Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,816)

Search Parameters:
Keywords = metal surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 3913 KB  
Review
Advancing Bioconjugated Quantum Dots with Click Chemistry and Artificial Intelligence to Image and Treat Glioblastoma
by Pranav Kalaga and Swapan K. Ray
Cells 2026, 15(2), 185; https://doi.org/10.3390/cells15020185 - 19 Jan 2026
Abstract
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience [...] Read more.
Glioblastoma (GB) is one of the most aggressive and invasive cancers. Current treatment protocols for GB include surgical resection, radiotherapy, and chemotherapy with temozolomide. However, despite these treatments, physicians still struggle to effectively image, diagnose, and treat GB. As such, patients frequently experience recurrence of GB, demanding innovative strategies for early detection and effective therapy. Bioconjugated quantum dots (QDs) have emerged as powerful nanoplatforms for precision imaging and targeted drug delivery due to their unique optical properties, tunable size, and surface versatility. Due to their extremely small size, QDs can cross the blood–brain barrier and be used for precision imaging of GB. This review explores the integration of QDs with click chemistry for robust bioconjugation, focusing on artificial intelligence (AI) to advance GB therapy, mechanistic insights into cellular uptake and signaling, and strategies for mitigating toxicity. Click chemistry enables site-specific and stable conjugation of targeting ligands, peptides, and therapeutic agents to QDs, enhancing selectivity and functionalization. Algorithms driven by AI may facilitate predictive modeling, image reconstruction, and personalized treatment planning, optimizing QD design and therapeutic outcomes. We discuss molecular mechanisms underlying interactions of QDs with GB, including receptor-mediated endocytosis and intracellular trafficking, which influence biodistribution and therapeutic efficacy. Use of QDs in photodynamic therapy, which uses reactive oxygen species to induce apoptotic cell death in GB cells, is an innovative therapy that is covered in this review. Finally, this review addresses concerns associated with the toxicity of metal-based QDs and highlights how QDs can be coupled with AI to develop new methods for precision imaging for detecting and treating GB for induction of apoptosis. By converging nanotechnology and computational intelligence, bioconjugated QDs represent a transformative platform for paving a safer path to smarter and more effective clinical interventions of GB. Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
Show Figures

Figure 1

15 pages, 9470 KB  
Article
Effect of Kombucha Exposure on Corrosion Resistance of MIM Orthodontic Brackets: Geometry–Electrochemistry Coupling and Oral Health Implications (MIM-316L vs. Commercial)
by Anna Ziębowicz, Wiktoria Groelich, Klaudiusz Gołombek and Karolina Wilk
Materials 2026, 19(2), 400; https://doi.org/10.3390/ma19020400 - 19 Jan 2026
Abstract
Metal Injection Molding (MIM) enables complex orthodontic-bracket geometries but can introduce surface and geometric discontinuities that act as initiation sites for crevice and pitting corrosion. The effect of acidic, kombucha-like exposure on corrosion and repassivation was assessed for MIM-316L brackets relative to a [...] Read more.
Metal Injection Molding (MIM) enables complex orthodontic-bracket geometries but can introduce surface and geometric discontinuities that act as initiation sites for crevice and pitting corrosion. The effect of acidic, kombucha-like exposure on corrosion and repassivation was assessed for MIM-316L brackets relative to a commercial comparator, and the coupling between surface quality (roughness and wettability) and localized damage at scanning electron microscopy (SEM)-identified hot-spots was examined. Kombucha was characterized by pH and titratable acidity. Surfaces were characterized by SEM, areal roughness metrics (R_a, S_a, S_z, and A2), and wettability by sessile-drop goniometry. Electrochemical behavior in artificial saliva was measured using open-circuit potential and cyclic potentiodynamic polarization (ASTM F2129/G59), and a qualitative magnetic check was included as a pragmatic quality-assurance screen. Exposure in kombucha reduced breakdown and repassivation potentials and increased passive current density, with the strongest effects co-localizing geometric discontinuities. Commercial brackets exhibited markedly poorer surface quality (notably higher S_z), amplifying acidity-driven susceptibility. These findings indicate that, under acidic challenges, surface/geometry quality dominates corrosion behavior; non-magnetic-phase compliance and simple chairside screening (e.g., magnet test), alongside tighter manufacturing controls on roughness and edge finish, should be incorporated into clinical and industrial quality assurance (QA). Full article
(This article belongs to the Special Issue Orthodontic Materials: Properties and Effectiveness of Use)
Show Figures

