Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = metaproteomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 513 KiB  
Review
Alternatives Integrating Omics Approaches for the Advancement of Human Skin Models: A Focus on Metagenomics, Metatranscriptomics, and Metaproteomics
by Estibaliz Fernández-Carro, Sophia Letsiou, Stella Tsironi, Dimitrios Chaniotis, Jesús Ciriza and Apostolos Beloukas
Microorganisms 2025, 13(8), 1771; https://doi.org/10.3390/microorganisms13081771 - 29 Jul 2025
Viewed by 343
Abstract
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, [...] Read more.
The human skin microbiota, a complex community of bacterial, fungal, and viral organisms, plays a crucial role in maintaining skin homeostasis and regulating host-pathogen interactions. Dysbiosis within this microbial ecosystem has been implicated in various dermatological conditions, including acne vulgaris, psoriasis, seborrheic dermatitis, and atopic dermatitis. This review, for the first time, provides recent advancements in all four layers of omic technologies—metagenomics, metatranscriptomics, metaproteomics, and metabolomics—offering comprehensive insights into microbial diversity, in the context of functional skin modeling. Thus, this review explores the application of these omic tools to in vitro skin models, providing an integrated framework for understanding the molecular mechanisms underlying skin–microbiota interactions in both healthy and pathological contexts. We highlight the importance of developing advanced in vitro skin models, including the integration of immune components and endothelial cells, to accurately replicate the cutaneous microenvironment. Moreover, we discuss the potential of these models to identify novel therapeutic targets, enabling the design of personalized treatments aimed at restoring microbial balance, reinforcing the skin barrier, and modulating inflammation. As the field progresses, the incorporation of multi-omic approaches into skin-microbiome research will be pivotal in unraveling the complex interactions between host and microbiota, ultimately advancing therapeutic strategies for skin-related diseases. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

21 pages, 1321 KiB  
Review
Exploration of Multi-Source Lignocellulose-Degrading Microbial Resources and Bioaugmentation Strategies: Implications for Rumen Efficiency
by Xiaokang Lv, Zhanhong Qiao, Chao Chen, Jinling Hua and Chuanshe Zhou
Animals 2025, 15(13), 1920; https://doi.org/10.3390/ani15131920 - 29 Jun 2025
Viewed by 289
Abstract
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive [...] Read more.
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive tracts, forest soil, and microbial populations in papermaking processes. The rumen of ruminants harbors a diverse range of microbial species, making it a promising source of lignocellulose-degrading microorganisms. Exploring alternative systems like insect intestines and forest soil is essential for future research. Current studies primarily rely on traditional microbial isolation techniques to identify lignocellulose-degrading strains, underscoring the necessity to transition to utilizing microbial culturomics and genome-editing technologies for discovering and manipulating cellulose-degrading microbes. This review provides an overview of lignocellulose-degrading microbial communities from diverse environments, encompassing bacterial and fungal populations. It also delves into the use of metagenomic, metatranscriptomic, and metaproteomic approaches to pinpoint highly efficient cellulase genes, along with the application of genome-editing tools for engineering lignocellulose-degrading microorganisms. The primary objective of this review is to offer insights for further exploration of potential lignocellulose-degrading microbial resources and high-performance cellulase genes to enhance roughage utilization in ruminant rumen ecosystems. Full article
Show Figures

