Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (318)

Search Parameters:
Keywords = metallurgical bonding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 267
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

13 pages, 2079 KiB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 368
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

14 pages, 5562 KiB  
Article
Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy-Reinforced Ti-6Al-4V Composites
by Abdulaziz Kurdi, Animesh Kumar Basak, Nachimuthu Radhika and Ahmed Degnah
Materials 2025, 18(13), 3179; https://doi.org/10.3390/ma18133179 - 4 Jul 2025
Viewed by 506
Abstract
High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural [...] Read more.
High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural aspects of the MMC were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an emphasis on the interdiffusion (ID) layer. The mechanical properties of the composites were studied by micro-pillar compression at the micro-length scale. The results show that the ID layer exists between the HEA particles and the matrix, is equiaxed in nature, and leads towards metallurgical bonding within the composite. The strength of this ID layer (1573 MPa of yield strength and 1867 MPa of compressive strength) and its Young’s modulus (570 MPa) were about 1.5 times lower than that of the matrix. The HEA particles exhibit the highest strength (2157 MPa of yield strength and 3356 MPa of compressive strength) and Young’s modulus (643 MPa), whereas the matrix falls in between 2372 MPa of yield strength and 2661 MPa of compressive strength, and a Young’s modulus of 721 MPa. Full article
Show Figures

Figure 1

12 pages, 3473 KiB  
Article
Microstructure and Mechanical Properties of Laser-Clad Inconel 718 Coatings on Continuous Casting Mold Copper Plate
by Yu Liu, Haiquan Jin, Guohui Li, Ruoyu Xu, Nan Ma, Hui Liang, Jian Lin, Wenqing Xiang and Zhanhui Zhang
Lubricants 2025, 13(7), 289; https://doi.org/10.3390/lubricants13070289 - 28 Jun 2025
Viewed by 405
Abstract
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that [...] Read more.
Mold copper plates (Cr–Zr–Cu alloy) frequently fail due to severe wear under high-temperature conditions during continuous casting. To solve this problem, Inconel 718 coatings were prepared on the plate surface via laser cladding to enhance its high-temperature wear resistance. The results demonstrate that the coatings exhibit a defect-free structure with metallurgical bonding to the substrate. The coating primarily consists of a γ-(Fe, Ni, Cr) solid solution and carbides (M23C6 and M6C). Notably, elongated columnar Laves phases and coarse Cr–Mo compounds were distributed along grain boundaries, significantly enhancing the coating’s microhardness and high-temperature stability. The coating exhibited an average microhardness of 491.7 HV0.5, which is approximately 6.8 times higher than that of the copper plate. At 400 °C, the wear rate of the coating was 4.7 × 10−4 mm3·N−1·min−1, significantly lower than the substrate’s wear rate of 8.86 × 10−4 mm3·N−1·min−1, which represents only 53% of the substrate’s wear rate. The dominant wear mechanisms were adhesive wear, abrasive wear, and oxidative wear. The Inconel 718 coating demonstrates superior hardness and excellent high-temperature wear resistance, effectively improving both the surface properties and service life of mold copper plates. Full article
Show Figures

Figure 1

13 pages, 6940 KiB  
Article
Interface Block and Microstructure Evolution in Ultrasonic Welding of Aluminum
by Hang Qi, Fuxing Ye, Yingfan Wang and Kaiqi Sun
Materials 2025, 18(12), 2853; https://doi.org/10.3390/ma18122853 - 17 Jun 2025
Viewed by 320
Abstract
Ultrasonic welding, as a solid-state connection technology, has attracted considerable attention. The traditional ultrasonic welding sonotrode is not conducive to the study of the bonding mechanism of a straight interface, while the ultrasonic additive sonotrode does not have this problem. In this study, [...] Read more.
Ultrasonic welding, as a solid-state connection technology, has attracted considerable attention. The traditional ultrasonic welding sonotrode is not conducive to the study of the bonding mechanism of a straight interface, while the ultrasonic additive sonotrode does not have this problem. In this study, a special ultrasonic welding sonotrode was designed to form the joint, which is identical to ultrasonic additive manufacturing, to reveal its interfacial bonding mechanism between layers. Firstly, the linear metallurgical bonding density (LMD) of the joint is found to be positively correlated with welding time and negatively with welding pressure. Furthermore, the joint interface undergoes recrystallization after intense plastic deformation, with the obstruction of surface deformation by interface block resulting in the formation of a non-straight interface, which is beneficial to the formation of metallurgical bonding. Finally, a new concept of “Interface Block” was proposed, which can be applied to explain the formation of metallurgical bonding at the interface in ultrasonic additive manufacturing. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