Graphical abstract

18 pages, 4243 KB  
Article
Preparation and Performance Study of Modified Graphene Oxide/Polyurethane Anti-Corrosion Coating
by Shudi Zhang, Xinya Wei, Na Xiao, Jiahui Bing, Jialin Dong, Jiacheng Ma and Tao Zhang
Coatings 2026, 16(1), 131; https://doi.org/10.3390/coatings16010131 - 19 Jan 2026
Abstract
To address the corrosion and degradation of metallic materials in seawater, tidal, and similar environments, this study employs lysine (C6H14N2O2) to modify graphene oxide (GO) via a hydrothermal process. The modified graphene oxide (f-GO) and [...] Read more.
To address the corrosion and degradation of metallic materials in seawater, tidal, and similar environments, this study employs lysine (C6H14N2O2) to modify graphene oxide (GO) via a hydrothermal process. The modified graphene oxide (f-GO) and poly(l-lysine) (PL) composite was characterized structurally and functionally using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) to characterize its structure and properties. A composite coating was prepared using modified graphene oxide (f-GO) and polyurethane (PU), which underwent electrochemical testing, hardness testing, corrosion rate testing, adhesion testing, impact resistance testing, and salt spray corrosion resistance testing. Experimental results indicate that C-N stretching vibration peaks appeared at all reaction temperatures. At 85 °C, f-GO85 exhibited optimal modification with a layer spacing of 1.471 nm, 72% transmittance, and superior thermal stability, confirming successful lysine grafting onto the GO surface. Corrosion resistance testing of the composite coating revealed enhanced adhesion and impact resistance, reduced corrosion rate, decreased corrosion current density in polarization curves, positive shift in corrosion potential, and higher impedance values in impedance curves, indicating improved coating density and corrosion resistance. Salt spray tests demonstrated that incorporating lysine-modified graphene oxide significantly improved the anti-corrosion performance of polyurethane coatings. Optimal corrosion resistance was achieved when the modified graphene oxide content was 0.2 wt%. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

14 pages, 3313 KB  
Article
Computer Vision-Based Corrosion Detection and Feature Extraction for Rock Bolts
by Shucan Lu, Saisai Wu, Xinxin Ma, Shuisheng Yu, Zunyi Zhang and Xuewen Song
Materials 2026, 19(2), 392; https://doi.org/10.3390/ma19020392 - 19 Jan 2026
Abstract
To address the challenges posed by rock bolt corrosion to engineering safety and service life, this study focuses on corrosion detection through integrated image processing, deep learning, and feature extraction methods. An automatic corrosion identification model was constructed based on computer-vision object-detection algorithms. [...] Read more.
To address the challenges posed by rock bolt corrosion to engineering safety and service life, this study focuses on corrosion detection through integrated image processing, deep learning, and feature extraction methods. An automatic corrosion identification model was constructed based on computer-vision object-detection algorithms. By incorporating a Feature Pyramid Network, the model’s multi-scale object-detection capability was significantly enhanced. The corrosion features were extracted via image binarization and grayscale matrix analysis. The binary image method accurately quantified pitting density, revealing an initial increase followed by a decrease over time. The corrosion morphology was simulated using a Fractional Brownian Motion model, validating the accuracy of fractal feature calculations. The fractal dimension increased significantly with prolonged corrosion time, which not only characterize surface roughness evolution and corrosion rate, but also provide a reliable quantitative indicator for metal corrosion assessment. This research offers a technical framework integrating image processing, deep learning, and fractal theory for rock bolt corrosion monitoring and maintenance. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection of Metals/Alloys)
Show Figures