Figure 1

24 pages, 1816 KiB  
Review
A Systematic Review on Microbial Profiling Techniques in Goat Milk: Implications for Probiotics and Shelf-Life
by Nare Jessica Monareng, Keabetswe T. Ncube, Charles van Rooi, Mamokoma C. Modiba and Bohani Mtileni
Int. J. Mol. Sci. 2025, 26(12), 5551; https://doi.org/10.3390/ijms26125551 - 10 Jun 2025
Viewed by 764
Abstract
Due to its high digestibility, rich nutrient profile, and potential probiotic content, goat milk is an essential nutritional resource, particularly for individuals with cow milk allergies. This review summarises the current state of microbial diversity in goat milk, emphasising the implications for quality, [...] Read more.
Due to its high digestibility, rich nutrient profile, and potential probiotic content, goat milk is an essential nutritional resource, particularly for individuals with cow milk allergies. This review summarises the current state of microbial diversity in goat milk, emphasising the implications for quality, safety, and probiotic potential. This systematic review adhered to PRISMA guidelines, conducting a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar using keywords related to microbial profiling in goat milk. The inclusion criteria targeted English-language studies from 2000 to 2025 that utilised high-throughput or next-generation sequencing methods. Out of 126 articles screened, 84 met the eligibility criteria. The extracted data focused on microbial diversity, profiling techniques, and their respective strengths and limitations in evaluating probiotic potential and spoilage risks. The review addresses the challenges linked to microbial spoilage and the composition and functional roles of microbial communities in goat milk. With species such as Bacillus and Pseudomonas playing crucial roles in fermentation and spoilage, key findings emphasise the prevalence of microbial phyla, including Proteobacteria, Firmicutes, and Actinobacteria in goat milk. The review also explores the probiotic potential of the goat milk microbiota, highlighting the health benefits associated with strains such as Lactobacillus and Bifidobacterium. Significant discoveries underline the necessity for advanced multi-omics techniques to thoroughly define microbial ecosystems and the substantial gaps in breed-specific microbiota research. Important findings illustrate the need for enhanced multi-omics techniques, given the challenges of host RNA and protein interference, low microbial biomass, and limited goat-specific reference databases, for optimising probiotic development, spoilage prevention strategies, and integrating metagenomics, metabolomics, metaproteomics, and metatranscriptomics to improve milk quality and safety as some of the future research objectives. This study emphasises the importance of understanding goat milk microbiology to advance dairy science and enhance human health. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

42 pages, 1014 KiB  
Review
The Gut Mycobiome for Precision Medicine
by Islam El Jaddaoui, Sofia Sehli, Najib Al Idrissi, Youssef Bakri, Lahcen Belyamani and Hassan Ghazal
J. Fungi 2025, 11(4), 279; https://doi.org/10.3390/jof11040279 - 2 Apr 2025
Cited by 3 | Viewed by 2209
Abstract
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly [...] Read more.
The human gastrointestinal tract harbors a vast array of microorganisms, which play essential roles in maintaining metabolic balance and immune function. While bacteria dominate the gut microbiome, fungi represent a much smaller, often overlooked fraction. Despite their relatively low abundance, fungi may significantly influence both health and disease. Advances in next-generation sequencing, metagenomics, metatranscriptomics, metaproteomics, metabolomics, and computational biology have provided novel opportunities to study the gut mycobiome, shedding light on its composition, functional genes, and metabolite interactions. Emerging evidence links fungal dysbiosis to various diseases, including inflammatory bowel disease, colorectal cancer, metabolic disorders, and neurological conditions. The gut mycobiome also presents a promising avenue for precision medicine, particularly in biomarker discovery, disease diagnostics, and targeted therapeutics. Nonetheless, significant challenges remain in effectively integrating gut mycobiome knowledge into clinical practice. This review examines gut fungal microbiota, highlighting analytical methods, associations with human diseases, and its potential role in precision medicine. It also discusses pathways for clinical translation, particularly in diagnosis and treatment, while addressing key barriers to implementation. Full article
(This article belongs to the Special Issue Gut Mycobiome, 2nd Edition)
Show Figures