15 pages, 7970 KiB  
Article
Compositional Effects on the Tensile Behavior of Atomic Bonds in Multicomponent Cu93−xZrxAl7 (at.%) Metallic Glasses
by Tittaya Thaiyanurak, Olivia Gordon, Muyang Ye, Zhengming Wang and Donghua Xu
Molecules 2025, 30(12), 2602; https://doi.org/10.3390/molecules30122602 - 16 Jun 2025
Viewed by 426
Abstract
The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, [...] Read more.
The mechanical properties of materials are fundamentally determined by the behavior of atomic bonds under stress. Probing bond behavior during deformation, however, is highly challenging, particularly for materials with complex chemical compositions and/or atomic structures, such as metallic glasses (MGs). As a result, a significant gap exists in the current understanding of the mechanical properties of MGs in relation to the atomic bond behavior and how this relationship is influenced by metallurgical factors (e.g., alloy composition, processing conditions). Here, we present our study of the compositional effects on the tensile behavior of atomic bonds in Cu93−xZrxAl7 (x = 40, 50, 60 at.%) MGs using large-scale molecular dynamics (MD) simulations and statistical analysis. Specifically, we examine the populations (fractions), mean bond lengths, mean bond z-lengths, and mean bond z-strains of the different bond types before and during tensile loading (in the z-direction), and we compare these quantities across the different alloy compositions. Among our key findings, we show that increasing the Zr content in the alloy composition leads to shortened Zr-Zr, Al-Cu, Al-Zr, and Cu-Zr bonds and elongated Cu-Cu bonds, as evidenced by their mean bond lengths. During deformation, the shorter Zr-Zr bonds and longer Cu-Cu bonds in the higher-Zr-content alloys, compared with those in the x = 40 alloy, appear stronger (more elastic stretching in the z-direction) and weaker (less z-stretching), respectively, consistent with general expectations. In contrast, the Al-Cu, Al-Zr, and Cu-Zr bonds in the higher-Zr-content alloys appear weaker in the elastic regime, despite their shortened mean bond lengths. This apparent paradox can be reconciled by considering the fractions of these bonds associated with icosahedral clusters, which are known to be more resistant to deformation than the rest of the glassy structure. We also discuss how the compositional effects on the bond behavior relate to variations in the overall stress–strain behavior of the different alloys. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