Figure 1

12 pages, 7889 KB  
Article
Growth Process and Formation Mechanism of Oxide Films for FSX-414 Alloy: Comparing External Surface and Narrow Crevice During Long-Term Oxidation at 900 °C
by Junjie Wu, Changlin Yang, Fan Zhao, Yi Zeng, Jianping Lai, Jiaxin Yu, Yingbo Guan, Zhenhuan Gao and Xiufang Gong
Coatings 2026, 16(1), 128; https://doi.org/10.3390/coatings16010128 - 19 Jan 2026
Abstract
Welding repair of cracks in FSX-414 cobalt-based alloy, used in high-temperature components, poses significant challenges due to the presence of surface oxide films within the cracks. By comparing the formation of oxide films on the external surface and inside the narrow crevice of [...] Read more.
Welding repair of cracks in FSX-414 cobalt-based alloy, used in high-temperature components, poses significant challenges due to the presence of surface oxide films within the cracks. By comparing the formation of oxide films on the external surface and inside the narrow crevice of FSX-414 alloys preserved at 900 °C for up to 1000 h, we found that the oxide film growth rate on the external surface was slightly larger than that inside the narrow crevice, and the latter slowed down after 672 h. Additionally, the oxide films on both surfaces were mainly composed of O and Cr elements, providing excellent protection to the underlying metal and resulting in minimal internal oxidation. A compositional transition region formed between the oxide film and the base metal. The width of the transition region decreased with heating duration and was narrower in the external surface sample, leading to a steeper composition gradient between the oxide film and the inner metal. With prolonged exposure, increasing numbers of “pores” rich in W and O appeared near the oxide films, creating channels that connect the oxide layer with the internal metal and accelerate material degradation. “Pores” extended deeper into the metal within the narrow crevice compared to those on the surface. Prior to welding repair, channels composed of W and O near the oxide films must be cleaned along with the oxide layer itself, and the removal of oxide from narrow cracks poses greater difficulty. Full article
Show Figures

Figure 1

15 pages, 2150 KB  
Article
Liquid Metal Particles–Graphene Core–Shell Structure Enabled Hydrogel-Based Triboelectric Nanogenerators
by Sangkeun Oh, Yoonsu Lee, Jungin Yang, Yejin Lee, Seoyeon Won, Sang Sub Han, Jung Han Kim and Taehwan Lim
Gels 2026, 12(1), 86; https://doi.org/10.3390/gels12010086 (registering DOI) - 19 Jan 2026
Abstract
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a [...] Read more.
The development of flexible and self-powered electronic systems requires triboelectric materials that combine high charge retention, mechanical compliance, and stable dielectric properties. Here, we report a redox reaction approach to prepare liquid metal particle-reduced graphene oxide (LMP@rGO) core–shell structures and introduce into a poly(acrylic acid) (PAA) hydrogel to create a high-performance triboelectric layer. The spontaneous interfacial reaction between gallium oxide of LMP and graphene oxide produces a conformal rGO shell while simultaneously removing the native insulating oxide layer onto the LMP surface, resulting in enhanced colloidal stability and a controllable semiconductive bandgap of 2.7 (0.01 wt%), 2.9 (0.005 wt%) and 3.2 eV (0.001 wt%). Increasing the GO content promotes more complete core–shell formation, leading to higher zeta potentials, stronger interfacial polarization, and higher electrical performance. After embedding in PAA, the LMP@rGO structures form hydrogen-bonding networks with the hydrogel nature, improving both dielectric constant and charge retention while notably preserving soft mechanical compliance. The resulting LMP@rGO/PAA hydrogels show enhanced triboelectric output, with the 2.0 wt/vol% composite generating sufficient power to illuminate more than half of 504 series-connected LEDs. All the results demonstrate the potential of LMP@rGO hydrogel composites as promising triboelectric layer materials for next-generation wearable and self-powered electronic systems. Full article
Show Figures

