance was assessed using the 10-Meter Walk Test, while gait quality was examined through spatiotemporal gait analysis. Vendor-generated surface electromyography (sEMG) plots were available only for qualitative description. Results: Patient A demonstrated a clinically meaningful increase in walking speed (+0.15 m/s). Spatiotemporal parameters showed mixed and non-uniform changes, including longer cycle, stance, and swing times, which reflect a slower stepping pattern rather than improved efficiency or coordination. Patient B showed a stable walking speed (+0.03 m/s) and persistent gait asymmetries. Qualitative sEMG plots are presented descriptively but cannot support interpretations of muscle recruitment patterns or neuromuscular changes. Conclusions: In this exploratory study, exoskeleton-assisted gait training was feasible and well tolerated when combined with conventional physiotherapy. However, observed changes were heterogeneous and do not allow causal or mechanistic interpretation related to neuromuscular control, muscle recruitment, or device-specific effects. These findings highlight substantial inter-individual variability and underscore the need for larger controlled studies to identify predictors of response and optimize rehabilitation protocols. Full article
Show Figures

Figure 1

21 pages, 5360 KB  
Article
Hydraulic Instability Characteristics of Pumped-Storage Units During the Transition from Hot Standby to Power Generation
by Longxiang Chen, Jianguang Li, Lei Deng, Enguo Xie, Xiaotong Yan, Guowen Hao, Huixiang Chen, Hengyu Xue, Ziwei Zhong and Kan Kan
Water 2026, 18(1), 61; https://doi.org/10.3390/w18010061 - 24 Dec 2025
Viewed by 382
Abstract
Against the backdrop of the carbon peaking and neutrality (“dual-carbon”) goals and evolving new-type power system dispatch, the share of pumped-storage hydropower (PSH) in power systems continues to increase, imposing stricter requirements on units for higher cycling frequency, greater operational flexibility, and rapid, [...] Read more.
Against the backdrop of the carbon peaking and neutrality (“dual-carbon”) goals and evolving new-type power system dispatch, the share of pumped-storage hydropower (PSH) in power systems continues to increase, imposing stricter requirements on units for higher cycling frequency, greater operational flexibility, and rapid, stable startup and shutdown. Focusing on the entire hot-standby-to-generation transition of a PSH plant, a full-flow-path three-dimensional transient numerical model encompassing kilometer-scale headrace/tailrace systems, meter-scale runner and casing passages, and millimeter-scale inter-component clearances is developed. Three-dimensional unsteady computational fluid dynamics are determined, while the surge tank free surface and gaseous phase are captured using a volume-of-fluid (VOF) two-phase formula. Grid independence is demonstrated, and time-resolved validation is performed against the experimental model–test operating data. Internal instability structures are diagnosed via pressure fluctuation spectral analysis and characteristic mode identification, complemented by entropy production analysis to quantify dissipative losses. The results indicate that hydraulic instabilities concentrate in the acceleration phase at small guide vane openings, where misalignment between inflow incidence and blade setting induces separation and vortical structures. Concurrently, an intensified adverse pressure gradient in the draft tube generates an axial recirculation core and a vortex rope, driving upstream propagation of low-frequency pressure pulsations. These findings deepen our mechanistic understanding of hydraulic transients during the hot-standby-to-generation transition of PSH units and provide a theoretical basis for improving transitional stability and optimizing control strategies. Full article
Show Figures