Figure 1

24 pages, 3966 KiB  
Article
Metaproteomic Analysis of Fermented Vegetable Formulations with Lactic Acid Bacteria: A Comparative Study from Initial Stage to 15 Days of Production
by Narisa Rueangsri, Sittiruk Roytrakul, Chawanphat Muangnoi, Kullanart Tongkhao, Sudathip Sae-Tan, Khemmapas Treesuwan and Jintana Sirivarasai
Foods 2025, 14(7), 1148; https://doi.org/10.3390/foods14071148 - 26 Mar 2025
Cited by 2 | Viewed by 1005
Abstract
Research in metagenomics and metaproteomics can reveal how microbiological interactions in fermented foods contribute to their health benefits. This study examined three types of fermented vegetables: a standard formulation, a probiotic formulation with Lacticaseibacillus rhamnosus GG, and a polyphenol formulation with vitexin from [...] Read more.
Research in metagenomics and metaproteomics can reveal how microbiological interactions in fermented foods contribute to their health benefits. This study examined three types of fermented vegetables: a standard formulation, a probiotic formulation with Lacticaseibacillus rhamnosus GG, and a polyphenol formulation with vitexin from Mung bean seed coat. Measurements were taken at day 0 (after 36 h of fermentation at room temperature) and after 15 days. We applied 16S rRNA sequencing to evaluate microbial diversity and utilized LC-MS/MS to investigate the proteomic profiles of specific genera (Lactobacillus and Weissella) and species (Lacticaseibacillus rhamnosus and Levilactobacillus brevis) of lactic acid bacteria (LAB). All of these taxa demonstrated significant relative abundance between 0 and 15 days of fermentation in our metagenomic analysis. Our findings from principal component analysis and clustering analysis categorically distinguished protein expression patterns at various stages of fermentation. By comparing samples from day 0 to day 15, we identified proteins associated with DNA replication and repair mechanisms, including transcription elongation factor GreA, tRNA pseudouridine synthase B, and helicases. We also observed their roles in protein synthesis, which encompasses oxidoreductases and aspartokinase. Furthermore, we identified strong correlations of specific proteins across the three formulations with antioxidant markers. In conclusion, the results of this study decisively enhance our understanding of the role of the proteins related to specific LAB in fermented foods, highlighting their potential to improve texture, flavor, nutritional quality, and health benefits. Full article
Show Figures

Graphical abstract

21 pages, 4543 KiB  
Article
Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis
by Thanawit Chantanaskul, Preecha Patumcharoenpol, Sittirak Roytrakul, Amornthep Kingkaw and Wanwipa Vongsangnak
Int. J. Mol. Sci. 2024, 25(24), 13533; https://doi.org/10.3390/ijms252413533 - 18 Dec 2024
Viewed by 1591
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as [...] Read more.
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein–protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome–mycobiome–human gut studies associated with AD and other allergic diseases in infants. Full article
(This article belongs to the Special Issue Gut Microbiota in Human Disease and Health)
Show Figures

Figure 1

14 pages, 5018 KiB  
Article
FISH–Flow Cytometry Reveals Microbiome-Wide Changes in Post-Translational Modification and Altered Microbial Abundance Among Children with Inflammatory Bowel Disease
by Mevlut Ulas, Seamus Hussey, Annemarie Broderick, Emer Fitzpatrick, Cara Dunne, Sarah Cooper, Anna Dominik and Billy Bourke
Pathogens 2024, 13(12), 1102; https://doi.org/10.3390/pathogens13121102 - 13 Dec 2024
Cited by 1 | Viewed by 1093
Abstract
Metaproteomic analysis of microbiome post-translation modifications (PTMm) is challenging, and little is known about the effects of inflammation on the bacterial PTM landscape in IBD. Here, we adapted and optimised fluorescence in situ hybridisation–flow cytometry (FISH-FC) to study microbiome-wide tyrosine phosphorylation (p-Tyr) in [...] Read more.
Metaproteomic analysis of microbiome post-translation modifications (PTMm) is challenging, and little is known about the effects of inflammation on the bacterial PTM landscape in IBD. Here, we adapted and optimised fluorescence in situ hybridisation–flow cytometry (FISH-FC) to study microbiome-wide tyrosine phosphorylation (p-Tyr) in children with and without inflammatory bowel disease (IBD). Microbial p-Tyr signal was significantly higher in children with IBD, compared to those without. Faecalibacterium prausnitzii, Bacteroidota, Gammaproteobacteria and Bifidobacteria tended to be more abundant in IBD than in non-IBD control children but there were only minor differences in p-Tyr among these bacterial communities in those with and without IBD. p-Tyr was significantly lower in non-IBD children older than 9 yrs compared with those less than 9 yrs, and the effect was seen in all four bacterial subgroups studied. The opposite trend was seen in patients with IBD. p-Tyr overall is higher in children with IBD but the effects of inflammation on p-Tyr vary according to the bacterial community. The overall microbiome p-Tyr signal changes with age in healthy children. FISH-FC can be used to study the microbiome-wide PTM landscape. Full article
Show Figures