Figure 1

24 pages, 12498 KB  
Article
Study on Surface Properties and Microstructural Evolution of LA103Z Mg-Li Alloy by Friction Stir Processing
by Jiqiang Zhai, Kai Hu, Zihan Kong and Xinzhen Fang
Metals 2026, 16(1), 108; https://doi.org/10.3390/met16010108 - 18 Jan 2026
Abstract
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify [...] Read more.
Magnesium–lithium alloys are the lightest structural metals and offer high specific strength, good damping capacity, and excellent thermal conductivity; however, their limited room-temperature strength restricts wider engineering applications. In this study, friction stir processing (FSP) was applied to LA103Z magnesium–lithium alloy to modify its surface microstructure and mechanical properties. The effects of tool rotational speed and travelling speed on dynamic recrystallization behavior, grain refinement, and phase evolution in the stirred zone (SZ) and thermomechanically affected zone (TMAZ) were systematically investigated. FSP induced significant grain refinement accompanied by the precipitation of a reticular α-Mg phase along β-Li grain boundaries, as well as Li3Mg7 and Li2MgAl phases within the stirred zone, leading to pronounced strengthening. Under optimized processing conditions, substantial improvements in hardness and tensile properties were achieved compared with the base material. The optimal condition was obtained at 600 rpm and 100 mm/min, yielding an average hardness of 79.17 HV0.2, a tensile strength of 243.6 MPa, and an elongation of 17.9%, corresponding to increases of 47.5% in hardness and 53.3% in tensile strength. Quantitative relationships between heat input, grain size, and mechanical properties further demonstrate that heat input governs microstructural evolution and strengthening behavior during FSP of LA103Z alloy. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

48 pages, 8652 KB  
Review
Advances in Alkaline Water Electrolysis—The Role of In Situ Ionic Activation in Green Hydrogen Production
by Vladimir M. Nikolić, Katarina M. Dimić-Mišić, Slađana Lj. Maslovara, Dejana P. Popović, Mihajlo N. Gigov, Sanja S. Krstić and Milica P. Marčeta Kaninski
Catalysts 2026, 16(1), 98; https://doi.org/10.3390/catal16010098 (registering DOI) - 18 Jan 2026
Abstract
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) [...] Read more.
Alkaline water electrolysis remains one of the leading and most mature technologies for large-scale hydrogen production. Its advantages stem from the use of inexpensive, earth-abundant materials and well-established industrial deployment, yet the technology continues to face challenges, including sluggish hydrogen evolution reaction (HER) kinetics and energy-efficiency limitations compared with acidic electrolysis systems. This review provides a comprehensive overview of the fundamental principles governing alkaline electrolysis, encompassing electrolyte chemistry, electrode materials, electrochemical mechanisms, and the roles of overpotentials, cell resistances, and surface morphology in determining system performance. Key developments in catalytic materials are discussed, highlighting both noble-metal and non-noble-metal electrocatalysts, as well as advanced approaches to surface modification and nanostructuring designed to enhance catalytic activity and long-term stability. Particular emphasis is placed on the emerging strategy of in situ ionic activation, wherein transition-metal ions and oxyanions are introduced directly into the operating electrolyte. These species dynamically interact with electrode surfaces under polarization, inducing real-time surface reconstruction, improving water dissociation kinetics, tuning hydrogen adsorption energies, and extending electrode durability. Results derived from polarization measurements, electrochemical impedance spectroscopy, and surface morphology analyses consistently demonstrate that ionic activators, such as Ni–Co–Mo systems, significantly increase the HER performance through substantial increase in surface roughness and increased intrinsic electrocatalytic activity through synergy of d-metals. By integrating both historical context and recent research findings, this review underscores the potential of ionic activation as a scalable and cost-effective way toward improving the efficiency of alkaline water electrolysis and accelerating progress toward sustainable, large-scale green hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