Figure 1

34 pages, 11111 KB  
Review
Multi-Level Multi-Technology Underwater Networks: Challenges and Opportunities for Marine Monitoring
by A. Rehman and L. Galluccio
Network 2026, 6(1), 2; https://doi.org/10.3390/network6010002 - 24 Dec 2025
Viewed by 397
Abstract
Underwater networks are crucial for monitoring the marine ecosystem, enabling data collection to support the preservation and protection of natural resources. Among the various technologies available, acoustic and optical communications stand out for their superior performance in underwater environments. Acoustic technologies are suitable [...] Read more.
Underwater networks are crucial for monitoring the marine ecosystem, enabling data collection to support the preservation and protection of natural resources. Among the various technologies available, acoustic and optical communications stand out for their superior performance in underwater environments. Acoustic technologies are suitable for long-range communications, typically operating over hundreds of meters up to several kilometers, albeit with low data rates ranging from a few hundred bps to few tens of kbps. In contrast, optical technologies excel in providing high data rates, often between 1 and 10 Mbps, but only over short distances (e.g., 50 m) in controlled conditions. To leverage the strengths of these technologies, recent research has proposed multi-modal underwater systems; however, these solutions generally rely on single-level or at most dual-level architectures, limiting the benefits of a structured hierarchical approach. In this review paper, after discussing related work on multi-technology acoustic and optical networks, we highlight relevant design guidelines for multi-technology, multi-level underwater architectures, explicitly considering three layers: a deep acoustic layer, an intermediate optical layer, and an upper RF-enabled surface layer. For illustration, we also discuss a PoC of such a hierarchical architecture under development at the University of Catania, Italy, in the Area Marina Isole dei Ciclopi natural reserve. The PoC includes optical nodes capable of transmitting up to 10 Mbps over short ranges and acoustic nodes (both software defined and not) supporting rates of tens of kbps over hundreds of meters and being adaptive to network conditions, interconnected through hybrid multi-technology nodes deployed across the three network levels. By assigning specific technologies to appropriate layers, the architecture enhances scalability, robustness, and adaptability to dynamic underwater conditions. This design strategy not only improves data transmission efficiency but also ensures seamless operation across diverse marine scenarios, making it an effective solution for a wide range of underwater monitoring applications. Full article
Show Figures

Figure 1

27 pages, 6079 KB  
Article
Development of an Online Automatic Water–Fertilizer Mixing Device Considering Direct Mixing of Raw Water
by Jianian Li, Jun Wu, Jian Zhang, Zeyang Su, Xiaohui Chen and Jiaoli Fang
Agriculture 2026, 16(1), 3; https://doi.org/10.3390/agriculture16010003 - 19 Dec 2025
Viewed by 462
Abstract
To address the issue of low fertilizer proportioning accuracy in irrigation and fertilization systems due to neglecting the influence of target ions in raw water, this study designed a high-precision online automatic water–fertilizer mixing device that can directly mix raw water (without water [...] Read more.
To address the issue of low fertilizer proportioning accuracy in irrigation and fertilization systems due to neglecting the influence of target ions in raw water, this study designed a high-precision online automatic water–fertilizer mixing device that can directly mix raw water (without water purification treatment) with fertilizer stock solution. This device is capable of preparing mixed fertilizer solutions containing N, K, and Ca elements. It employs ion-selective electrodes and flow meters for online detection and feedback of target ion concentrations in the fertilizer solution and flow rate information, and adopts an online fertilizer mixing control strategy that uses a constant raw water flow rate and a fuzzy PID control method to dynamically adjust the pulse frequency of metering pumps, thereby changing the injection volume of nutrient solution. Simulation and experimental analyses show that the piping system of the device is reasonably designed, ensuring stable and smooth fertilizer injection. The temperature-compensated concentration detection models for the three target ions in the fertilizer solution, constructed using a stepwise fitting method, achieve average relative detection errors of 1.94%, 1.18%, and 2.87% for K+, NO3, and Ca2+, respectively. When preparing single-element or mixed fertilizer solutions, the device achieves an average steady-state error of no more than 4% and an average steady-state time of approximately 40 s. Compared with deionized water, the average relative errors for potassium ions, nitrate ions, and calcium ions when preparing fertilizer solutions with raw water are 1.33%, 1.12%, and 1.19%, respectively. Compared with the theoretical errors of fertilizer preparation with raw water, the fertilizer proportioning errors of this device for potassium ions, nitrate ions, and calcium ions can be reduced by a maximum of 10.55%, 66.84%, and 62.71%, respectively, which is superior to the performance requirements for water–fertilizer integration equipment specified in the national industry standard DG/T 274-2024. Additionally, the device achieves accurate and stable fertilizer proportioning with safe and reliable operation during 6 h of continuous operation. This device significantly reduces the impact of raw water on fertilizer proportioning accuracy, improves the adaptability of the device to irrigation water sources, and provides theoretical basis and technical support for water-fertilizer integration systems in cost-sensitive agriculture. Full article
(This article belongs to the Special Issue Agricultural Machinery and Technology for Fruit Orchard Management)
Show Figures

Figure 1

Back to TopTop