Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (657)

Search Parameters:
Keywords = metallurgical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 691 KiB  
Review
Alloy Selection and Manufacturing Technologies for Total Ankle Arthroplasty: A Narrative Review
by Kishen Mitra, Arun K. Movva, Michael O. Sohn, Joshua M. Tennyson, Grayson M. Talaski, Samuel B. Adams and Albert T. Anastasio
Materials 2025, 18(16), 3770; https://doi.org/10.3390/ma18163770 - 11 Aug 2025
Viewed by 261
Abstract
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but [...] Read more.
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but present metal ion release concerns, while titanium alloys (Ti6Al4V) optimize biocompatibility with elastic modulus values (101–113 GPa) closer to bone, despite tribological limitations. Novel β-titanium formulations (Ti-35Nb-7Zr-5Ta, Ti10Mo6Zr4Sn3Nb) eliminate toxic aluminum and vanadium components while achieving lower elastic modulus values (50–85 GPa) that better match cortical bone properties. Manufacturing has transitioned from traditional methods (investment casting, forging, CNC machining) toward additive manufacturing technologies. Selective laser melting and electron beam melting enable patient-specific geometries, controlled porosity, and optimized microstructures, though challenges remain with residual stresses, surface finish requirements, and post-processing needs. Emerging biodegradable materials, composite structures, and hybrid implant designs represent promising future directions for addressing current material limitations. This review provides evidence-based insights for alloy selection and manufacturing approaches, emphasizing the critical role of materials engineering in TAA implant performance and clinical outcomes. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys (2nd Edition))
Show Figures

Figure 1

20 pages, 4070 KiB  
Article
Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag–GGBFS Concrete
by Suguo Wang, Xing Wang, Xueyuan Yan and Shanghong Chen
Materials 2025, 18(15), 3681; https://doi.org/10.3390/ma18153681 - 5 Aug 2025
Viewed by 287
Abstract
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of [...] Read more.
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of ferronickel slag–GGBFS concrete in 3D printing, this study examines how aggregate size and nozzle diameter affect its performance. The investigation involves in situ printing, rheological characterization, mechanical testing, and scanning electron microscopy (SEM) analysis. Results indicate that excessively large average aggregate size negatively impacts the smooth extrusion of concrete strips, resulting in a cross-sectional width that exceeds the preset dimension. Excessively small average aggregate size results in insufficient yield stress, leading to a narrow cross-section of the extruded strip that fails to meet printing specifications. The extrusion performance is closely related to both the average aggregate size and nozzle diameter, which can significantly influence the normal extrusion stability and print quality of 3D printed concrete strips. The thixotropic performance improves with an increase in the aggregate size. Both compressive and flexural strengths improve with increasing aggregate size but decrease with an increase in the printing nozzle size. Anisotropy in mechanical behavior decreases progressively as both parameters mentioned increase. By examining the cracks and pores at the interlayer interface, this study elucidates the influence mechanism of aggregate size as well as printing nozzle parameters on the mechanical properties of 3D printed ferronickel slag–GGBFS concrete. This study also recommends the following ranges. When the maximum aggregate size exceeds 50% of the nozzle diameter, smooth extrusion is not achievable. If it falls between 30% and 50%, extrusion is possible but shaping remains unstable. When it is below 30%, both stable extrusion and good shaping can be achieved. Full article
Show Figures

Figure 1

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 329
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