23 pages, 4062 KB  
Review
Nanoscale Microstructure and Microbially Mediated Mineralization Mechanisms of Deep-Sea Cobalt-Rich Crusts
by Kehui Zhang, Xuelian You, Chao Li, Haojia Wang, Jingwei Wu, Yuan Dang, Qing Guan and Xiaowei Huang
Minerals 2026, 16(1), 91; https://doi.org/10.3390/min16010091 (registering DOI) - 17 Jan 2026
Viewed by 59
Abstract
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from [...] Read more.
As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from the Magellan Seamount region in the northwestern Pacific and synthesizes existing geological, mineralogical, and geochemical studies to systematically elucidate their mineralization processes and metal enrichment mechanisms from a microstructural perspective, with particular emphasis on cobalt enrichment and its controlling factors. Based on published observations and experimental evidence, the formation of cobalt-rich crusts is divided into three stages: (1) Mn/Fe colloid formation—At the chemical interface between oxygen-rich bottom water and the oxygen minimum zone (OMZ), Mn2+ and Fe2+ are oxidized to form hydrated oxide colloids such as δ-MnO2 and Fe(OH)3. (2) Key metal adsorption—Colloidal particles adsorb metal ions such as Co2+, Ni2+, and Cu2+ through surface complexation and oxidation–substitution reactions, among which Co2+ is further oxidized to Co3+ and stably incorporated into MnO6 octahedral vacancies. (3) Colloid deposition and mineralization—Mn–Fe colloids aggregate, dehydrate, and cement on the exposed seamount bedrock surface to form layered cobalt-rich crusts. This process is dominated by the Fe/Mn redox cycle, representing a continuous evolution from colloidal reactions to solid-phase mineral formation. Biological processes play a crucial catalytic role in the microstructural evolution of the crusts. Mn-oxidizing bacteria and extracellular polymeric substances (EPS) accelerate Mn oxidation, regulate mineral-oriented growth, and enhance particle cementation, thereby significantly improving the oxidation and adsorption efficiency of metal ions. Tectonic and paleoceanographic evolution, seamount topography, and the circulation of Antarctic Bottom Water jointly control the metallogenic environment and metal sources, while crystal defects, redox gradients, and biological activity collectively drive metal enrichment. This review establishes a conceptual framework of a multi-level metallogenic model linking macroscopic oceanic circulation and geological evolution with microscopic chemical and biological processes, providing a theoretical basis for the exploration, prediction, and sustainable development of potential cobalt-rich crust deposits. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Polymetallic Deep-Sea Deposits)
Show Figures

Figure 1

24 pages, 57665 KB  
Article
Geochemical Framework of Ataúro Island (Timor-Leste) in an Arc–Continent Collision Setting
by Job Brites dos Santos, Marina Cabral Pinto, Victor A. S. Vicente, André Ram Soares and João A. M. S. Pratas
Minerals 2026, 16(1), 89; https://doi.org/10.3390/min16010089 (registering DOI) - 17 Jan 2026
Viewed by 65
Abstract
Ataúro Island, located in the inner Banda Arc, provides a natural laboratory to investigate the interplay between magmatic evolution, hydrothermal circulation, and near-surface weathering in an active arc–continent collision setting. This study presents the first systematic island-wide geochemical baseline for Ataúro Island, based [...] Read more.
Ataúro Island, located in the inner Banda Arc, provides a natural laboratory to investigate the interplay between magmatic evolution, hydrothermal circulation, and near-surface weathering in an active arc–continent collision setting. This study presents the first systematic island-wide geochemical baseline for Ataúro Island, based on multi-element analyses of stream sediments integrated with updated geological, structural, and hydromorphological information. Compositional Data Analysis (CoDA–CLR–PCA), combined with anomaly mapping and spatial overlays, defines a coherent three-tier geochemical framework comprising: (i) a lithogenic component dominated by Fe–Ti–Mg–Ni–Co–Cr, reflecting the geochemical signature of basaltic to andesitic volcanic rocks; (ii) a hydrothermal component characterized by Ag–As–Sb–S–Au associations spatially linked to structurally controlled zones; and (iii) an oxidative–supergene component marked by Fe–V–Zn redistribution along drainage convergence areas. These domains are defined strictly on geochemical criteria and represent geochemical process domains rather than proven metallogenic provinces. Rare earth element (REE) systematics further constrain the geotectonic setting and indicate that the primary geochemical patterns are largely controlled by lithological and magmatic differentiation processes. Spatial integration of geochemical patterns with fault architecture highlights the importance of NW–SE and NE–SW structural corridors in focusing hydrothermal fluid circulation and associated metal dispersion. The identified Ag–As–Sb–Au associations are interpreted as epithermal-style hydrothermal geochemical enrichment and exploration-relevant geochemical footprints, rather than as evidence of confirmed or economic mineralization. Overall, Ataúro Island emerges as a compact natural analogue of post-arc geochemical system evolution in the eastern Banda Arc, where lithogenic background, hydrothermal fluid–rock interaction, and early supergene processes are superimposed. The integrated geochemical framework presented here provides a robust baseline for future targeted investigations aimed at distinguishing lithogenic from hydrothermal contributions and evaluating the potential significance of the identified geochemical enrichments. Full article
Show Figures