13 pages, 3068 KiB  
Article
Microstructure Evolution and Fracture Mode of Laser Welding–Brazing DP780 Steel-5754 Aluminum Alloy Joints with Various Laser Spot Positions
by Bolong Li, Jiayi Zhou, Rongxun Hu, Hua Pan, Tianhai Wu and Yulai Gao
Materials 2025, 18(12), 2676; https://doi.org/10.3390/ma18122676 - 6 Jun 2025
Viewed by 562
Abstract
Joining steel and Al alloys can fully utilize their advantages for both base metals (BMs) and optimize automobile structures. In this study, the laser welding–brazing technique was utilized to join DP780 steel and aluminum alloy 5754 (AA5754). The mechanical properties, microstructure, and fracture [...] Read more.
Joining steel and Al alloys can fully utilize their advantages for both base metals (BMs) and optimize automobile structures. In this study, the laser welding–brazing technique was utilized to join DP780 steel and aluminum alloy 5754 (AA5754). The mechanical properties, microstructure, and fracture locations of steel–Al joints prepared using different laser spot positions were comparatively investigated. As the proportion of the laser spot on the steel BM increased from 50% to 90%, the tensile–shear strength of the steel–Al welded joint rose from 169 MPa to 241 MPa. Meanwhile, the fracture location of the joint shifted from the interface to the BM of the aluminum alloy. The change in the laser spot position could dramatically affect the interfacial microstructure and fracture mode of the steel–Al joint. When the proportion of the laser spot on the steel BM was relatively small (50%), the growth of intermetallic compounds (IMCs) was inhibited. The metallurgical bonding effect at the steel–Al interface was poor. In this case, the interfacial zone became the primary path for the crack propagation. Thus, interface failure became the dominant failure mode of the steel–Al joint. On the contrary, metallurgical bonding at the interface was remarkably improved as the proportion of the laser spot on the BM of the steel increased (to 90%). It was determined that the IMCs could effectively hinder the propagation of cracks along the interface. Eventually, the joint fractured in the Al alloy’s BM, resulting in a qualified steel–Al joint. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Experimental Investigation and Molecular Dynamics Modeling of the Effects of K2O on the Structure and Viscosity of SiO2-CaO-Al2O3-MgO-K2O Slags at High Temperatures
by Fan Yang, Qingguo Xue, Haibin Zuo, Yu Liu and Jingsong Wang
Metals 2025, 15(6), 590; https://doi.org/10.3390/met15060590 - 25 May 2025
Viewed by 438
Abstract
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, [...] Read more.
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, FTIR spectroscopy, and molecular dynamics simulations. The results revealed a rapid 52% decrease in slag viscosity and an 18.32 kJ/mol reduction in activation energy as K2O content increased from 0% to 3%. K2O releases O2− ions that depolymerize Si-O network structures. Within the 3% to 5% range, structural network formation is promoted by the K2O-SiO2 reaction, resulting in increased slag viscosity and elevated activation energy. Molecular dynamics simulations elucidate the depolymerization of complex Si-O networks, accompanied by a proliferation of smaller [AlO4] tetrahedral fragments. The diminished Si-O-Si bridging oxygen (BO) bonds contrast with the enhanced increase in Si-O-K non-bridging oxygen (NBO) linkages. When K2O exceeds 3%, the diffusion capacity of K atoms becomes constrained as K2O participates in structural network assembly, a phenomenon validated by FTIR spectroscopic analysis. Elevated K2O concentrations enhance slag network polymerization, leading to increased viscosity. Therefore, the precise control of K2O content is critical during smelting operations and by-product manufacturing (e.g., glass or mineral wool) to optimize material performance. These findings provide theoretical support for controlling the alkali metal content during the actual metallurgical process and thus further optimizing blast furnace operation. Full article
Show Figures

Figure 1

21 pages, 9743 KiB  
Article
Bonding Strength and Its Enhancing Mechanism of CuCr/In718 Dissimilar Materials with Mortise and Tenon Structure Interface Manufactured by Laser-Based Direct Energy Deposition (DED-LB) Using Powder Feedstock
by Gang Xu and Hongmei Zhang
Metals 2025, 15(5), 557; https://doi.org/10.3390/met15050557 - 19 May 2025
Viewed by 405
Abstract
The interface bonding strength is challenging for CuCr and In718 dissimilar alloys fabricated by Laser-Based Direct Energy Deposition (DED-LB) using Powder Feedstock. Here, direct-bonded CuCr/In718 dissimilar materials (DMs) (direct-bonded specimen) and CuCr/In718 DMs with mortise and tenon structure interface (mortise-tenon specimen) were deposited [...] Read more.
The interface bonding strength is challenging for CuCr and In718 dissimilar alloys fabricated by Laser-Based Direct Energy Deposition (DED-LB) using Powder Feedstock. Here, direct-bonded CuCr/In718 dissimilar materials (DMs) (direct-bonded specimen) and CuCr/In718 DMs with mortise and tenon structure interface (mortise-tenon specimen) were deposited by powder DED-LB. Owing to the alternating inter-track and inter-layer remelting, the defects were avoided, and the Cu elemental diffusion was obvious in the mortise-tenon specimen. Thereby, the better metallurgical bonding strength was achieved in the mortise-tenon specimen. The sandwich-shaped microstructure, including fine equiaxed and columnar grains, and the heterogeneous microstructure consisting of large columnar, short columnar, and fine equiaxed grains were formed in direct-bonded and mortise-tenon specimens, respectively. The formation mechanisms of these microstructures were unveiled, respectively. Besides, the shear strength of direct-bonded and mortise-tenon specimens was investigated. Owing to the mortise and tenon structure, the ultimate shear strength (USS) was increased by 47.18%. The synergistic enhancing mechanism of macroscopic interfacial morphology, microstructure, and elemental distribution on shear strength was revealed. Full article
Show Figures

