Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (469)

Search Parameters:
Keywords = metabolic chemical reporters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2979 KiB  
Article
A Metabolomics Exploration of Young Lotus Seeds Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
by Ying Chen, Xiaomeng Xu and Chunping Tang
Molecules 2025, 30(15), 3242; https://doi.org/10.3390/molecules30153242 - 1 Aug 2025
Viewed by 246
Abstract
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. [...] Read more.
Lotus (Nelumbo nucifera Gaertn.) is a quintessential medicinal and edible plant, exhibiting marked differences in therapeutic effects among its various parts. The lotus seed constitutes a key component of this plant. Notably, the entire seed and the plumule display distinct medicinal properties. To investigate the “homologous plants with different effects” phenomenon in traditional Chinese medicine, this study established a Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) method. This study employed immature lotus seeds as the experimental material, diverging from the mature seeds conventionally used. Conductive double-sided tape was employed for sample preparation, and complete longitudinal sections of the seeds were obtained, followed by MALDI-MSI analysis to identify and visualize the spatial distribution of characteristic secondary metabolites within the entire seeds. The results unveiled the diversity of metabolites in lotus seeds and their differential distribution across tissues, with pronounced distinctions in the plumule. A total of 152 metabolites spanning 13 categories were identified in lotus seeds, with 134, 89, 51, and 98 metabolites discerned in the pericarp, seed coat, cotyledon, and plumule, respectively. Strikingly, young lotus seeds were devoid of liensinine/isoliensinine and neferine, the dominant alkaloids of mature lotus seed plumule, revealing an early-stage alkaloid profile that sharply contrasts with the well-documented abundance found in mature seeds and has rarely been reported. We further propose a biosynthetic pathway to explain the presence of the detected benzylisoquinoline and the absence of the undetected bisbenzylisoquinoline alkaloids in this study. These findings present the first comprehensive metabolic atlas of immature lotus seeds, systematically exposing the pronounced chemical divergence from their mature counterparts, and thus lays a metabolomic foundation for dissecting the spatiotemporal mechanisms underlying the nutritional and medicinal value of lotus seeds. Full article
Show Figures

Figure 1

36 pages, 1730 KiB  
Review
Pharmacological Potential of Cinnamic Acid and Derivatives: A Comprehensive Review
by Yu Tian, Xinya Jiang, Jiageng Guo, Hongyu Lu, Jinling Xie, Fan Zhang, Chun Yao and Erwei Hao
Pharmaceuticals 2025, 18(8), 1141; https://doi.org/10.3390/ph18081141 - 31 Jul 2025
Viewed by 411
Abstract
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives [...] Read more.
Cinnamic acid, an organic acid naturally occurring in plants of the Cinnamomum genus, has been highly valued for its medicinal properties in numerous ancient Chinese texts. This article reviews the chemical composition, pharmacological effects, and various applications of cinnamic acid and its derivatives reported in publications from 2016 to 2025, and anticipates their potential in medical and industrial fields. This review evaluates studies in major scientific databases, including Web of Science, PubMed, and ScienceDirect, to ensure a comprehensive analysis of the therapeutic potential of cinnamic acid. Through systematic integration of existing knowledge, it has been revealed that cinnamic acid has a wide range of pharmacological activities, including anti-tumor, antibacterial, anti-inflammatory, antidepressant and hypoglycemic effects. Additionally, it has been shown to be effective against a variety of pathogens such as Staphylococcus aureus, Pseudomonas aeruginosa, and foodborne Pseudomonas. Cinnamic acid acts by disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, thereby demonstrating its ability to act as a natural antimicrobial agent. Its anti-inflammatory properties are demonstrated by improving oxidative stress and reducing inflammatory cell infiltration. Furthermore, cinnamic acid enhances metabolic health by improving glucose uptake and insulin sensitivity, showing promising results in improving metabolic health in patients with diabetes and its complications. This systematic approach highlights the need for further investigation of the mechanisms and safety of cinnamic acid to substantiate its use as a basis for new drug development. Particularly in the context of increasing antibiotic resistance and the search for sustainable, effective medical treatments, the study of cinnamic acid is notably significant and innovative. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