Figure 1

23 pages, 1765 KB  
Article
Towards a Comprehensive Understanding of Microplastics and Antifouling Paint Particles from Ship-Hull Derusting Wastewater and Their Emissions into the Marine Environment
by Can Zhang, Yufan Chen, Wenbin Zhao, Jianhua Zhou and Deli Wu
J. Mar. Sci. Eng. 2026, 14(2), 195; https://doi.org/10.3390/jmse14020195 - 17 Jan 2026
Viewed by 37
Abstract
Microplastics (MPs) and Antifouling Paint Particles (APPs) are pervasive anthropogenic pollutants that threaten global ecosystems, with distinct yet overlapping environmental behaviors and toxic impacts. MPs disperse widely in aquatic systems via runoff and wastewater; their toxicity stems from physical, chemical, and synergistic effects. [...] Read more.
Microplastics (MPs) and Antifouling Paint Particles (APPs) are pervasive anthropogenic pollutants that threaten global ecosystems, with distinct yet overlapping environmental behaviors and toxic impacts. MPs disperse widely in aquatic systems via runoff and wastewater; their toxicity stems from physical, chemical, and synergistic effects. APPs are concentrated in coastal zones, estuaries, and shipyard areas, and are acutely toxic due to their high metal and biocide content. This study systematically characterized the composition, concentration, and size distribution of common MPs and APPs in ship-hull derusting wastewater produced by ultra-high-pressure water jetting, using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) coupled with particle size analysis. The wastewater exhibited a total suspended solids (TSS) concentration of 20.04 g·L−1, within which six types of MPs were identified at 3.29 mg·L−1 in total and APPs were quantified at 330.25 mg·L−1, representing 1.65% of TSS. The residual fraction primarily consisted of algae, biological debris, and inorganic particles. Particle size distribution ranged from 3.55 to 111.47 μm, with a median size (D50) of 31 μm, while APPs were mainly 5–100 μm, with 81.4% < 50 μm. Extrapolation to the annual treated ship-hull surface area in 2024 indicated the generation of ~57,440 m3 wastewater containing ~0.2 tons of MPs and ~19 tons of APPs. These findings highlight the magnitude of pollutant release from ship maintenance activities and underscore the urgent need for targeted treatment technologies and regulatory policies to mitigate microplastic pollution in marine environments. Full article
(This article belongs to the Section Marine Hazards)
19 pages, 8261 KB  
Article
Organic Acids for Lignin and Hemicellulose Extraction from Black Liquor: A Comparative Study in Structure Analysis and Heavy Metal Adsorption Potential
by Patrycja Miros-Kudra, Paulina Sobczak-Tyluś, Agata Jeziorna, Karolina Gzyra-Jagieła, Justyna Wietecha and Maciej Ciepliński
Polymers 2026, 18(2), 251; https://doi.org/10.3390/polym18020251 - 16 Jan 2026
Viewed by 157
Abstract
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of [...] Read more.
This study presents a method for extracting lignin and hemicellulose from black liquor using organic acids (citric, malic, and acetic) in comparison to the traditional sulfuric acid method. We investigated and compared the influence of the acid type on the structural properties of the resulting precipitates in the context of their potential applications. The lignin fractions were characterized for their chemical structure (ATR-FTIR, NMR), thermal stability (TGA), morphology and surface elemental composition (SEM-EDS), bulk elemental composition (C, H, N, S), and molecular weight distribution (GPC). The hemicellulose fractions were analyzed for their molecular weight (GPC), surface elemental composition (EDS), and chemical structure (ATR-FTIR). These analyses revealed subtle differences in the properties of the individual materials depending on the extraction method. We showed that organic acids, particularly citric acid, can effectively precipitate lignin with yields comparable to the sulfuric acid method (47–60 g/dm3 vs. 50 g/dm3). Simultaneously, this method produces lignin with higher purity (regarding sulfur content) and an increased content of carboxyl groups. This latter aspect is of particular interest due to the enhanced potential of lignin’s adsorption functions towards metal ions. AAS analysis confirmed that lignin precipitated with citric acid showed better adsorption efficiency towards heavy metals compared to lignin precipitated with sulfuric acid, especially for Cu2+ ions (80% vs. 20%) and Cr3+ ions (46% vs. 2%). This enhanced adsorption efficiency of the isolated lignins, combined with the environmental benefits of using organic acids, opens a promising perspective for their application in water treatment and environmental remediation. Furthermore, the presented research on the valorization and reuse of paper industry by-products fully aligns with the fundamental principles of the Circular Economy. Full article
(This article belongs to the Special Issue Biobased Polymers and Its Composites)
Show Figures

