Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,773)

Search Parameters:
Keywords = metal-detecting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5538 KB  
Article
Development of a Non-Contact Flow Sensor Based on a Permanent Magnet Metal Clip for Monitoring Circulation Status
by Kicheol Yoon, Seung Hee Choi, Tae-Hyeon Lee, Sangyun Lee, Sunghoon Kang, Sun Jin Sym and Kwang Gi Kim
Biosensors 2026, 16(2), 78; https://doi.org/10.3390/bios16020078 - 27 Jan 2026
Abstract
Foreign matter accumulating on catheters during ascites paracentesis in cancer patients can interfere with the procedure. The paracentesis site must be visually inspected by patients or medical staff. We propose a monitoring method using sensors, as they enable real-time, automatic status detection. The [...] Read more.
Foreign matter accumulating on catheters during ascites paracentesis in cancer patients can interfere with the procedure. The paracentesis site must be visually inspected by patients or medical staff. We propose a monitoring method using sensors, as they enable real-time, automatic status detection. The proposed design integrates a sensor into the drainage tube to detect liquid flow using the Lorentz force. The sensor consists of a permanent magnet, a yoke, and a signal processing circuit. Mu-metal shields the magnet to prevent interference with surrounding circuits. Physiological saline solution is used as a substitute for bodily fluids. Sensor performance was evaluated via finite element analysis. The Lorentz force generated an average voltage of 11.07 μV when liquid was present, enabling detection of the flow status. The proposed sensor is non-invasive and features a clip design, allowing attachment and detachment from the drainage tube for reuse. Non-invasiveness ensures safety from infection, and reusability can reduce medical costs. This study proposes a sensor for monitoring peritoneal puncture status. By detecting liquid flow using the Lorentz force, the system enables real-time monitoring during the procedure. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

16 pages, 1183 KB  
Article
Antimicrobial Resistance at the Crossroads of Three Rivers: A One Health Assessment of Water Pollution in the Amazonian Pongo de Rentema
by Euclides Ticona Chayña, Pompeyo Ferro, Eli Morales-Rojas, Guzman Saucedo, Jorge Bautista, Lizbeth Córdova-Rojas, Antony Guevara, Yshoner Antonio Silva-Diaz, Romel Guevara, Edwaldo Villanueva Pedraza and Polan Ferro-Gonzales
Appl. Microbiol. 2026, 6(2), 25; https://doi.org/10.3390/applmicrobiol6020025 - 27 Jan 2026
Abstract
Antimicrobial resistance is a growing threat to public health and the environment, especially in vulnerable ecosystems such as the Amazon. The confluence of the Marañón, Utcubamba, and Chinchipe rivers, known as the Pongo de Rentema, is a strategic area where water pollution could [...] Read more.
Antimicrobial resistance is a growing threat to public health and the environment, especially in vulnerable ecosystems such as the Amazon. The confluence of the Marañón, Utcubamba, and Chinchipe rivers, known as the Pongo de Rentema, is a strategic area where water pollution could facilitate the spread of antibiotic resistance genes. This study aims to assess water quality in this region under the “One Health” approach by analyzing physicochemical parameters, heavy metals, and the presence of antimicrobial resistance genes. Water samples were collected from five sampling points during September and October 2024. Physicochemical parameters were analyzed in situ, and heavy metal concentrations were determined using atomic emission spectrophotometry. The presence of Escherichia coli and Pseudomonas aeruginosa was evaluated through selective culture, and the detection of resistance genes (marA, ermC, amp, QEP, and qEmarA) was performed using conventional PCR. Physicochemical parameters were within the limits established by Peruvian regulations, except for total dissolved solids in the Utcubamba River. Elevated levels of lead and chromium were detected at some points. Additionally, resistance genes were identified in E. coli and P. aeruginosa, providing evidence of antimicrobial resistance dissemination in the water. Water pollution in the Pongo de Rentema poses an environmental and public health risk due to the presence of heavy metals and antimicrobial resistance genes. Continuous monitoring and environmental management strategies under the “One Health” approach are recommended to mitigate these risks. Full article
Show Figures