Figure 1

17 pages, 2257 KiB  
Article
Impact of Agroforestry Practices on Soil Microbial Diversity and Nutrient Cycling in Atlantic Rainforest Cocoa Systems
by Sayure Mariana Raad Nahon, Felipe Costa Trindade, Caio Augusto Yoshiura, Gabriel Caixeta Martins, Isa Rebecca Chagas da Costa, Paulo Henrique de Oliveira Costa, Héctor Herrera, Diego Balestrin, Tiago de Oliveira Godinho, Bia Makiyama Marchiori and Rafael Borges da Silva Valadares
Int. J. Mol. Sci. 2024, 25(21), 11345; https://doi.org/10.3390/ijms252111345 - 22 Oct 2024
Cited by 3 | Viewed by 2418
Abstract
Microorganisms are critical indicators of soil quality due to their essential role in maintaining ecosystem services. However, anthropogenic activities can disrupt the vital metabolic functions of these microorganisms. Considering that soil biology is often underestimated and traditional assessment methods do not capture its [...] Read more.
Microorganisms are critical indicators of soil quality due to their essential role in maintaining ecosystem services. However, anthropogenic activities can disrupt the vital metabolic functions of these microorganisms. Considering that soil biology is often underestimated and traditional assessment methods do not capture its complexity, molecular methods can be used to assess soil health more effectively. This study aimed to identify the changes in soil microbial diversity and activity under different cocoa agroforestry systems, specially focusing on taxa and functions associated to carbon and nitrogen cycling. Soils from three different cocoa agroforestry systems, including a newly established agroforestry with green fertilization (GF), rubber (Hevea brasiliensis)–cocoa intercropping (RC), and cocoa plantations under Cabruca (cultivated under the shave of native forest) (CAB) were analyzed and compared using metagenomic and metaproteomic approaches. Samples from surrounding native forest and pasture were used in the comparison, representing natural and anthropomorphic ecosystems. Metagenomic analysis revealed a significant increase in Proteobacteria and Basidiomycota and the genes associated with dissimilatory nitrate reduction in the RC and CAB areas. The green fertilization area showed increased nitrogen cycling activity, demonstrating the success of the practice. In addition, metaproteomic analyses detected enzymes such as dehydrogenases in RC and native forest soils, indicating higher metabolic activity in these soils. These findings underscore the importance of soil management strategies to enhance soil productivity, diversity, and overall soil health. Molecular tools are useful to demonstrate how changes in agricultural practices directly influence the microbial community, affecting soil health. Full article
Show Figures

Figure 1

14 pages, 3831 KiB  
Article
Detection of Antimicrobial Proteins/Peptides and Bacterial Proteins Involved in Antimicrobial Resistance in Raw Cow’s Milk from Different Breeds
by Cristian Piras, Rosario De Fazio, Antonella Di Francesco, Francesca Oppedisano, Anna Antonella Spina, Vincenzo Cunsolo, Paola Roncada, Rainer Cramer and Domenico Britti
Antibiotics 2024, 13(9), 838; https://doi.org/10.3390/antibiotics13090838 - 3 Sep 2024
Cited by 5 | Viewed by 1848
Abstract
Proteins involved in antibiotic resistance (resistome) and with antimicrobial activity are present in biological specimens. This study aims to explore the presence and abundance of antimicrobial peptides (AMPs) and resistome proteins in bovine milk from diverse breeds and from intensive (Pezzata rossa, Bruna [...] Read more.
Proteins involved in antibiotic resistance (resistome) and with antimicrobial activity are present in biological specimens. This study aims to explore the presence and abundance of antimicrobial peptides (AMPs) and resistome proteins in bovine milk from diverse breeds and from intensive (Pezzata rossa, Bruna alpina, and Frisona) and non-intensive farming (Podolica breeds). Liquid atmospheric pressure matrix-assisted laser desorption/ionization (LAP-MALDI) mass spectrometry (MS) profiling, bottom-up proteomics, and metaproteomics were used to comprehensively analyze milk samples from various bovine breeds in order to identify and characterize AMPs and to investigate resistome proteins. LAP-MALDI MS coupled with linear discriminant analysis (LDA) machine learning was employed as a rapid classification method for Podolica milk recognition against the milk of other bovine species. The results of the LAP-MALDI MS analysis of milk coupled with the linear discriminant analysis (LDA) demonstrate the potential of distinguishing between Podolica and control milk samples based on MS profiles. The classification accuracy achieved in the training set is 86% while it reaches 98.4% in the test set. Bottom-up proteomics revealed approximately 220 quantified bovine proteins (identified using the Bos taurus database), with cathelicidins and annexins exhibiting higher abundance levels in control cows (intensive farming breeds). On the other hand, the metaproteomics analysis highlighted the diversity within the milk’s microbial ecosystem with interesting results that may reflect the diverse environmental variables. The bottom-up proteomics data analysis using the Comprehensive Antibiotic Resistance Database (CARD) revealed beta-lactamases and tetracycline resistance proteins in both control and Podolica milk samples, with no relevant breed-specific differences observed. Full article
Show Figures