Graphical abstract

17 pages, 2006 KB  
Article
A Hybrid Inorganic–Organic Schiff Base-Functionalised Porous Platform for the Remediation of WEEE Polluted Effluents
by Devika Vashisht, Martin J. Taylor, Amthal Al-Gailani, Priyanka, Aseem Vashisht, Alex O. Ibhadon, Ramesh Kataria, Shweta Sharma and Surinder Kumar Mehta
Water 2026, 18(2), 247; https://doi.org/10.3390/w18020247 - 16 Jan 2026
Viewed by 112
Abstract
An inorganic–organic hybrid nano-adsorbent was prepared by chemical immobilisation of an organic Schiff base Cu (II) ion receptor, DHB ((E)-N-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl) ethylidene) benzohydrazide), a selective dehydroacetic acid-based chemosensor, onto a mesoporous silica support. In order to prepare the sorbent, the silylating agent was anchored [...] Read more.
An inorganic–organic hybrid nano-adsorbent was prepared by chemical immobilisation of an organic Schiff base Cu (II) ion receptor, DHB ((E)-N-(1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl) ethylidene) benzohydrazide), a selective dehydroacetic acid-based chemosensor, onto a mesoporous silica support. In order to prepare the sorbent, the silylating agent was anchored onto the silica. During this procedure, 3-Chloropropyl trimethoxy silane (CPTS) was attached to the surface, increasing hydrophobicity. By immobilising DHB onto the CPTS platform, the silica surface was activated, and as a result the coordination chemistry of the Schiff base generated a hybrid adsorbent with the capability to rapidly sequestrate Cu (II) ions from wastewater, as an answer to combat growing Waste Electrical and Electronic Equipment (WEEE) contamination in water supplies, in the wake of a prolonged consumerism mentality and boom in cryptocurrency mining. The produced hybrid materials were characterised by FTIR, proximate and ultimate analysis, nitrogen physisorption, PXRD, SEM, and TEM. The parameters influencing the removal efficiency of the sorbent, including pH, initial metal ion concentration, contact time, and adsorbent dosage, were optimised to achieve enhanced removal efficiency. Under optimal conditions (pH 7.0, adsorbent dosage 3 mg, contact time of 70 min, and 25 °C), Cu (II) ions were quantitatively sequestered from the sample solution; 93.1% of Cu (II) was removed under these conditions. The adsorption was found to follow pseudo-second-order kinetics, and Langmuir model fitting affirmed the monolayer adsorption. Full article
(This article belongs to the Special Issue The Application of Adsorption Technologies in Wastewater Treatment)
27 pages, 60245 KB  
Article
Tensile and Fatigue Performance of Cold-Work Tool Steels for Adjustable Forming Tools
by Kaarel Siimut, Kasper Mygind Madsen, Ermanno Ceron and Chris Valentin Nielsen
Appl. Sci. 2026, 16(2), 954; https://doi.org/10.3390/app16020954 - 16 Jan 2026
Viewed by 88
Abstract
Forming tools adjustable by tensile elastic deformations offer opportunities for improved process control and reduced wear in high-volume metal forming processes such as ironing. However, the lack of tensile and fatigue data for hardened cold-work tool steels limits their broader adoption. This study [...] Read more.