Graphical abstract

20 pages, 5317 KiB  
Article
Numerical Analysis and Optimization of Residual Stress Distribution in Lined Pipe Overlay Welding
by Yuwei Sun, Sirong Yu, Bingying Wang and Tianping Gu
Processes 2025, 13(5), 1548; https://doi.org/10.3390/pr13051548 - 17 May 2025
Cited by 1 | Viewed by 458
Abstract
This study investigates the thermal and residual stress development in multi-layer lined pipe welding through numerical simulation and experimental validation. The focus is on the weld overlay/liner transition region, a critical area prone to stress concentrations and fatigue crack initiation. Using finite element [...] Read more.
This study investigates the thermal and residual stress development in multi-layer lined pipe welding through numerical simulation and experimental validation. The focus is on the weld overlay/liner transition region, a critical area prone to stress concentrations and fatigue crack initiation. Using finite element analysis (FEA) with the Goldak double-ellipsoidal heat source model, the research examines the temperature evolution, residual stress distribution, and deformation characteristics during the welding process. Key findings reveal that the peak temperature in the weld overlay region reaches 3045.2 °C, ensuring complete metallurgical bonding. Residual stresses are predominantly tensile near the three-phase boundary, with maximum von Mises stress observed in the base pipe at 359.30 MPa. This study also employs Response Surface Methodology (RSM) to optimize welding parameters, achieving a 20.5% reduction in residual axial stress and a 58.1% reduction in residual circumferential stress. These results provide valuable insights for optimizing welding processes, improving quality control, and enhancing the long-term reliability of bimetallic composite pipelines. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

25 pages, 16617 KiB  
Article
Interface Optimization, Microstructural Characterization, and Mechanical Performance of CuCrZr/GH4169 Multi-Material Structures Manufactured via LPBF-LDED Integrated Additive Manufacturing
by Di Wang, Jiale Lv, Zhenyu Liu, Linqing Liu, Yang Wei, Cheng Chang, Wei Zhou, Yingjie Zhang and Changjun Han
Materials 2025, 18(10), 2206; https://doi.org/10.3390/ma18102206 - 10 May 2025
Viewed by 612
Abstract
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each [...] Read more.
CuCrZr/GH4169 multi-material structures combine the high thermal conductivity of copper alloys with the high strength of nickel-based superalloys, making them suitable for aerospace components that require efficient heat dissipation and high strength. However, additive manufacturing of such dissimilar metals faces challenges, with each laser powder bed fusion (LPBF) and laser directed energy deposition (LDED) process having its limitations. This study employed an LPBF-LDED integrated additive manufacturing (LLIAM) approach to fabricate CuCrZr/GH4169 components. CuCrZr segments were first produced by LPBF, followed by LDED deposition of GH4169 layers using optimized laser parameters. The microstructure, composition, and mechanical properties of the fabricated components were analyzed. Results show a sound metallurgical bond at the CuCrZr/GH4169 interface with minimal porosity and cracks (typical defects at the interface), achieved by exceeding a threshold laser energy density. Elemental interdiffusion forms a 100–200 μm transition zone, with a smooth hardness gradient (97 HV0.2 to 240 HV0.2). Optimized specimens exhibit tensile failure in the CuCrZr region (234 MPa), confirming robust interfacial bonding. These findings demonstrate LLIAM’s feasibility for CuCrZr/GH4169 and underscore the importance of balancing thermal conductivity and mechanical strength in multi-material components. These findings provide guidance for manufacturing aerospace components with both high thermal conductivity and high strength. Full article
(This article belongs to the Special Issue Development and Applications of Laser-Based Additive Manufacturing)
Show Figures