Figure 1

21 pages, 5645 KB  
Article
Design of a Nano-Refractive Index Sensor Based on a MIM Waveguide Coupled with a Cat-Faced Resonator for Temperature Detection and Biosensing Applications
by Jianhong Zheng, Shubin Yan, Chen Chen, Kecheng Ding, Yang Cui and Taiquan Wu
Sensors 2026, 26(3), 826; https://doi.org/10.3390/s26030826 - 26 Jan 2026
Abstract
This study introduces an innovative sensor architecture predicated on surface plasmon polaritons (SPPs), comprising a metal–insulator–metal (MIM) waveguide in conjunction with a cat-faced circular split resonator (TCRSW). The efficacy of the proposed nanosensor was meticulously evaluated utilizing the finite element method (FEM). It [...] Read more.
This study introduces an innovative sensor architecture predicated on surface plasmon polaritons (SPPs), comprising a metal–insulator–metal (MIM) waveguide in conjunction with a cat-faced circular split resonator (TCRSW). The efficacy of the proposed nanosensor was meticulously evaluated utilizing the finite element method (FEM). It was determined that the TCRSW configuration significantly impacts the sensor’s performance. By means of a comprehensive optimization of the structural parameters, the sensor attained an apex sensitivity of 3380 nm/RIU and a figure of merit (FOM) of 56.33 in its optimal configuration. Furthermore, the study comprehensively evaluated the sensor’s applicability for temperature sensing, demonstrating a measured temperature sensitivity of 1.673 nm/°C. Meanwhile, the application of the proposed structure in biosensing was comprehensively evaluated. When employed as a concentration sensor for detecting sodium and potassium ion solutions, the maximum achievable sensitivities reached 0.49 mg·d/L and 0.6375 mg·d/L, respectively, which highlights its significant potential not only for high-precision temperature monitoring but also for sensitive and reliable biosensing applications. Additionally, the proposed nanosensor holds considerable promise for applications in other nanophotonic fields. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

22 pages, 5200 KB  
Article
Feasibility Study of MOS Gas Sensors for Detecting Mineral Hydrocarbon Contaminants in Freshly Harvested Olives at Different Maturity Stages
by David Bonillo Martínez, Guilherme Felipe Pacheco Braga, Diego Manuel Martínez Gila and Silvia Satorres Martínez
Sensors 2026, 26(3), 816; https://doi.org/10.3390/s26030816 - 26 Jan 2026
Abstract
The accidental contamination of olives by mineral hydrocarbons, such as diesel, motor lubricants, and hydraulic fluids from agricultural machinery, has become a growing concern in the olive oil industry. In response, European regulatory bodies are working on establishing new standards to address this [...] Read more.
The accidental contamination of olives by mineral hydrocarbons, such as diesel, motor lubricants, and hydraulic fluids from agricultural machinery, has become a growing concern in the olive oil industry. In response, European regulatory bodies are working on establishing new standards to address this issue. This study explores the feasibility of using Metal Oxide Semiconductor (MOS) gas sensors as a non-invasive method for detecting such contaminants on freshly harvested olives across different maturity stages. By assessing the sensitivity and selectivity of MOS sensors, this research aims to identify hydrocarbons that may adhere to the olive surface during harvesting and processing. The study involves controlled laboratory contamination scenarios, with samples exposed to various hydrocarbons to evaluate the relative response of individual MOS sensors under reproducible conditions. Findings from this research may provide valuable insights into rapid and cost-effective detection systems, supporting quality control and regulatory compliance in olive oil production, and contributing to the safety and traceability of olive-derived products. As a feasibility study, the results provide a basis for future developments involving multivariate analysis, field-contaminated samples, and industrial implementation. Full article
(This article belongs to the Special Issue Electronic Nose and Artificial Olfaction)
Show Figures