14 pages, 2733 KiB  
Article
Study on Microstructure and Wear Resistance of Multi-Layer Laser Cladding Fe901 Coating on 65 Mn Steel
by Yuzhen Yu, Weikang Ding, Xi Wang, Donglu Mo and Fan Chen
Materials 2025, 18(15), 3505; https://doi.org/10.3390/ma18153505 - 26 Jul 2025
Viewed by 313
Abstract
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based [...] Read more.
65 Mn is a high-quality carbon structural steel that exhibits excellent mechanical properties and machinability. It finds broad applications in machinery manufacturing, agricultural tools, and mining equipment, and is commonly used for producing mechanical parts, springs, and cutting tools. Fe901 is an iron-based alloy that exhibits excellent hardness, structural stability, and wear resistance. It is widely used in surface engineering applications, especially laser cladding, due to its ability to form dense and crack-free metallurgical coatings. To enhance the surface hardness and wear resistance of 65 Mn steel, this study employs a laser melting process to deposit a multi-layer Fe901 alloy coating. The phase composition, microstructure, microhardness, and wear resistance of the coatings are investigated using X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), Vickers hardness testing, and friction-wear testing. The results show that the coatings are dense and uniform, without visible defects. The main phases in the coating include solid solution, carbides, and α-phase. The microstructure comprises dendritic, columnar, and equiaxed crystals. The microhardness of the cladding layer increases significantly, with the multilayer coating reaching 3.59 times the hardness of the 65 Mn substrate. The coatings exhibit stable and relatively low friction coefficients ranging from 0.38 to 0.58. Under identical testing conditions, the wear resistance of the coating surpasses that of the substrate, and the multilayer coating shows better wear performance than the single-layer one. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 1652 KiB  
Article
Evaluation of Binderless Briquettes as Potential Feed for the Electric Arc Furnaces at Barro Alto, Brazil
by Johnny Obakeng Mogalanyane, Natasia Naudé and Andrie Mariana Garbers-Craig
Minerals 2025, 15(7), 756; https://doi.org/10.3390/min15070756 - 19 Jul 2025
Viewed by 309
Abstract
Barro Alto processes nickel laterite ore using rotary kilns and six-in-line rectangular electric arc furnaces. This study evaluated the briquetting of ferronickel ore to reduce kiln fines, improve furnace charge permeability, and enhance process safety. Binderless briquettes were produced from screened ore at [...] Read more.
Barro Alto processes nickel laterite ore using rotary kilns and six-in-line rectangular electric arc furnaces. This study evaluated the briquetting of ferronickel ore to reduce kiln fines, improve furnace charge permeability, and enhance process safety. Binderless briquettes were produced from screened ore at two size fractions (−6.3 mm and −12.5 mm), with moisture contents of 16% and 24%, cured under closed and open conditions. The physical and metallurgical properties of the briquettes were assessed using ISO standard tests. The results confirmed successful agglomeration of the ore into binderless briquettes. Screening the run-of-mine (ROM) ore improved the feed quality, increasing the NiO grade from 2.0% to 2.2% in the −6.3 mm fraction. The briquettes from the −6.3 mm ore at 16% moisture exhibited the highest green strength (559 N). Higher moisture content reduced the briquette strength and increased both the reduction disintegration and decrepitation indices. The decrepitation index increased from 0.33% to 0.61% for the −6.3 mm briquettes when the moisture increased from 16% to 24%. The reduction levels were 33.4% and 39.2% for −6.3 mm and −12.5 mm briquettes with 16% moisture, respectively. This study concludes that optimal performance was achieved using −6.3 mm ore, 16% moisture, and open curing, thereby balancing reduction efficiency and mechanical stability. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

14 pages, 5562 KiB  
Article
Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy-Reinforced Ti-6Al-4V Composites
by Abdulaziz Kurdi, Animesh Kumar Basak, Nachimuthu Radhika and Ahmed Degnah
Materials 2025, 18(13), 3179; https://doi.org/10.3390/ma18133179 - 4 Jul 2025
Viewed by 562
Abstract
High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural [...] Read more.
High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural aspects of the MMC were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an emphasis on the interdiffusion (ID) layer. The mechanical properties of the composites were studied by micro-pillar compression at the micro-length scale. The results show that the ID layer exists between the HEA particles and the matrix, is equiaxed in nature, and leads towards metallurgical bonding within the composite. The strength of this ID layer (1573 MPa of yield strength and 1867 MPa of compressive strength) and its Young’s modulus (570 MPa) were about 1.5 times lower than that of the matrix. The HEA particles exhibit the highest strength (2157 MPa of yield strength and 3356 MPa of compressive strength) and Young’s modulus (643 MPa), whereas the matrix falls in between 2372 MPa of yield strength and 2661 MPa of compressive strength, and a Young’s modulus of 721 MPa. Full article
Show Figures