Figure 1

13 pages, 1916 KiB  
Article
Holobiont Rebalancing by a Natural Gentian Extract on a Skin Dehydration Model
by Lauriane N. Roux, Assia Dreux-Zigha, Célia Rey, Carine Boutot, Yoan Laurent, Sercan Beytur, Isabelle Metton, Jean-Daniel Abraham and Jean-Yves Berthon
Cosmetics 2024, 11(4), 132; https://doi.org/10.3390/cosmetics11040132 - 1 Aug 2024
Viewed by 2566
Abstract
Human skin homeostasis is partly maintained by a complex microscopic ecosystem known as the microbiota. Together, the skin host and microbiota form a synergistic evolutionary unit referred to as ‘skin holobiont’, which can be modulated by various stresses. By extracting organic wild yellow [...] Read more.
Human skin homeostasis is partly maintained by a complex microscopic ecosystem known as the microbiota. Together, the skin host and microbiota form a synergistic evolutionary unit referred to as ‘skin holobiont’, which can be modulated by various stresses. By extracting organic wild yellow gentian roots enhanced through fermentation of a rare and resistant bacterium, Sphingomonas faeni, a cosmetic active ingredient was developed to rebalance the holobiont functions as well as hydric and lipidic skin content. Indeed, gentian-fermented extract (GFE) boosts hyaluronic acid (HA) biosynthesis in vitro, stimulates the HA receptor, CD44, and allows water storage and retention through its signaling cascade by epidermal reinforcement. Importantly, GFE also increases lipid synthesis by +147% in vitro, which was confirmed clinically on volunteers with dehydrated and dry skin who presented an increase in hydration and skin surface lipids after 28 days of treatment. Furthermore, a metaproteomic study highlighted that there is a slow-down of skin barrier and antioxidant proteins from both human and microbial origins, with age and dehydration, that can be reversed by GFE after 56 days. In conclusion, acting on the HA metabolism and specific microbiota species, GFE rebalances the skin holobiont for a reinforced and rehydrated skin with optimal lipid content. Full article
(This article belongs to the Special Issue 10th Anniversary of Cosmetics—Recent Advances and Perspectives)
Show Figures

Figure 1

15 pages, 791 KiB  
Review
Effect of Probiotic Supplements on the Oral Microbiota—A Narrative Review
by Christine Lundtorp-Olsen, Merete Markvart, Svante Twetman and Daniel Belstrøm
Pathogens 2024, 13(5), 419; https://doi.org/10.3390/pathogens13050419 - 16 May 2024
Cited by 5 | Viewed by 4680
Abstract
Data from systematic reviews and meta-analyses show that probiotics positively impact clinical parameters of oral diseases such as gingivitis, dental caries, and periodontitis. However, the working mechanism of probiotics is not fully understood, but is hypothesized to be mediated by direct and indirect [...] Read more.
Data from systematic reviews and meta-analyses show that probiotics positively impact clinical parameters of oral diseases such as gingivitis, dental caries, and periodontitis. However, the working mechanism of probiotics is not fully understood, but is hypothesized to be mediated by direct and indirect interactions with the oral microbiota and the human host. In the present narrative review, we focused on the microbiological effect of probiotic supplements based on data retrieved from randomized clinical trials (RCTs). In addition, we assessed to what extent contemporary molecular methods have been employed in clinical trials in the field of oral probiotics. Multiple RCTs have been performed studying the potential effect of probiotics on gingivitis, dental caries, and periodontitis, as evaluated by microbial endpoints. In general, results are conflicting, with some studies reporting a positive effect, whereas others are not able to record any effect. Major differences in terms of study designs and sample size, as well as delivery route, frequency, and duration of probiotic consumption, hamper comparison across studies. In addition, most RCTs have been performed with a limited sample size using relatively simple methods for microbial identification, such as culturing, qPCR, and DNA–DNA checkerboard, while high-throughput methods such as 16S sequencing have only been employed in a few studies. Currently, state-of-the-art molecular methods such as metagenomics, metatranscriptomics, and metaproteomics have not yet been used in RCTs in the field of probiotics. The present narrative review revealed that the effect of probiotic supplements on the oral microbiota remains largely uncovered. One important reason is that most RCTs are performed without studying the microbiological effect. To facilitate future systematic reviews and meta-analyses, an internationally agreed core outcome set for the reporting of microbial endpoints in clinical trials would be desirable. Such a standardized collection of outcomes would most likely improve the quality of probiotic research in the oral context. Full article
(This article belongs to the Special Issue Insights in Oral Microbiota)
Show Figures