Figure 1

22 pages, 4689 KB  
Article
A Procedure for Performing Reproducibility Assessment of the Accuracy of Impact Area Classification for Structural Health Monitoring in Aerospace Structures
by Luciano Chiominto, Giulio D’Emilia, Antonella Gaspari, Emanuela Natale, Francesco Nicassio and Gennaro Scarselli
Instruments 2026, 10(1), 6; https://doi.org/10.3390/instruments10010006 - 26 Jan 2026
Abstract
The principal objective of this work is to develop an optimized procedure that guarantees the reproducibility of results across different applications and laboratories, facilitating potential field applications of methodologies for Structural Health Monitoring in aerospace structures. The focus is to accurately detect and [...] Read more.
The principal objective of this work is to develop an optimized procedure that guarantees the reproducibility of results across different applications and laboratories, facilitating potential field applications of methodologies for Structural Health Monitoring in aerospace structures. The focus is to accurately detect and localize impact areas on planar structures using in situ transducers and Machine Learning (ML) techniques. The research concentrates on an aluminum plate where impacts are generated by metal spheres of different masses dropped from a fixed height. The resulting Lamb waves are detected by PZT sensors glued on the surface. Various data processing and feature extraction algorithms are implemented and compared to extract the differences in Time of Flight (ΔToF). The obtained features are used for training ML classification models. Then, the influence of various parameters in signal acquisition and data processing are assessed along with the reproducibility of the results. For this reason, an interlaboratory comparison is conducted in which the trained models are applied to data collected under varying conditions. The experimental results show that the most influencing factors for impact area classification are the algorithm for ΔToF estimation, the number of training points used in ML models, the type of classification model, the distribution of the impact points on the component, and their balance in the classification area. This evidence suggests approaches for reducing both issues, therefore improving the reproducibility of results. Full article
(This article belongs to the Special Issue Instrumentation and Measurement Methods for Industry 4.0 and IoT)
Show Figures

9 pages, 1658 KB  
Article
A Cu(II)-Based Fluorescent Probe for Carbon Monoxide, Nap-BC-Cu(II), Does Not Selectively Detect Carbon Monoxide
by Dongning Liu, Hongliang Li, Shivanagababu Challa and Binghe Wang
Molecules 2026, 31(3), 415; https://doi.org/10.3390/molecules31030415 - 26 Jan 2026
Abstract
Reports of carbon monoxide (CO) pharmacology have spurred intense interest in developing its fluorescent probes with much success. However, one unfortunate event in this area is the wide-spread use of chemically reactive metal/BH3-CO complexes as “CO-releasing molecules” or CORMs that do [...] Read more.
Reports of carbon monoxide (CO) pharmacology have spurred intense interest in developing its fluorescent probes with much success. However, one unfortunate event in this area is the wide-spread use of chemically reactive metal/BH3-CO complexes as “CO-releasing molecules” or CORMs that do not produce CO or produce CO in an idiosyncratic fashion. Consequently, a large number of reported fluorescent “CO probes” only respond to the CORM used, but not to CO. Though most of these issues have been clarified in the literature, there is a surprising recent publication on a Cu(II)-based fluorescent “CO probe,” Nap-BC-Cu(II), relying on undefined chemical principles. We reassessed the ability for Nap-BC-Cu(II) to detect CO and found no evidence for Nap-BC-Cu(II) to selectively detect CO at even non-physiologically relevant high concentrations (high micromolar) of CO. Marginal effects were observed only when CO was continuously bubbled through the “probe” solution for 15 min. Further, Nap-BC-Cu(II) was found to be sensitive to ascorbic acid and cysteine. Overall, this probe did not respond to CO in a pathophysiologically relevant context. Our findings do not support the notion of Nap-BC-Cu(II) being a CO probe for studying CO biology. We hope this will be the last of this saga of “CO probes” that do not afford selective detection of CO, largely due to the confusions caused by using chemically reactive CORMs. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