Figure 1

8 pages, 2125 KiB  
Proceeding Paper
Experimental Analysis of Tensile and Metallurgical Properties in Similar and Dissimilar Metal Joints
by T. Sathish, M. Selvam, K. A. Harish, D. Vijay, G. Harish and D. Yashwant
Eng. Proc. 2025, 93(1), 3; https://doi.org/10.3390/engproc2025093003 - 30 Jun 2025
Viewed by 234
Abstract
This paper delves incto the tungsten inert gas (TIG) welding process, renowned for its efficacy in creating robust metal joints and widely employed in diverse industries for fusing similar or dissimilar materials. The focus of this study is the welding of mild steel [...] Read more.
This paper delves incto the tungsten inert gas (TIG) welding process, renowned for its efficacy in creating robust metal joints and widely employed in diverse industries for fusing similar or dissimilar materials. The focus of this study is the welding of mild steel with stainless steel, showcasing the method’s ability to amalgamate exceptionally sturdy metals and alloys. The resultant welded joints exhibit a meticulously refined microstructure and an impressive strength-to-weight ratio. The primary aim is to scrutinize TIG-welded joints, specifically those connecting mild steel with stainless steel, to elucidate their metallurgical and mechanical attributes. Notably, joints formed between distinct materials, such as mild steel and stainless steel, manifest commendable mechanical and metallurgical properties. This paper extensively investigates the metallurgical microstructures and tensile characteristics of both comparable and dissimilar metal junctions, contributing valuable insights to the field. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 442
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

20 pages, 54673 KiB  
Article
Mechanical Properties of Repaired Welded Pipe Joints Made of Heat-Resistant Steel P92
by Filip Vučetić, Branislav Đorđević, Dorin Radu, Stefan Dikić, Lazar Jeremić, Nikola Milovanović and Aleksandar Sedmak
Materials 2025, 18(12), 2908; https://doi.org/10.3390/ma18122908 - 19 Jun 2025
Viewed by 421
Abstract
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, [...] Read more.
This research provides a detailed investigation into the mechanical properties and microstructural evolution of heat-resistant steel P92 subjected to both initial (i) welding procedures and simulated (ii) repair welding. The study addresses the influence of critical welding parameters, including preheating temperature, heat input, and post-weld heat treatment (PWHT), with a particular emphasis on the metallurgical consequences arising from the application of repair welding thermal cycles. Through the analysis of three welding probes—initially welded pipes using the PF (vertical upwards) and PC (horizontal–vertical) welding positions, and a PF-welded pipe undergoing a simulated repair welding (also in the PF position)—the research compares microstructure in the parent material (PM), weld metal (WM), and heat-affected zone (HAZ). Recognizing the practical limitations and challenges associated with achieving complete removal of the original WM under the limited (in-field) repair welding, this study provides a comprehensive comparative analysis of uniaxial tensile properties, impact toughness evaluated via Charpy V-notch testing, and microhardness measurements conducted at room temperature. Furthermore, the research critically analyzes the influence of the complex thermal cycles experienced during both the initial welding and repair welding procedures to elucidate the practical application limits of this high-alloyed, heat-resistant P92 steel in demanding service conditions. Full article
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Thermal, Metallurgical, and Mechanical Analysis of Single-Pass INC 738 Welded Parts
by Cherif Saib, Salah Amroune, Mohamed-Saïd Chebbah, Ahmed Belaadi, Said Zergane and Barhm Mohamad
Metals 2025, 15(6), 679; https://doi.org/10.3390/met15060679 - 18 Jun 2025
Viewed by 419
Abstract
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a [...] Read more.
This study presents numerical analyses of the thermal, metallurgical, and mechanical processes involved in welding. The temperature fields were computed by solving the transient heat transfer equation using the ABAQUS/Standard 2024 finite element solver. Two types of moving heat sources were applied: a surface Gaussian distribution and a volumetric model, both implemented via DFLUX subroutines to simulate welding on butt-jointed plates. The simulation accounted for key welding parameters, including current, voltage, welding speed, and plate dimensions. The thermophysical properties of the INC 738 LC nickel superalloy were used in the model. Solidification characteristics, such as dendritic arm spacing, were estimated based on cooling rates around the weld pool. The model also calculated transverse residual stresses and applied a hot cracking criterion to identify regions vulnerable to cracking. The peak transverse stress, recorded in the heat-affected zone (HAZ), reached 1.1 GPa under Goldak’s heat input model. Additionally, distortions in the welded plates were evaluated for both heat source configurations. Full article
Show Figures