Forming tools adjustable by tensile elastic deformations offer opportunities for improved process control and reduced wear in high-volume metal forming processes such as ironing. However, the lack of tensile and fatigue data for hardened cold-work tool steels limits their broader adoption. This study investigates the mechanical performance of three tool steels—Vanadis®4 Extra SuperClean, Vancron® SuperClean, and Caldie®—through uniaxial tensile and fatigue testing, supplemented by destructive static and fatigue/wear tests on specimens representative of an adjustable ironing punch. Non-coated specimens exhibited ultimate tensile strengths above 2700 MPa with approximately 2% plastic strain, while coated specimens fractured in a brittle manner between 1600–1900 MPa. Fatigue life at stress ranges between 1450–1750 MPa varied from several thousand to over four million cycles, with crack initiation linked to non-metallic inclusions and precipitates 10–30 μm in size. Finite element simulations accurately linked failure observed in uniaxial tests to the component-level tests, confirming that first principal stress is a reliable predictor for punch failure. All punch specimens withstood 106 cycles at diameter changes up to 140 μm (4‰), with coated punches exhibiting minimal wear and non-coated ones showing localized surface damage. The findings support material and coating selection for adjustable forming tools and highlight opportunities for further optimization. Full article
(This article belongs to the Special Issue Fatigue and Fracture Behavior of Engineering Materials)
18 pages, 2848 KB  
Article
Yttrium-Enhanced Passive Films in Austenitic Stainless Steel
by Maksym Bichev, Denis Miroshnichenko, Sergey Nesterenko, Leonid Bannikov, Leonid Saenko, Volodymyr Tertychnyi, Vladislav Reivi, Kyrylo Serkiz and Mariia Shved
Electrochem 2026, 7(1), 3; https://doi.org/10.3390/electrochem7010003 - 16 Jan 2026
Viewed by 61
Abstract
It has been demonstrated that a monomolecular surface film with semiconducting characteristics forms on an austenitic, corrosion- and heat-resistant chromium–nickel steel with 0.10 wt.% C, 20 wt.% Cr, 9 wt.% Ni, and 6 wt.% Mn (10Kh20N9G6), microalloyed with yttrium, in aqueous 1 M [...] Read more.
It has been demonstrated that a monomolecular surface film with semiconducting characteristics forms on an austenitic, corrosion- and heat-resistant chromium–nickel steel with 0.10 wt.% C, 20 wt.% Cr, 9 wt.% Ni, and 6 wt.% Mn (10Kh20N9G6), microalloyed with yttrium, in aqueous 1 M H2SO4. This passive layer exhibits semiconducting behavior, as confirmed by electrochemical impedance and capacitance measurements. For the first time, key electronic parameters, including the flat-band potential, the thickness of the semiconductor layer, and the Fermi energy, have been determined from experimental Mott–Schottky plots obtained for the interphase boundary between the yttrium-microalloyed austenitic Cr–Ni steel (10Kh20N9G6) and aqueous 1 M H2SO4. The results reveal a systematic shift in the flat-band potential toward more negative values with increasing yttrium content in the alloy, indicating a modification of the electronic structure of the passive film. Simultaneously, a decrease in the Fermi energy is observed, suggesting an increase in the work function of the metal surface due to the presence of yttrium. These findings contribute to a deeper understanding of passivation mechanisms in yttrium-containing stainless steels. The formation of a semiconducting passive film is essential for enhancing the electrochemical stability of stainless steels, and the role of rare-earth microalloying elements, such as yttrium, in this process is of both fundamental and practical interest. Full article
Back to TopTop