Figure 1

13 pages, 9354 KiB  
Article
Dissimilar Joining of Aluminum to High-Melting-Point Alloys by Hot Dipping
by Zhaoxian Liu, Qingjia Su, Pu Wang, Wenzhen Zhao, Ao Fu and Huan He
Coatings 2025, 15(5), 541; https://doi.org/10.3390/coatings15050541 - 30 Apr 2025
Viewed by 406
Abstract
In this study, the dissimilar joining of aluminum to high-melting-point alloys, including steel, titanium, and copper, was successfully achieved through hot-dipping. By precisely controlling the dipping temperature at 670 °C and maintaining a dipping time of 5 s, uniform aluminum layers with a [...] Read more.
In this study, the dissimilar joining of aluminum to high-melting-point alloys, including steel, titanium, and copper, was successfully achieved through hot-dipping. By precisely controlling the dipping temperature at 670 °C and maintaining a dipping time of 5 s, uniform aluminum layers with a thickness of 3–4 mm were successfully formed on the surfaces of high-melting-point alloys. This process enabled effective dissimilar metal joining between Al/steel, Al/Ti, and Al/Cu. Metallurgical bonding at the joining interfaces was achieved through the formation of uniform intermetallic compounds, specifically Fe4Al13, TiAl3, Al2Cu, and Al3Cu4, respectively. The different joints exhibited varying mechanical properties: the Al/Cu joint demonstrated the highest shear strength at 79.1 MPa, while the Fe4Al13-containing joint exhibited the highest hardness, reaching 604.4 HV. Numerical simulations revealed that an obvious decrease in interfacial temperature triggered the solidification and growth of the aluminum layer. Additionally, the specific heat and thermal conductivity of the high-melting-point alloys were found to significantly influence the thickness of the aluminum layer. The hot-dip joining technology is well suited for dissimilar metal bonding involving large contact areas and significant differences in melting points. Full article
Show Figures

Graphical abstract

20 pages, 6900 KiB  
Article
Influence of Ni60-WC Bionic Unit on the Wear Performance of 20CrMnTi Steel Prepared via Laser Cladding
by Bo Cui, You Lv, Zhaolong Sun and Yan Tong
Metals 2025, 15(5), 507; https://doi.org/10.3390/met15050507 - 30 Apr 2025
Viewed by 307
Abstract
In recent years, the field of bionic engineering has advanced at a remarkable pace. Numerous engineering challenges have been addressed through inspiration drawn from biological organisms in nature. In this paper, laser cladding was employed to fabricate a bionic unit inspired by the [...] Read more.
In recent years, the field of bionic engineering has advanced at a remarkable pace. Numerous engineering challenges have been addressed through inspiration drawn from biological organisms in nature. In this paper, laser cladding was employed to fabricate a bionic unit inspired by the radial ribs of the bivalve shell surface morphology on 20CrMnTi steel, with the aim of enhancing its wear performance. The metallic powder used in the experiments was prepared by blending Ni60 alloy powder with tungsten carbide (WC) in a predetermined ratio. The WC content was maintained within a mass percentage range of 15% to 60% in the composite powder system. The microstructure and properties of the bionic unit were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and a hardness tester, while its dry sliding wear resistance was evaluated using a block-on-ring tribometer. The influence of the WC content on the microstructure, hardness, surface roughness, and wear performance of the bionic unit was investigated. The experimental results revealed that the bionic unit exhibited a dual microstructure comprising equiaxed crystals and fine dendritic structures. The incorporation of WC induced pronounced grain refinement, while the dispersed WC particles formed effective metallurgical bonding with the Ni-substrate. A positive correlation was observed between the WC content and hardness, with peak hardness reaching 1008 HV0.2 at 60% WC. Tribological analysis demonstrated a wear mechanism transition from dominant abrasive wear to a hybrid abrasive–adhesive wear. The wear volume of the bionic unit decreased with increasing WC content, and the extent of damage was reduced. Full article
Show Figures