16 pages, 723 KB  
Article
Impact of Soil Nutrients on Chemical Composition and Antioxidant Activities of Dysphania ambrosioides Essential Oil in Southern Ecuador
by Susana Blacio, Katty Gadvay, Karen Rivas, Ana Guaman, Julio Parrales and James Calva
Plants 2026, 15(3), 373; https://doi.org/10.3390/plants15030373 - 25 Jan 2026
Viewed by 46
Abstract
Dysphania ambrosioides is a widely distributed species with a traditional use in folk medicine, but it exhibits marked chemical variability that limits its standardization. This study is the first to characterize the essential oil (EO) of three Ecuadorian populations—Arenillas (ARE), Pasaje (PAS) and [...] Read more.
Dysphania ambrosioides is a widely distributed species with a traditional use in folk medicine, but it exhibits marked chemical variability that limits its standardization. This study is the first to characterize the essential oil (EO) of three Ecuadorian populations—Arenillas (ARE), Pasaje (PAS) and Piñas (PIN)—using gas chromatography–mass spectrometry/flame ionization detection (GC-MS/FID), and to correlate its composition with edaphic properties and antioxidant activity. Chemical profiles revealed three distinct chemotypes: ARE (α-terpinene 65.35%, o-cymene 24.83% and ascaridole 3.30%), PAS (α-terpinene 56.31%, o-cymene 10.09% and ascaridole 10.84%) and PIN (α-terpinene 56.89%, o-cymene 17.07% and ascaridole 7.60%). The EO yield was low (0.030–0.064% w/w), coinciding with acidic and nutrient-poor soils. On the other hand, PAS, with its neutral soil and high nitrogen, produced the highest number of oxygenated compounds. Only PAS exhibited strong ABTS radical-scavenging activity (SC50 = 37.99 ± 1.01 µg/mL). In contrast, ARE showed weak activity (SC50 = 424 ± 1.01 µg/mL), while PIN showed moderate activity (SC50 = 112.26 ± 1.01 µg/mL), which was correlated with its high total phenol content (298.48 mg EAG/L). The 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity was low in all samples. Principal component analysis (PCA) confirmed clear separation of the chemotypes, which was linked to edaphic factors such as pH, heavy metals (Cu, Fe and Mn) and organic matter. These findings suggest that edaphic conditions may modulate the chemical composition and antioxidant activity of D. ambrosioides, indicating a potential approach for the sustainable selection of plant material. Full article
Show Figures

Figure 1

16 pages, 2807 KB  
Article
Silk Fibroin-Templated Copper Nanoclusters: Responsive Fluorescent Probes Exhibiting 2,4-Dichlorophenoxyacetic Acid-Enhanced Emission and p-Nitrophenol-Induced Quenching
by Neng Qin, Qian Wang, Jingwen Tao, Guijian Guan and Ming-Yong Han
Sensors 2026, 26(3), 784; https://doi.org/10.3390/s26030784 - 24 Jan 2026
Viewed by 193
Abstract
In this work, highly water-soluble silk fibroin (SF) is first prepared by recrystallizing degummed silkworm cocoon fibers in concentrated CaCl2 solution (replacing the conventional Ajisawa’s reagent), and then used as both stabilizing and reducing agents to synthesize copper nanoclusters (Cu@SF NCs) at [...] Read more.
In this work, highly water-soluble silk fibroin (SF) is first prepared by recrystallizing degummed silkworm cocoon fibers in concentrated CaCl2 solution (replacing the conventional Ajisawa’s reagent), and then used as both stabilizing and reducing agents to synthesize copper nanoclusters (Cu@SF NCs) at pH = 11. Due to the existence of unreacted Cu2+ ions, the resulting SF-templated Cu NCs form slight aggregates, yielding a purple-colored solution with blue fluorescence. Interestingly, upon adding the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D), the Cu NCs aggregates disassemble and the fluorescence is significantly enhanced, creating a “fluorescence-on” sensor for 2,4-D with a detection limit of 0.65 μM. In contrast, the pollutant p-nitrophenol (p-NP) quenches the fluorescence of Cu NCs via a fluorescence resonance energy transfer mechanism (with a detection limit as low as 1.35 nM), which is attributed to the large overlap between absorption spectrum of p-NP and excitation spectrum of Cu NCs. Other tested analytes (i.e., pyrifenox, carbofuran and melamine) produce negligible fluorescence changes. The distinct sensing mechanisms are elucidated with experimental evidence and density functional theory (DFT) calculations. The evolutions of fluorescence as a function of incubation time and analyte concentration are systematically investigated, demonstrating a versatile platform for sensitive and selective detection of target analytes. These findings provide an effective strategy for optimizing the optical properties of metal nanoclusters and improving their performance in environmental applications. Full article
(This article belongs to the Special Issue Optical Nanosensors for Environmental and Biomedical Monitoring)
Show Figures