Figure 1

15 pages, 7970 KiB  
Article
Compositional Effects on the Tensile Behavior of Atomic Bonds in Multicomponent Cu93−xZrxAl7 (at.%) Metallic Glasses
by Tittaya Thaiyanurak, Olivia Gordon, Muyang Ye, Zhengming Wang and Donghua Xu
Molecules 2025, 30(12), 2602; https://doi.org/10.3390/molecules30122602 - 16 Jun 2025
Viewed by 471
Abstract
The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, [...] Read more.
The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, a significant gap exists in the current understanding of the mechanical properties of MGs in relation to the atomic bond behavior and how this relationship is influenced by metallurgical factors (e.g., alloy composition, processing conditions). Here, we present our study of the compositional effects on the tensile behavior of atomic bonds in Cu93−xZrxAl7 (x = 40, 50, 60 at.%) MGs using large-scale molecular dynamics (MD) simulations and statistical analysis. Specifically, we examine the populations (fractions), mean bond lengths, mean bond z-lengths, and mean bond z-strains of the different bond types before and during tensile loading (in the z-direction), and we compare these quantities across the different alloy compositions. Among our key findings, we show that increasing the Zr content in the alloy composition leads to shortened Zr-Zr, Al-Cu, Al-Zr, and Cu-Zr bonds and elongated Cu-Cu bonds, as evidenced by their mean bond lengths. During deformation, the shorter Zr-Zr bonds and longer Cu-Cu bonds in the higher-Zr-content alloys, compared with those in the x = 40 alloy, appear stronger (more elastic stretching in the z-direction) and weaker (less z-stretching), respectively, consistent with general expectations. In contrast, the Al-Cu, Al-Zr, and Cu-Zr bonds in the higher-Zr-content alloys appear weaker in the elastic regime, despite their shortened mean bond lengths. This apparent paradox can be reconciled by considering the fractions of these bonds associated with icosahedral clusters, which are known to be more resistant to deformation than the rest of the glassy structure. We also discuss how the compositional effects on the bond behavior relate to variations in the overall stress–strain behavior of the different alloys. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

13 pages, 3068 KiB  
Article
Microstructure Evolution and Fracture Mode of Laser Welding–Brazing DP780 Steel-5754 Aluminum Alloy Joints with Various Laser Spot Positions
by Bolong Li, Jiayi Zhou, Rongxun Hu, Hua Pan, Tianhai Wu and Yulai Gao
Materials 2025, 18(12), 2676; https://doi.org/10.3390/ma18122676 - 6 Jun 2025
Viewed by 581
Abstract
Joining steel and Al alloys can fully utilize their advantages for both base metals (BMs) and optimize automobile structures. In this study, the laser welding–brazing technique was utilized to join DP780 steel and aluminum alloy 5754 (AA5754). The mechanical properties, microstructure, and fracture [...] Read more.
Joining steel and Al alloys can fully utilize their advantages for both base metals (BMs) and optimize automobile structures. In this study, the laser welding–brazing technique was utilized to join DP780 steel and aluminum alloy 5754 (AA5754). The mechanical properties, microstructure, and fracture locations of steel–Al joints prepared using different laser spot positions were comparatively investigated. As the proportion of the laser spot on the steel BM increased from 50% to 90%, the tensile–shear strength of the steel–Al welded joint rose from 169 MPa to 241 MPa. Meanwhile, the fracture location of the joint shifted from the interface to the BM of the aluminum alloy. The change in the laser spot position could dramatically affect the interfacial microstructure and fracture mode of the steel–Al joint. When the proportion of the laser spot on the steel BM was relatively small (50%), the growth of intermetallic compounds (IMCs) was inhibited. The metallurgical bonding effect at the steel–Al interface was poor. In this case, the interfacial zone became the primary path for the crack propagation. Thus, interface failure became the dominant failure mode of the steel–Al joint. On the contrary, metallurgical bonding at the interface was remarkably improved as the proportion of the laser spot on the BM of the steel increased (to 90%). It was determined that the IMCs could effectively hinder the propagation of cracks along the interface. Eventually, the joint fractured in the Al alloy’s BM, resulting in a qualified steel–Al joint. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 3178 KiB  
Article
Development of a Briquetting Method for Dust from High-Carbon Ferrochrome (HC FeCr) Crushing Using Vibropressing on an Industrial Scale and Its Subsequent Remelting
by Otegen Sariyev, Maral Almagambetov, Nurzhan Nurgali, Gulnur Abikenova, Bauyrzhan Kelamanov, Dauren Yessengaliyev and Assylbek Abdirashit
Materials 2025, 18(11), 2608; https://doi.org/10.3390/ma18112608 - 3 Jun 2025
Cited by 2 | Viewed by 561
Abstract
The article provides a brief overview of technologies and methods for processing dispersed metallic waste generated during ferroalloy production, including high-carbon ferrochrome (HCFeCr). It is noted that the most cost-effective and rational method for reusing metallic dust is briquetting. Considering the development of [...] Read more.
The article provides a brief overview of technologies and methods for processing dispersed metallic waste generated during ferroalloy production, including high-carbon ferrochrome (HCFeCr). It is noted that the most cost-effective and rational method for reusing metallic dust is briquetting. Considering the development of briquetting technologies, as well as the latest equipment and binder materials involved in this process, aspiration dust from ferrochrome crushing can be fully utilized in metallurgical recycling. To verify this assumption, laboratory studies were conducted using polymer-based binders and liquid glass as a baseline option. The methodology of briquetting using both laboratory and industrial presses is described, along with an assessment of the mechanical properties of the briquettes. The studies indicate that the introduction of an inert filler (gas-cleaning dust) into the metallic dust composition improves the briquetting ability of the mixture by enhancing adhesion between metal particles and the binder. The obtained industrial briquette samples exhibit high mechanical strength, ensuring their further use in metallurgical processing. The study concludes that semi-dry briquetting using hydraulic vibropresses is a promising approach for the utilization of dispersed ferroalloy waste. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 3942 KiB  
Article
Utilization of Coal Ash for Production of Refractory Bricks
by Saniya Kaskataevna Arinova, Svetlana Sergeevna Kvon, Vitaly Yurevich Kulikov, Aristotel Zeynullinovich Issagulov and Asem Erikovna Altynova
J. Compos. Sci. 2025, 9(6), 275; https://doi.org/10.3390/jcs9060275 - 29 May 2025
Viewed by 495
Abstract
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component [...] Read more.
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component in the fabrication of refractory bricks and to investigate the fundamental properties of the resulting experimental products. Ash was incorporated into the batch composition at concentrations ranging from 10% to 40% by weight, blended with clay and water, then shaped through pressing and subjected to firing at 1000 °C and 1100 °C in an air atmosphere for 2 h. After complete cooling, the samples were subjected to compressive strength testing. Samples containing 40 wt% coal ash exhibited insufficient compressive strength and were therefore excluded from subsequent investigations. For the remaining samples, apparent density, open porosity and slag resistance were determined. The microstructural characterization was performed, and the phase composition of the samples was analyzed. The results revealed that the phase composition of the experimental samples differs significantly from that of the reference sample (ShA-grade chamotte brick in accordance with GOST 390-96, currently used as lining in metallurgical furnaces across the country), exhibiting a higher mullite content and the absence of muscovite. A small amount of kaolinite was detected in the experimental samples even after a 2-h firing process. This observation may be attributed to the effect of kaolinite crystallinity on the transformation process from kaolinite to metakaolinite. The mechanical strength of the experimental samples meets the relevant standards, while slag resistance demonstrated an improvement of approximately 15%. Open porosity was found to decrease in the experimental samples. In addition, a change in the pore size distribution was observed. Notably, the proportion of pores larger than 10,000 nm was significantly reduced. These findings confirm the feasibility of incorporating coal ash as a viable raw material component in the formulation of refractory materials. Full article
Show Figures