Figure 1

19 pages, 4693 KiB  
Article
Metagenomic/Metaproteomic Investigation of the Microbiota in Dongbei Suaicai, a Traditional Fermented Chinese Cabbage
by Yamin Zhang, Haiyang Yan, Xiangxiu Xu, Xiaowei Xiao, Yuan Yuan, Na Guo, Tiehua Zhang, Mengyao Li, Ling Zhu, Changhui Zhao, Zuozhao Wang and Haiqing Ye
Fermentation 2024, 10(4), 185; https://doi.org/10.3390/fermentation10040185 - 28 Mar 2024
Cited by 3 | Viewed by 2042
Abstract
Dongbei Suaicai (DBSC) has a complicated microbial ecosystem in which the composition and metabolism of microbial communities during the process have not been well explored. Here, combined metagenomic and metaproteomic technology was used to reveal the taxonomic and metabolic profiles of DBSC. The [...] Read more.
Dongbei Suaicai (DBSC) has a complicated microbial ecosystem in which the composition and metabolism of microbial communities during the process have not been well explored. Here, combined metagenomic and metaproteomic technology was used to reveal the taxonomic and metabolic profiles of DBSC. The results showed that firmicutes and proteobacteria were the prevalent bacteria in phylum and Pseudomonas, while Weissella, Pediococcus, and Leuconostoc were the prevalent genus. The vital metabolic pathways were involved in glycolysis/gluconeogenesis [path: ko00010], as well as pyruvate metabolism [path: ko00620], fructose and mannose metabolism [path: Ko00051], glycine, and serine and threonine metabolism [path: Ko00260]. Moreover, the key proteins (dps, fliC, tsf, fusA, atpD, metQ, pgi, tpiA, eno, alaS, bglA, tktA, gor, pdhD, aceE, and gnd) in related metabolized pathways were enriched during fermentation. This study will aid in facilitating the understanding of the fermentation mechanisms of DBSC. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

19 pages, 3169 KiB  
Article
The Bee Gut Microbiota: Bridging Infective Agents Potential in the One Health Context
by Bruno Tilocca, Viviana Greco, Cristian Piras, Carlotta Ceniti, Mariachiara Paonessa, Vincenzo Musella, Roberto Bava, Ernesto Palma, Valeria Maria Morittu, Anna Antonella Spina, Fabio Castagna, Andrea Urbani, Domenico Britti and Paola Roncada
Int. J. Mol. Sci. 2024, 25(7), 3739; https://doi.org/10.3390/ijms25073739 - 27 Mar 2024
Cited by 4 | Viewed by 3033
Abstract
The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic [...] Read more.
The bee gut microbiota plays an important role in the services the bees pay to the environment, humans and animals. Alongside, gut-associated microorganisms are vehiculated between apparently remote habitats, promoting microbial heterogeneity of the visited microcosms and the transfer of the microbial genetic elements. To date, no metaproteomics studies dealing with the functional bee microbiota are available. Here, we employ a metaproteomics approach to explore a fraction of the bacterial, fungal, and unicellular parasites inhabiting the bee gut. The bacterial community portrays a dynamic composition, accounting for specimens of human and animal concern. Their functional features highlight the vehiculation of virulence and antimicrobial resistance traits. The fungal and unicellular parasite fractions include environment- and animal-related specimens, whose metabolic activities support the spatial spreading of functional features. Host proteome depicts the major bee physiological activities, supporting the metaproteomics strategy for the simultaneous study of multiple microbial specimens and their host-crosstalks. Altogether, the present study provides a better definition of the structure and function of the bee gut microbiota, highlighting its impact in a variety of strategies aimed at improving/overcoming several current hot topic issues such as antimicrobial resistance, environmental pollution and the promotion of environmental health. Full article
Show Figures