Figure 1

21 pages, 2026 KB  
Review
Adsorption and Removal of Emerging Pollutants from Water by Activated Carbon and Its Composites: Research Hotspots, Recent Advances, and Future Prospects
by Hao Chen, Qingqing Hu, Haiqi Huang, Lei Chen, Chunfang Zhang, Yue Jin and Wenjie Zhang
Water 2026, 18(3), 300; https://doi.org/10.3390/w18030300 - 23 Jan 2026
Viewed by 132
Abstract
The continuous detection of emerging pollutants (EPs) in water poses potential threats to aquatic environmental safety and human health, and their efficient removal is a frontier in environmental engineering research. This review systematically summarizes research progress from 2005 to 2025 on the application [...] Read more.
The continuous detection of emerging pollutants (EPs) in water poses potential threats to aquatic environmental safety and human health, and their efficient removal is a frontier in environmental engineering research. This review systematically summarizes research progress from 2005 to 2025 on the application of activated carbon (AC) and its composites for removing EPs from water and analyzes the development trends in this field using bibliometric methods. The results indicate that research has evolved from the traditional use of AC for adsorption to the design of novel materials through physical and chemical modifications, as well as composites with metal oxides, carbon-based nanomaterials, and other functional components, achieving high adsorption capacity, selective recognition, and catalytic degradation capabilities. Although AC-based materials demonstrate considerable potential, their large-scale application still faces challenges such as cost control, adaptability to complex water matrices, material regeneration, and potential environmental risks. Future research should focus on precise material design, process integration, and comprehensive life-cycle sustainability assessment to advance this technology toward highly efficient, economical, and safe solutions, thereby providing practical strategies for safeguarding water resources. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 14226 KB  
Article
Preparation of a Magnetic Ti-IMAC Material Based on Thiol-Ene Click Reaction and the Application in Intact Phosphoprotein Enrichment
by Yan Lu, Sen Zhang, Hong-Yan Ge, Han-Yue Yang, Feng Zhang, Yi-Fan Pan and Hong-Zhen Lian
Molecules 2026, 31(3), 396; https://doi.org/10.3390/molecules31030396 - 23 Jan 2026
Viewed by 177
Abstract
Protein phosphorylation is a crucial post-translational modification that regulates protein activity, cellular signaling, transcriptional regulation, and cell cycle control. However, the analysis of phosphoproteins in biological samples is often compromised by complex sample matrices and interference from high-abundance proteins. While the top-down phosphoproteomics [...] Read more.
Protein phosphorylation is a crucial post-translational modification that regulates protein activity, cellular signaling, transcriptional regulation, and cell cycle control. However, the analysis of phosphoproteins in biological samples is often compromised by complex sample matrices and interference from high-abundance proteins. While the top-down phosphoproteomics strategy enables comprehensive analysis of post-translational modifications based on intact proteins, its requirement for higher protein purity due to low protein ionization efficiency poses stern challenges. Consequently, developing appropriate enrichment methods for phosphoproteins in practical samples becomes essential. Immobilized metal ion affinity chromatography (IMAC) represents a common strategy for phosphorylated protein separation and enrichment. Among metal ions, Ti4+ has gained widespread application as IMAC chelating ligands due to its capacity to form multiple coordination networks and its high selectivity for phosphorylated protein enrichment, leveraging the strong chelating ability of phosphate groups toward metal ions. This paper presents the design and preparation of a novel magnetic Ti-IMAC nanocomposite, MNP@MPTMS–VPA–Ti(IV). The material is modified with phosphate groups via facile thiol-ene click chemistry and then immobilizes Ti4+, enabling selective enrichment of intact phosphoproteins through IMAC affinity. The efficiency of enrichment was evaluated using subsequent matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for detection and analysis. This Ti-IMAC material-based magnetic solid-phase extraction (MSPE)-MALDI-TOF MS protocol has been successfully applied to enrich intact phosphoproteins in milk and eel mucus with high selectivity, sensitivity, and suitability. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