Figure 1

15 pages, 4626 KiB  
Article
Numerical Simulation of Fluid Flow and Solidification in Round Bloom Continuous Casting with Alternate Final Electromagnetic Stirring
by Bingzhi Ren, Lilong Zhu, Hongdan Wang and Dengfu Chen
Metals 2025, 15(6), 605; https://doi.org/10.3390/met15060605 - 28 May 2025
Viewed by 375
Abstract
Final electromagnetic stirring (F-EMS) effectively improves macrosegregation and central porosity in round bloom continuous casting, while the flow and solidification of molten steel under F-EMS have a direct impact on metallurgical properties. Fluid flow and solidification behavior in a 600 mm round bloom [...] Read more.
Final electromagnetic stirring (F-EMS) effectively improves macrosegregation and central porosity in round bloom continuous casting, while the flow and solidification of molten steel under F-EMS have a direct impact on metallurgical properties. Fluid flow and solidification behavior in a 600 mm round bloom continuous casting process with F-EMS were simulated. The influence of the liquid fraction model on strand temperature distribution was investigated. The flow of molten steel was analyzed under both continuous and alternate stirring modes. The results indicated that in continuous stirring mode, the stirring velocity fluctuates between peaks and troughs over a specific period. The closer the F-EMS is to the meniscus, the larger the mushy zone area and the higher the stirring velocity. Due to the 10+ s rise time for current intensity, a 25 s forward and reverse stirring duration is recommended for Φ600 mm round bloom continuous casting with F-EMS. Full article
Show Figures

Figure 1

Back to TopTop