Figure 1

19 pages, 1443 KiB  
Review
Integrative Multiomics Approach to Skin: The Sinergy between Individualised Medicine and Futuristic Precision Skin Care?
by Angelica Dessì, Roberta Pintus, Vassilios Fanos and Alice Bosco
Metabolites 2024, 14(3), 157; https://doi.org/10.3390/metabo14030157 - 7 Mar 2024
Cited by 2 | Viewed by 3522
Abstract
The skin is a complex ecosystem colonized by millions of microorganisms, the skin microbiota, which are crucial in regulating not only the physiological functions of the skin but also the metabolic changes underlying the onset of skin diseases. The high microbial colonization together [...] Read more.
The skin is a complex ecosystem colonized by millions of microorganisms, the skin microbiota, which are crucial in regulating not only the physiological functions of the skin but also the metabolic changes underlying the onset of skin diseases. The high microbial colonization together with a low diversity at the phylum level and a high diversity at the species level of the skin is very similar to that of the gastrointestinal tract. Moreover, there is an important communication pathway along the gut–brain–skin axis, especially associated with the modulation of neurotransmitters by the microbiota. Therefore, it is evident that the high complexity of the skin system, due not only to the genetics of the host but also to the interaction of the host with resident microbes and between microbe and microbe, requires a multi-omics approach to be deeply understood. Therefore, an integrated analysis, with high-throughput technologies, of the consequences of microbial interaction with the host through the study of gene expression (genomics and metagenomics), transcription (transcriptomics and meta-transcriptomics), and protein production (proteomics and meta-proteomics) and metabolite formation (metabolomics and lipidomics) would be useful. Although to date very few studies have integrated skin metabolomics data with at least one other ‘omics’ technology, in the future, this approach will be able to provide simple and fast tests that can be routinely applied in both clinical and cosmetic settings for the identification of numerous skin diseases and conditions. It will also be possible to create large archives of multi-omics data that can predict individual responses to pharmacological treatments and the efficacy of different cosmetic products on individual subjects by means of specific allotypes, with a view to increasingly tailor-made medicine. In this review, after analyzing the complexity of the skin ecosystem, we have highlighted the usefulness of this emerging integrated omics approach for the analysis of skin problems, starting with one of the latest ‘omics’ sciences, metabolomics, which can photograph the expression of the genome during its interaction with the environment. Full article
(This article belongs to the Special Issue Preclinical and Clinical Application of Metabolomics in Medicine)
Show Figures

Graphical abstract

23 pages, 1605 KiB  
Review
Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility
by Éva-Boglárka Vincze, Annamária Becze, Éva Laslo and Gyöngyvér Mara
Agriculture 2024, 14(1), 152; https://doi.org/10.3390/agriculture14010152 - 20 Jan 2024
Cited by 39 | Viewed by 13977
Abstract
The soil microbiome plays an important role in maintaining soil health, plant productivity, and soil ecosystem services. Current molecular-based studies have shed light on the fact that the soil microbiome has been quantitatively underestimated. In addition to metagenomic studies, metaproteomics and metatranscriptomic studies [...] Read more.
The soil microbiome plays an important role in maintaining soil health, plant productivity, and soil ecosystem services. Current molecular-based studies have shed light on the fact that the soil microbiome has been quantitatively underestimated. In addition to metagenomic studies, metaproteomics and metatranscriptomic studies that target the functional part of the microbiome are becoming more common. These are important for a better understanding of the functional role of the microbiome and for deciphering plant-microbe interactions. Free-living beneficial bacteria that promote plant growth by colonizing plant roots are called plant growth-promoting rhizobacteria (PGPRs). They exert their beneficial effects in different ways, either by facilitating the uptake of nutrients and synthesizing particular compounds for plants or by preventing and protecting plants from diseases. A better understanding of plant-microbe interactions in both natural and agroecosystems will offer us a biotechnological tool for managing soil fertility and obtaining a high-yield food production system. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

Back to TopTop