12 pages, 893 KB  
Proceeding Paper
Real-Time Pollutant Forecasting Using Edge–AI Fusion in Wastewater Treatment Facilities
by Siva Shankar Ramasamy, Vijayalakshmi Subramanian, Leelambika Varadarajan and Alwin Joseph
Eng. Proc. 2025, 117(1), 31; https://doi.org/10.3390/engproc2025117031 - 22 Jan 2026
Viewed by 85
Abstract
Wastewater treatment is one of the major challenges in the reuse of water as a natural resource. Cleaning of water depends on analyzing and treating the water for the pollutants that have a significant impact on the quality of the water. Detecting and [...] Read more.
Wastewater treatment is one of the major challenges in the reuse of water as a natural resource. Cleaning of water depends on analyzing and treating the water for the pollutants that have a significant impact on the quality of the water. Detecting and analyzing the surges of these pollutants well before the recycling process is needed to make intelligent decisions for water cleaning. The dynamic changes in pollutants need constant monitoring and effective planning with appropriate treatment strategies. We propose an edge-computing-based smart framework that captures data from sensors, including ultraviolet, electrochemical, and microfluidic, along with other significant sensor streams. The edge devices send the data from the cluster of sensors to a centralized server that segments anomalies, analyzes the data and suggests the treatment plan that is required, which includes aeration, dosing adjustments, and other treatment plans. A logic layer is designed at the server level to process the real-time data from the sensor clusters and identify the discharge of nutrients, metals, and emerging contaminants in the water that affect the quality. The platform can make decisions on water treatments using its monitoring, prediction, diagnosis, and mitigation measures in a feedback loop. A rule-based Large Language Model (LLM) agent is attached to the server to evaluate data and trigger required actions. A streamlined data pipeline is used to harmonize sensor intervals, flag calibration drift, and store curated features in a local time-series database to run ad hoc analyses even during critical conditions. A user dashboard has also been designed as part of the system to show the recommendations and actions taken. The proposed system acts as an AI-enabled system that makes smart decisions on water treatment, providing an effective cleaning process to improve sustainability. Full article
Show Figures