Figure 1

22 pages, 2515 KiB  
Review
A Review of Joining Technologies for SiC Matrix Composites
by Yongheng Lu, Jinzhuo Zhang, Guoquan Li, Zaihong Wang, Jing Wu and Chong Wei
Materials 2025, 18(9), 2046; https://doi.org/10.3390/ma18092046 - 30 Apr 2025
Viewed by 774
Abstract
SiC matrix composites are widely used in high-temperature structural components of aircraft engines and nuclear reactor materials because of their excellent properties such as their high modulus, high strength, corrosion resistance, and high-temperature resistance. However, the bonding of SiCf/SiC composites poses significant challenges [...] Read more.
SiC matrix composites are widely used in high-temperature structural components of aircraft engines and nuclear reactor materials because of their excellent properties such as their high modulus, high strength, corrosion resistance, and high-temperature resistance. However, the bonding of SiCf/SiC composites poses significant challenges in practical engineering applications, primarily due to residual stresses, anisotropy in composite properties, and the demanding conditions required for high-performance joints. This work reviews various bonding technologies for SiC ceramics and SiC matrix composites. These include solid-state diffusion bonding, NITE phase bonding, direct bonding without filling materials, MAX phase bonding, glass ceramic bonding, polymer precursor bonding, metal brazing bonding, and Si-C reaction bonding. Key results, such as the highest bending strength of 439 MPa achieved with Si-C reaction bonding, are compared alongside the microstructural characteristics of different joints. Additionally, critical factors for successful bonding, such as physical mismatch and metallurgical incompatibility, are discussed in detail. Future research directions are proposed, emphasizing the optimization of bonding techniques and evaluation of joint performance in harsh environments. This review provides valuable insights into advancing bonding technologies for SiC composites in aerospace and nuclear applications. Full article
Show Figures

Figure 1

15 pages, 8756 KiB  
Article
Experimental and Numerical Investigation on Mechanical Properties of Large-Diameter Metallurgically Clad Pipes
by Feng Wang, Yanan Gao, Zhiguo Hu, Shuo Yang, Zhenying Cui, Rui Fu and Lin Yuan
J. Mar. Sci. Eng. 2025, 13(5), 880; https://doi.org/10.3390/jmse13050880 - 29 Apr 2025
Viewed by 408
Abstract
Bimetallic-clad pipes demonstrate exceptional advantages in transporting corrosive oil and gas through the combination of the load-carrying capacity of the base material and the anti-corrosive function of the thin layer of corrosion-resistant alloy. This study investigates the mechanical properties of 24-inch X65 + [...] Read more.
Bimetallic-clad pipes demonstrate exceptional advantages in transporting corrosive oil and gas through the combination of the load-carrying capacity of the base material and the anti-corrosive function of the thin layer of corrosion-resistant alloy. This study investigates the mechanical properties of 24-inch X65 + Alloy625 metallurgically clad pipes through experimental tests and finite element analysis. Uniaxial tensile testing with digital image correlation reveals uniform deformation between the base and clad layers until interfacial failure initiates at an average strain threshold of 34.17%. Microstructural characterization shows continuous metallurgical bonding, with the X65 layer exhibiting polygonal ferrite and bainitic phases, contrasting with the austenitic equiaxed grain structure of Alloy625. In terms of numerical modeling, finite element analyses that consider both initial geometric imperfections and manufacturing-induced residual stresses are performed to evaluate the bending response of the clad pipe. The effect of initial ovality and residual stresses on its bending capacity is also studied. Full article
(This article belongs to the Special Issue Advanced Research in Flexible Riser and Pipelines)
Show Figures

Figure 1

Back to TopTop