32 pages, 1078 KiB  
Review
Postbiotics: A Promising Approach to Combat Age-Related Diseases
by Adel Hamdi, Charmaine Lloyd, Rajaraman Eri and Thi Thu Hao Van
Life 2025, 15(8), 1190; https://doi.org/10.3390/life15081190 - 26 Jul 2025
Viewed by 458
Abstract
Dietary patterns have been identified as one of the most important modifiable risk factors for several non-communicable diseases, inextricably linked to the health span of older people. Poor dietary choices may act as triggers for immune responses such as aggravated inflammatory reactions and [...] Read more.
Dietary patterns have been identified as one of the most important modifiable risk factors for several non-communicable diseases, inextricably linked to the health span of older people. Poor dietary choices may act as triggers for immune responses such as aggravated inflammatory reactions and oxidative stress contributing to the pathophysiology of several ageing hallmarks. Novel dietary interventions are being explored to restore gut microbiota balance and promote overall health in ageing populations. Probiotics and, most recently, postbiotics, which are products of probiotic fermentation, have been reported to modulate different signalling biomolecules involved in immunity, metabolism, inflammation, and oxidation pathways. This review presents evidence-based literature on the effects of postbiotics in promoting healthy ageing and mitigating various age-related diseases. The development of postbiotic-based therapeutics and diet-based interventions within a personalised microbiota-targeted approach is proposed as a possible direction for improving health in the elderly population. Despite growing evidence, the data regarding their exact mechanistic pathways for antioxidant and immunomodulating activities remain largely unexplored. Expanding our understanding of the mechanistic and chemical determinants of postbiotics could contribute to disease management approaches, as well as the development of and optimisation of biotherapeutics. Full article
Show Figures

Figure 1

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

26 pages, 3455 KiB  
Review
Exposure to Per- and Polyfluoroalkyl Substances (PFASs) in Healthcare: Environmental and Clinical Insights
by George Briassoulis, Stavroula Ilia and Efrossini Briassouli
Life 2025, 15(7), 1057; https://doi.org/10.3390/life15071057 - 1 Jul 2025
Viewed by 948
Abstract
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals extensively used in various industries due to their unique physicochemical properties. Their persistence in the environment and potential for bioaccumulation have raised significant health concerns. This review aims to elucidate the sources, exposure pathways, toxicological [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are synthetic chemicals extensively used in various industries due to their unique physicochemical properties. Their persistence in the environment and potential for bioaccumulation have raised significant health concerns. This review aims to elucidate the sources, exposure pathways, toxicological effects, and regulatory measures related to PFASs, with a particular focus on pediatric populations and medical applications. A comprehensive narrative review was conducted using PubMed, Scopus, and Web of Science to identify peer-reviewed literature published between 2000 and 2025. The search focused on PFAS use in healthcare, environmental contamination, exposure pathways, health effects, and regulatory actions. Relevant studies, reports, and policy documents were screened and thematically synthesized by the authors to evaluate clinical and environmental risks, particularly in pediatric populations. PFAS exposure is linked to various adverse health effects, including immunotoxicity, endocrine disruption, metabolic disorders, and carcinogenicity. Children are particularly vulnerable due to developmental susceptibilities and exposure through medical devices and environmental sources. Regulatory measures are evolving, but gaps remain, especially concerning medical device applications. There is an urgent need for comprehensive strategies to monitor and mitigate PFAS exposure, particularly in vulnerable populations. Enhanced regulatory frameworks, safer alternatives in medical devices, and public health interventions are essential to address the challenges posed by PFASs. Full article
(This article belongs to the Section Medical Research)
Show Figures

Graphical abstract

17 pages, 3836 KiB  
Article
Anticancer Quinolinol Small Molecules Target Multiple Pathways to Promote Cell Death and Eliminate Melanoma Cells Resistant to BRAF Inhibitors
by Xinjiang Wang, Rati Lama, Alexis D. Kelleher, Erika C. Rizzo, Samuel L. Galster, Chao Xue, Yali Zhang, Jianmin Wang, Jun Qu and Sherry R. Chemler
Molecules 2025, 30(13), 2696; https://doi.org/10.3390/molecules30132696 - 22 Jun 2025
Viewed by 590
Abstract
Small molecule inhibitors that target the E3 ligase activity of MDM2-MDM4 have been explored to inhibit the oncogenic activity of MDM2-MDM4 complex. MMRi62 is a small molecule that was identified using an MDM2-MDM4 E3 ligase-based high throughput screen and a cell-death-based secondary screen. [...] Read more.
Small molecule inhibitors that target the E3 ligase activity of MDM2-MDM4 have been explored to inhibit the oncogenic activity of MDM2-MDM4 complex. MMRi62 is a small molecule that was identified using an MDM2-MDM4 E3 ligase-based high throughput screen and a cell-death-based secondary screen. Our previous studies showed that MMRi62 promotes MDM4 degradation in cells and induces p53-independent apoptosis in cancer cells. However, MMRi62 activity in solid tumor cells such as melanoma cells, especially in BRAF inhibitor resistant melanoma cells, have not been explored. Although its promotion of MDM4 degradation is clear, the direct MMRi62 targets in cells are unknown. In this report, we show that MMRi62 is a much more potent p53-independent apoptosis inducer than conventional MDM2 inhibitors in melanoma cells. A brief structure-activity study led to development of SC-62-1 with improved activity. SC-62-1 potently inhibits and eliminates clonogenic growth of melanoma cells that acquired resistance to BRAF inhibitors. We developed a pair of active and inactive SC-62-1 probes and profiled the cellular targets of SC-62-1 using a chemical biology approach coupled with IonStar/nano-LC/MS analysis. We found that SC-62-1 covalently binds to more than 15 hundred proteins in cells. Pathways analysis showed that SC-62-1 significantly altered several pathways including carbon metabolism, RNA metabolism, amino acid metabolism, translation and cellular response to stress. This study provides mechanistic insights into the mechanisms of action for MMRi62-like quinolinols. This study also suggests multi-targeting compounds like SC-62-1 might be useful for overcoming resistance to BRAF inhibitors for improved melanoma treatment. Full article
Show Figures

Graphical abstract

48 pages, 1375 KiB  
Review
Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas
by Ochuko L. Erukainure, Chika I. Chukwuma, Jennifer Nambooze, Satyajit Tripathy, Veronica F. Salau, Kolawole Olofinsan, Akingbolabo D. Ogunlakin, Osaretin A. T. Ebuehi and Jeremiah O. Unuofin
Plants 2025, 14(13), 1898; https://doi.org/10.3390/plants14131898 - 20 Jun 2025
Viewed by 1432
Abstract
Diabetes is one of the major non-communicable diseases whose physiological complications are linked with a higher risk of mortality amongst the adult age group of people living globally. This review article documents updated pharmacological evidence and insights into the antidiabetic mechanisms of green, [...] Read more.
Diabetes is one of the major non-communicable diseases whose physiological complications are linked with a higher risk of mortality amongst the adult age group of people living globally. This review article documents updated pharmacological evidence and insights into the antidiabetic mechanisms of green, black, white, oolong, and pu-erh teas via reported experimental and clinical models toward encouraging their use as a complementary nutraceutical in managing the biochemical alterations found in the onset and progression of diabetes. Peer-reviewed articles published in “PubMed”, “Google Scholar”, and “ScienceDirect” from 2010 and beyond that reported the antidiabetic, antilipidemic, and digestive enzyme inhibitory effects of the selected tea types were identified. The keywords used for the literature search comprise the common or scientific names of the tea and their corresponding bioactivity. Although teas portrayed different antidiabetic pharmacological properties linked to their bioactive components, including polyphenols, polysaccharides, and amino acids, the type of phytochemical found in each tea type depends on their processing. Green tea’s strong carbohydrate digestive enzyme inhibitory effect was linked with Ellagitannins and catechins, whereas theaflavin, a main ingredient in black tea, increases insulin sensitivity via enhancing GLUT4 translocation. Theabrownin in pu-erh tea improves FBG and lipid metabolism, while chemical components in white tea attenuate prediabetes-mediated reproductive dysfunctions by improving testicular tissue antioxidant capabilities. Based on the body of findings presented in this article, it is evident that integrating tea intake into daily food consumption routines could offer a promising practical solution to support human health and well-being against diabetes disease. Full article
Show Figures

Graphical abstract

14 pages, 1234 KiB  
Article
Metabolic Engineering of Escherichia coli for De Novo Biosynthesis of Mandelic Acid
by Chang Liu, Xuefeng Xiao, Wanbin Xing, Rina Na, Yunuo Song, Guoqiang Cao and Pengchao Wang
Fermentation 2025, 11(6), 331; https://doi.org/10.3390/fermentation11060331 - 9 Jun 2025
Viewed by 904
Abstract
Mandelic acid (MA) is a valuable α-hydroxy acid with applications in pharmaceuticals, cosmetics, and fine chemicals. While chemical synthesis is well established, concerns over toxicity and sustainability have driven interest in microbial production. Here, we engineered Escherichia coli for de novo MA biosynthesis [...] Read more.
Mandelic acid (MA) is a valuable α-hydroxy acid with applications in pharmaceuticals, cosmetics, and fine chemicals. While chemical synthesis is well established, concerns over toxicity and sustainability have driven interest in microbial production. Here, we engineered Escherichia coli for de novo MA biosynthesis by integrating enzyme screening, metabolic flux optimization, and pathway regulation. We first screened and identified an efficient hydroxymandelate synthase (HMAS) homolog from Actinosynnema mirum for MA synthesis, and subsequently enhanced the shikimate pathway along with the supply of the precursors erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP). Additionally, CRISPR interference (CRISPRi) was employed to repress competing pathways and redirect flux toward MA production. High-cell-density cultivation (HCDC) in a 5 L bioreactor demonstrated the strain’s industrial potential, achieving an MA titer of 9.58 g/L, the highest reported for microbial production. This study provides a systematic metabolic engineering approach for efficient MA biosynthesis from glucose, offering a foundation for sustainable large-scale production, demonstrating not only genetic-level optimizations, but also effective process scaling through high-cell-density cultivation, highlighting the power of pathway engineering in microbial cell factories. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

15 pages, 2900 KiB  
Article
It Is Useless to Resist: Biofilms in Metalworking Fluid Systems
by Giulia von Känel, Lara Ylenia Steinmann, Britta Mauz, Robert Lukesch and Peter Küenzi
Life 2025, 15(6), 890; https://doi.org/10.3390/life15060890 - 30 May 2025
Viewed by 407
Abstract
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus [...] Read more.
Biofouling, the undesirable deposition of microorganisms on surfaces, is ubiquitous in aqueous systems. This is no different for systems running with water-miscible metalworking fluids (MWFs), which additionally contain many organic chemicals that create favorable conditions for growth and metabolism. Biofilm formation is thus inevitable, as there is no shortage of wetted surfaces in metalworking systems. MWF manufacturers tried in vain to offer resistance by using biocides and biostatic compounds as ingredients in concentrates and as tank-side additives. We report here that such elements, alone or as components of MWFs, did not prevent biofilm formation and had negligible effects on pre-established laboratory biofilms. Moreover, biofilms in metalworking systems are interwoven with residues, sediments, and metal swarfs generated during machining. Again, co-incubation of such “real” biofilms with MWFs had no significant effect on population size—but on population composition! The implications of this finding are unclear but could provide a starting point for the treatment of biofouling, as biofilm population structure might be of importance. Finally, we show that bacteria gain function in biofilms and that they were able to degrade a toxic amine in MWFs, which the same bacteria were unable to do in planktonic form. Full article
(This article belongs to the Special Issue Microbial Diversity and Function in Aquatic Environments)
Show Figures

Figure 1

18 pages, 2677 KiB  
Article
The Aerobic Denitrification Characteristics of a Halophilic Marinobacter sp. Strain and Its Application in a Full-Scale Fly Ash-Washing Wastewater Treatment Plant
by Mengyang Guo, Kai Liu, Hongfei Wang, Yilin Song, Yingying Li, Weijin Zhang, Jian Gao and Mingjun Liao
Microorganisms 2025, 13(6), 1274; https://doi.org/10.3390/microorganisms13061274 - 30 May 2025
Viewed by 452
Abstract
To date, the nitrogen metabolism pathways and salt-tolerance mechanisms of halophilic denitrifying bacteria have not been fully studied, and full-scale engineering trials with saline fly ash-washing wastewater have not been reported. In this study, we isolated and screened a halophilic denitrifying bacterium ( [...] Read more.
To date, the nitrogen metabolism pathways and salt-tolerance mechanisms of halophilic denitrifying bacteria have not been fully studied, and full-scale engineering trials with saline fly ash-washing wastewater have not been reported. In this study, we isolated and screened a halophilic denitrifying bacterium (Marinobacter sp.), GH-1, analyzed its nitrogen metabolism pathways and salt-tolerance mechanisms using whole-genome data, and explored its nitrogen removal characteristics under both aerobic and anaerobic conditions at different salinity levels. GH-1 was then applied in a full-scale engineering project to treat saline fly ash-washing leachate. The main results were as follows: (1) Based on the integration of whole-genome data, it is preliminarily hypothesized that the strain possesses complete nitrogen metabolism pathways, including denitrification, a dissimilatory nitrate reduction to ammonium (DNRA), and ammonium assimilation, as well as the following three synergistic strategies through which to counter hyperosmotic stress: inorganic ion homeostasis, organic osmolyte accumulation, and structural adaptations. (2) The strain demonstrated effective nitrogen removal under aerobic, anaerobic, and saline conditions (3–9%). (3) When applied in a full-scale engineering system treating saline fly ash-washing wastewater, it improved nitrate nitrogen (NO3-N), total nitrogen (TN), and chemical oxygen demand (COD) removal efficiencies by 31.92%, 25.19%, and 31.8%, respectively. The proportion of Marinobacter sp. increased from 0.73% to 3.41% (aerobic stage) and 2.86% (anoxic stage). Overall, halophilic denitrifying bacterium GH-1 can significantly enhance the nitrogen removal efficiency of saline wastewater systems, providing crucial guidance for biological nitrogen removal treatment. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 3332 KiB  
Review
Benzoxanthenone Lignans Related to Carpanone, Polemanone, and Sauchinone: Natural Origin, Chemical Syntheses, and Pharmacological Properties
by Christian Bailly
Molecules 2025, 30(8), 1696; https://doi.org/10.3390/molecules30081696 - 10 Apr 2025
Viewed by 955
Abstract
Medicinal plants from the genus Saururus are commonly used to treat inflammatory pathologies. They contain numerous bioactive compounds, notably the polycyclic lignan sauchinone from the species Saururus chinensis. An in-depth analysis of benzoxanthenone lignans related to sauchinone, and the analogous products carpanone [...] Read more.
Medicinal plants from the genus Saururus are commonly used to treat inflammatory pathologies. They contain numerous bioactive compounds, notably the polycyclic lignan sauchinone from the species Saururus chinensis. An in-depth analysis of benzoxanthenone lignans related to sauchinone, and the analogous products carpanone and polemannones, has been carried out. The review reports the product’s isolation, biosynthetic pathway, and chemical strategies to synthesize benzoxanthenones via liquid- and solid-phase syntheses. The metabolic and pharmacokinetic properties of sauchinone are discussed. At the pharmacological level, sauchinone is a potent blocker of the production of pro-inflammatory mediators, such as nitric oxide and prostaglandin E2, and an efficient antioxidant agent. The properties of sauchinone can be exploited to combat multiple pathologies, such as liver injuries, renal dysfunction, osteoarthritis, inflammatory bowel disease, ulcerative colitis, and cancers. The capacity of the natural product to inhibit tumor cell proliferation and to reduce migration/invasion of cancer cells and the development of metastases is underlined, together with the regulation of the epithelial-mesenchymal transition and immune checkpoints. Altogether, the review offers a complete survey of the chemical and biochemical properties of sauchinone-type benzoxanthenones. Full article
Show Figures

Graphical abstract

20 pages, 24079 KiB  
Article
Chemical Pollutant Exposure in Neurodevelopmental Disorders: Integrating Toxicogenomic and Transcriptomic Evidence to Elucidate Shared Biological Mechanisms and Developmental Signatures
by Xuping Gao, Xinyue Wang, Xiangyu Zheng, Yilu Zhao, Ning Wang, Suhua Chang and Li Yang
Toxics 2025, 13(4), 282; https://doi.org/10.3390/toxics13040282 - 8 Apr 2025
Viewed by 781
Abstract
Rapid industrialization has introduced a range of chemicals into the environment, posing significant risks to fetal and child brain development. Using the Comparative Toxicogenomics Database (CTD), we constructed chemical exposome frameworks for seven neurodevelopmental disorders (NDDs) and identified chemical pollutants of epidemiological concern, [...] Read more.
Rapid industrialization has introduced a range of chemicals into the environment, posing significant risks to fetal and child brain development. Using the Comparative Toxicogenomics Database (CTD), we constructed chemical exposome frameworks for seven neurodevelopmental disorders (NDDs) and identified chemical pollutants of epidemiological concern, including air pollutants (n = 8), toxic elements (n = 14), pesticides and related compounds (n = 18), synthetic organic chemicals (n = 16), and solvents (n = 5). Gene set enrichment analysis validated and revealed significant toxicogenomic associations between these chemical pollutants and NDDs, including autism spectrum disorder (ASD) (12 pollutants, proportional reporting ratio (PRR) 3.56–7.21) and intellectual disability (ID) (9 pollutants, PRR 3.13–5.59). Functional annotation of pollutant-specific gene sets highlighted shared biological processes, such as metabolic processes (e.g., xenobiotic metabolic process, xenobiotic catabolic process, and cytochrome P450 pathway) for ASD and cognitive processes (e.g., cognition, social behavior, and synapse assembly) for ID (Bonferroni-corrected p-values < 0.05). Time trajectory analysis of developmental transcriptomic data from the BrainSpan database for ASD (275 genes) and ID (93 genes) revealed three distinct expression patterns of chemical-pollutant-associated genes—higher prenatal, postnatal, and perinatal expression—indicating common and divergent underlying mechanisms across critical windows of chemical pollutant exposure. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

17 pages, 1991 KiB  
Review
Cymodocea nodosa, a Promising Seagrass of Nutraceutical Interest: Overview of Phytochemical Constituents and Potential Therapeutic Uses
by Marinella De Leo, Lidia Ciccone, Virginia Menicagli, Elena Balestri, Alessandra Braca, Paola Nieri and Lara Testai
Nutrients 2025, 17(7), 1236; https://doi.org/10.3390/nu17071236 - 1 Apr 2025
Cited by 1 | Viewed by 854
Abstract
Background/Objectives: Seagrasses are marine angiosperms capable of completing their life cycle in water; they have been used as food source and biomass for producing fertilizer, but their potential nutritional and health-promoting properties have been largely overlooked. Cymodocea nodosa (Ucria) Ascherson (family Cymodoceaceae) is [...] Read more.
Background/Objectives: Seagrasses are marine angiosperms capable of completing their life cycle in water; they have been used as food source and biomass for producing fertilizer, but their potential nutritional and health-promoting properties have been largely overlooked. Cymodocea nodosa (Ucria) Ascherson (family Cymodoceaceae) is emerging as one of the most interesting seagrass species due to its content in health promoting substances. Methods: In this review article, a revision of the literature on phytochemical constituents and the main potential therapeutic uses of C. nodosa was carried out. Results: Despite the growing interest in C. nodosa for its key ecological role and for being a potential source of bioactive compounds, comprehensive chemical studies about its composition are still limited. Compounds reported as C. nodosa constituents include fatty acids, phytosterols, polysaccharides, phenolic acids, hydroxycinnamic acids, flavonoid glycosides, terpenoids, and diarylheptanoids. As concerns potential therapeutic uses, C. nodosa extract, both polyphenolic and polysaccharidic, might be useful for the management of metabolic disorders, which is currently the most documented in addition to the antioxidant action. Conclusions: Cymodocea nodosa emerges as one of the most promising seagrass species as a source of bioactive compounds and for its potential in maintaining health status. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

24 pages, 8526 KiB  
Review
Research Progress of Halide Perovskite Nanocrystals in Biomedical Applications: A Review
by Guiyun Wang, Yanxia Qi, Zhiyan Zhou, Zhuang Liu and Ruowei Wang
Inorganics 2025, 13(2), 55; https://doi.org/10.3390/inorganics13020055 - 13 Feb 2025
Cited by 1 | Viewed by 1328
Abstract
Halide perovskite nanocrystals have rapidly emerged as a prominent research topic in materials science over the past decade owing to their exceptional optoelectronic properties and tunability. Their distinctive characteristics, including high light absorption coefficients, high quantum yields, narrow-band emissions, low defect densities, and [...] Read more.
Halide perovskite nanocrystals have rapidly emerged as a prominent research topic in materials science over the past decade owing to their exceptional optoelectronic properties and tunability. Their distinctive characteristics, including high light absorption coefficients, high quantum yields, narrow-band emissions, low defect densities, and adjustable chemical compositions and sizes, position them as highly promising candidates for applications in optoelectronic devices, energy conversion units, and other related systems. However, due to the toxicity and instability of halide perovskite nanocrystals, their widespread application in the biomedical field has been limited in the past. In recent years, numerous innovative coating strategies have been reported to effectively enhance the stability of halide perovskite nanocrystals while confining their toxic metal ions within the coating layers, thereby significantly improving their biocompatibility. This review provides a comprehensive summary of the recent progress of halide perovskite nanocrystals in the field of biomedicine. It covers coating strategies to enhance stability and biocompatibility, as well as the applications of coated halide perovskite nanocrystals in biomedicine, with a particular focus on their unique advantages in bioimaging and chemical sensing. Finally, we address unresolved issues and challenges, such as the metabolic pathways and final products of halide perovskite nanocrystals in vivo. We hope to inspire researchers in the field and provide direction for future studies. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 2nd Edition)
Show Figures

Figure 1

22 pages, 1356 KiB  
Article
A New, Validated GC-PICI-MS Method for the Quantification of 32 Lipid Fatty Acids via Base-Catalyzed Transmethylation and the Isotope-Coded Derivatization of Internal Standards
by Petr Vodrážka, Lucie Řimnáčová, Petra Berková, Jan Vojtíšek, Miroslav Verner, Martin Moos and Petr Šimek
Metabolites 2025, 15(2), 104; https://doi.org/10.3390/metabo15020104 - 7 Feb 2025
Viewed by 1117
Abstract
Background: Fatty acids (FAs) represent a ubiquitous class of nonpolar alkyl carboxylate metabolites with diverse biological functions. Nutrition, metabolism, and endogenous and exogenous stress influence the overall FA metabolic status and transport via the bloodstream. FAs esterified in lipids are of particular interest, [...] Read more.
Background: Fatty acids (FAs) represent a ubiquitous class of nonpolar alkyl carboxylate metabolites with diverse biological functions. Nutrition, metabolism, and endogenous and exogenous stress influence the overall FA metabolic status and transport via the bloodstream. FAs esterified in lipids are of particular interest, as they represent promising biomarkers of pathological diseases and nutritional status. Methods: Here, we report a validated gas chromatographic-mass spectrometric (GC-MS) method for the quantitative analysis of 32 FAs exclusively bound in esterified lipids. The developed sample preparation protocol comprises three steps using only 5 µL of human serum for Folch extraction, sodium methoxide-catalyzed transesterification in tert-butyl methyl ether, and re-extraction in isooctane prior to a quantitative GC-MS analysis with positive ion chemical ionization (PICI) and selected ion monitoring (SIM). Results: The base-catalyzed transmethylation step was studied for 14 lipid classes and was found to be efficient under mild conditions for all major esterified lipids but not for free FAs, lipid amides, or sphingolipids. To minimize matrix effects and instrument bias, internal fatty acid trideuteromethyl esters (D3-FAME) standards were prepared through isotope-coded derivatization with D3-labeled methylchloroformate/methanol medium mixed with each transmethylated serum extract for the assay. The method was validated according to FDA guidelines and evaluated by analyzing NIST SRM 2378 Serum 1 and sera from three healthy donors. Conclusions: The measured quantitative FA values are consistent with the reference data of SRM 2378, and they demonstrate the application potential of the described method for general FA analysis in esterified lipids as a novel complementary tool for lipidomics, as well as for the analysis of membrane FAs in dry blood spots and red blood cells. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Graphical abstract

Back to TopTop