Figure 1

22 pages, 14490 KB  
Article
Mechanical Behavior and Pollutant Stabilization of Modified Basalt Fiber-Reinforced Bio-Cemented Phosphogypsum
by Gan Nan, Jiaming Zhang and Kai Liu
Buildings 2026, 16(2), 455; https://doi.org/10.3390/buildings16020455 - 22 Jan 2026
Viewed by 21
Abstract
To facilitate the large-scale recycling of phosphogypsum (PG) as a construction material and mitigate the environmental safety concerns associated with its stockpiling or discharge, this study proposes an innovative approach. The method employs modified (acid-treated) basalt fibers (MBF) synergistically combined with microbially induced [...] Read more.
To facilitate the large-scale recycling of phosphogypsum (PG) as a construction material and mitigate the environmental safety concerns associated with its stockpiling or discharge, this study proposes an innovative approach. The method employs modified (acid-treated) basalt fibers (MBF) synergistically combined with microbially induced carbonate precipitation (MICP) technology for PG solidification. This synergistic MBF–MICP treatment not only enhances the strength and further improves the toughness of the solidified PG but also effectively immobilizes heavy metals within the PG matrix. Bacterial attachment tests conducted on fibers subjected to various pretreatment conditions revealed that the maximum bacterial adhesion occurred on fibers treated with a 1 mol/L acid concentration for 2 h at 40 °C. However, MICP mineralization experiments performed on these pretreated fibers determined the optimal pretreatment conditions for mineralization efficiency to be an acid concentration of 0.93 mol/L, a treatment duration of 0.96 h, and a temperature of 30 °C. Unconfined compressive strength (UCS) tests and calcium carbonate content measurements identified the optimal reinforcement parameters for MBF–MICP-solidified PG as a fiber length of 9 mm and a fiber dosage of 0.4%. Furthermore, comparative analysis demonstrated that the UCS and toughness of MBF–MICP-solidified PG were superior to those of bio-cemented PG specimens treated with unmodified fibers or without any fiber reinforcement. It was found by scanning electron microscopy that there was an obvious phosphogypsum particle-fiber-calcium carbonate precipitation interface in the sample, and the fiber had a bridging effect. Finally, heavy metal leaching tests conducted on the solidified PG confirmed that the leached heavy metal concentrations were below the detection limit, complying with national discharge standards. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 4217 KB  
Review
Overview of Platinum Group Minerals (PGM): A Statistical Perspective and Their Genetic Significance
by Federica Zaccarini, Giorgio Garuti, Maria Economou-Eliopoulos, John F. W. Bowles, Hannah S. R. Hughes, Jens C. Andersen and Saioa Suárez
Minerals 2026, 16(1), 108; https://doi.org/10.3390/min16010108 - 21 Jan 2026
Viewed by 94
Abstract
The six platinum group elements (PGE) are among the rarest elements in the upper continental crust of the earth. Higher values of PGE have been detected in the upper mantle and in chondrite meteorites. The PGE are siderophile and chalcophile elements and are [...] Read more.
The six platinum group elements (PGE) are among the rarest elements in the upper continental crust of the earth. Higher values of PGE have been detected in the upper mantle and in chondrite meteorites. The PGE are siderophile and chalcophile elements and are divided into the following: (1) the Ir subgroup (IPGE) = Os, Ir, and Ru and (2) the Pd subgroup (PPGE) = Rh, Pt, and Pd. The IPGE are more refractory and less chalcophile than the PPGE. High concentrations of PGE led, in rare cases, to the formation of mineral deposits. The PGE are carried in discrete phases, the platinum group minerals (PGM), and are included as trace elements into the structure of base metal sulphides (BM), such as pentlandite, chalcopyrite, pyrite, and pyrrhotite. Similarly to PGE, the PGM are also divided into two main groups, i.e., IPGM composed of Os, Ir, and Ru and PPGM containing Rh, Pt, and Pd. The PGM occur both in mafic and ultramafic rocks and are mainly hosted in stratiform reefs, sulphide-rich lenses, and placer deposits. Presently, there are only 169 valid PGM that represent about 2.7% of all 6176 minerals discovered so far. However, 496 PGM are listed among the valid species that have not yet been officially accepted, while a further 641 are considered as invalid or discredited species. The main reason for the incomplete characterization of PGM resides in their mode of occurrence, i.e., as grains in composite aggregates of a few microns in size, which makes it difficult to determine their crystallography. Among the PGM officially accepted by the IMA, only 13 (8%) were discovered before 1958, the year when the IMA was established. The highest number of PGM was discovered between 1970 and 1979, and 99 PGM have been accepted from 1980 until now. Of the 169 PGM accepted by the IMA, 44% are named in honour of a person, typically a scientist or geologist, and 31% are named after their discovery localities. The nomenclature of 25% of the PGM is based on their chemical composition and/or their physical properties. PGM have been discovered in 25 countries throughout the world, with 64 from Russia, 17 from Canada and South Africa (each), 15 from China, 12 from the USA, 8 from Brazil, 6 from Japan, 5 from Congo, 3 from Finland and Germany (each), 2 from the Dominican Republic, Greenland, Malaysia, and Papua New Guinea each, and only 1 from Argentine, Australia, Bulgaria, Colombia, Czech Republic, England, Ethiopia, Guyana, Mexico, Serbia, and Tanzania each. Most PGM phases contain Pd (82 phases, 48% of all accepted PGM), followed, in decreasing order of abundances, by those of Pt 35 phases (21%), Rh 23 phases (14%), Ir 18 phases (11%), Ru 7 phases (4%), and Os 4 phases (2%). The six PGE forming the PGM are bonded to other elements such as Fe, Ni, Cu, S, As, Te, Bi, Sb, Se, Sn, Hg, Ag, Zn, Si, Pb, Ge, In, Mo, and O. Thirty-two percent of the 169 valid PGM crystallize in the cubic system, 17% are orthorhombic, 16% hexagonal, 14% tetragonal, 11% trigonal, 3% monoclinic, and only 1% triclinic. Some PGM are members of a solid-solution series, which may be complete or contain a miscibility gap, providing information concerning the chemical and physical environment in which the mineral was formed. The refractory IPGM precipitate principally in primitive, high-temperature, mantle-hosted rocks such as podiform and layered chromitites. Being more chalcophile, PPGE are preferentially collected and concentrated in an immiscible sulphide liquid, and, under appropriate conditions, the PPGM can precipitate in a thermal range of about 900–300 °C in the presence of fluids and a progressive increase of oxygen fugacity (fO2). Thus, a great number of Pt and Pd minerals have been described in Ni-Cu sulphide deposits. Two main genetic models have been proposed for the formation of PGM nuggets: (1) Detrital PGM represent magmatic grains that were mechanically liberated from their primary source by weathering and erosion with or without minor alteration processes, and (2) PGM reprecipitated in the supergene environment through a complex process that comprises solubility, the leaching of PGE from the primary PGM, and variation in Eh-pH and microbial activity. These two models do not exclude each other, and alluvial deposits may contain contributions from both processes. Full article
Show Figures

Figure 1

29 pages, 1636 KB  
Article
Geochemical Patterns and Human Health Risks of Less-Regulated Metal(loid)s in Historical Urban and Industrial Topsoils from Alcalá de Henares, Spain
by Antonio Peña-Fernández, Manuel Higueras, Gevorg Tepanosyan, M. Ángeles Peña Fernández and M. C. Lobo
J. Xenobiot. 2026, 16(1), 17; https://doi.org/10.3390/jox16010017 - 21 Jan 2026
Viewed by 84
Abstract
Nine technology-related metal(loid)s (Ag, Co, Fe, Mo, Pt, Rh, Sb, Se and Y) were monitored in 137 topsoil samples from urban parks, industrial areas and gardens in Alcalá de Henares (Spain) using ICP–MS. Selenium was not detected, while Mo, Sb and Rh showed [...] Read more.
Nine technology-related metal(loid)s (Ag, Co, Fe, Mo, Pt, Rh, Sb, Se and Y) were monitored in 137 topsoil samples from urban parks, industrial areas and gardens in Alcalá de Henares (Spain) using ICP–MS. Selenium was not detected, while Mo, Sb and Rh showed a high proportion of values below the detection limit, indicating generally low contamination. In contrast, Fe, Co and Y were detected in all samples, with industrial soils showing about two-fold higher median Co and Fe than urban soils. Garden soils displayed marked silver enrichment (median 0.439 vs. 0.068 mg kg−1 in urban soils), with Ag pollution indices up to 71 and enrichment factors up to 69; around 17% of garden samples exceeded EF > 40, and more than one-quarter had EF > 10. Principal component analysis suggested a predominantly geogenic association for Co, Fe and Y and an anthropogenic component for Ag, Mo, Rh and Sb, while Pt was mainly linked to vehicular emissions. Under standard US EPA exposure scenarios applied to the 2001 topsoil concentrations, oral and inhalation hazard quotients for elements with available benchmarks remained <0.2 and inhalation cancer risks for Co were ≤2.5 × 10−7, indicating low estimated risk within the model assumptions. However, quantitative risk characterisation remains constrained by benchmark gaps for Pt and Rh and by limited consensus toxicity values for Y, which introduces uncertainty for these technology-related elements. These results should therefore be interpreted primarily as a baseline (2001) in surface soils for Alcalá de Henares rather than as a direct representation of current exposure conditions. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

10 pages, 3936 KB  
Brief Report
Insights into the Performance of CusF as a Solubility Tag for Recombinant Protein Expression
by Igor P. Oscorbin, Maria A. Smertina, Maria S. Kunova and Maxim L. Filipenko
Int. J. Mol. Sci. 2026, 27(2), 1057; https://doi.org/10.3390/ijms27021057 - 21 Jan 2026
Viewed by 88
Abstract
The metal-binding periplasmic protein CusF has been proposed as a bifunctional tag that enhances the solubility of recombinant proteins and enables purification using Cu affinity chromatography. However, evidence for its performance remains limited to a few model proteins. Here, we evaluated CusF as [...] Read more.
The metal-binding periplasmic protein CusF has been proposed as a bifunctional tag that enhances the solubility of recombinant proteins and enables purification using Cu affinity chromatography. However, evidence for its performance remains limited to a few model proteins. Here, we evaluated CusF as a solubility tag for two heterologous proteins: a putative poly(A)-polymerase from Enterococcus faecalis (Efa PAP) and the red fluorescent protein mCherry. The proteins were fused to CusF, expressed in E. coli BL21 (DE3) pLysS and Rosetta 2 (DE3) strains, and assessed for solubility and IMAC binding. Native Efa PAP was completely insoluble under all tested conditions, and fusion to CusF did not improve its solubility. Similarly, CusF–mCherry accumulated predominantly in the insoluble fraction, with only trace amounts detectable in soluble lysates. Soluble CusF–mCherry did not bind Cu2+-charged IMAC resin, while moderate binding to Ni2+-charged resin was attributable to the vector-encoded His tag rather than CusF. These results indicate that CusF does not universally enhance protein solubility and may not consistently bind Cu-based IMAC resin. Our findings expand empirical knowledge of solubility tag performance and emphasize the necessity of testing multiple tags to identify optimal strategies for recombinant protein production. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop