A New, Validated GC-PICI-MS Method for the Quantification of 32 Lipid Fatty Acids via Base-Catalyzed Transmethylation and the Isotope-Coded Derivatization of Internal Standards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biological Material
2.3. Stock and Calibration Solutions
2.4. Internal Standards
- (1)
- The established routine GC-EI-MS quantification of FAMEs was performed with a single commercially available internal standard of methyl decanoate labeled with 33 deuterium atoms (MeC17:0-D33) at a concentration of 0.3 mg/mL dissolved in isooctane.
- (2)
- For the novel isotope-coded calibration assay, a mixture of trideuterated methyl esters (D3-FAME) was prepared from the free 32-FA standards esterified with trideuterated MCF (D3-MCF) in trideuteromethanol (D3-MeOH) according to the previously described reaction mechanism [27]. The mixture of the isotope-coded D3-FAMEs was prepared manually. The two mixtures of the 16 + 16 free FAs were pipetted into 6 × 50 mm glass tubes (Kimble-Chase, Vineland, NJ, USA) and evaporated to dryness. Then, a mixture of 20 µL of D3-MeOH and 16 µL of pyridine was added. Subsequently, 120 µL of isooctane and 20 µL of D3-MCF were added, and the reaction medium was shaken again. Finally, the reaction was stopped with 100 µL of 1 M HCl, and after vortexing, 100 µL of the upper layer was transferred to a new vial. The procedure was repeated several times to obtain a sufficient amount of internal D3-FAME standards for serial FA analysis. The collected upper isooctane phases were combined and finally aliquoted for the isotope-coded calibration and FAME quantification in specific transmethylated lipid extracts obtained from serum samples.
2.5. Individual Lipid Solutions for the Investigation of FA Yields After the Base-Catalyzed Transmethylation Reaction
2.6. Extraction of Lipids from Biological Material
2.7. Base-Catalyzed Transesterification
2.8. GC-EI-MS and GC-PICI-MS Analysis
2.9. Quantification of the Lipid FAs via Single Internal Standard (Single IS) Calibration and the New Isotope-Coded Multiple Internal Standard (IC-Multi-IS) Calibration Method
3. Results
3.1. Optimization of the Transesterification Procedure
3.2. GC-MS Analysis of Lipid Fatty Acids
3.3. FA Calibration and Method Validation
3.4. Quantification of FAMEs in Human Serum via Base-Catalyzed Transmethylation and the Single-IS GC-EI-SIM-MS and IC-Multi-IS GC-PICI-MS Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CE | Cholesterol ester |
CV | Coefficient of variation |
EI | Electron ionization |
FA | Fatty acid |
FAME | Fatty acid methyl ester |
FFA | Free fatty acid |
GC | Gas chromatography |
IC | Isotope-coded |
IS | Internal standard |
LLOQ | Lower limit of quantification |
MCF | Methyl chloroformate |
MeOH | Methanol |
MS | Mass spectrometry |
MTBE | Methyl tert-butyl ether |
MUFA | Monounsaturated fatty acid |
PICI | Positive ion chemical ionization |
PUFA | Polyunsaturated fatty acid |
QC | Quality control sample |
RSD | Relative standard deviation |
SD | Standard deviation |
SIM | Selected ion monitoring |
ULOQ | Upper limit of quantification |
References
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18s–32s. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J. The Importance of Maintaining a Low Omega-6/Omega-3 Ratio for Reducing the Risk of Autoimmune Diseases, Asthma, and Allergies. Mo. Med. 2021, 118, 453–459. [Google Scholar]
- Chiu, H.H.; Kuo, C.H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J. Food Drug Anal. 2020, 28, 60–73. [Google Scholar] [CrossRef]
- Gil, A.; Zhang, W.X.; Wolters, J.C.; Permentier, H.; Boer, T.; Horvatovich, P.; Heiner-Fokkema, M.R.; Reijngoud, D.J.; Bischoff, R. One- vs. two-phase extraction: Re-evaluation of sample preparation procedures for untargeted lipidomics in plasma samples. Anal. Bioanal. Chem. 2018, 410, 5859–5870. [Google Scholar] [CrossRef] [PubMed]
- Kish-Trier, E.; Schwarz, E.L.; Pasquali, M.; Yuzyuk, T. Quantitation of total fatty acids in plasma and serum by GC-NCI-MS. Clin. Mass. Spectrom. 2016, 2, 11–17. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct Transesterification of All Classes of Lipids in a One-Step Reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Lipid Maps. Available online: https://www.lipidmaps.org/databases (accessed on 30 December 2024).
- Christie, W.W. A Simple Procedure for Rapid Transmethylation of Glycerolipids and Cholesteryl Esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [CrossRef]
- Liu, K.S. Preparation of Fatty-Acid Methyl Esters for Gas-Chromatographic Analysis of Lipids in Biological-Materials. J. Am. Oil Chem. Soc. 1994, 71, 1179–1187. [Google Scholar] [CrossRef]
- Ichihara, K.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Benner, B.A.; Schantz, M.M.; Powers, C.D.; Schleicher, R.L.; Camara, J.E.; Sharpless, K.E.; Yen, J.H.; Sniegoski, L.T. Standard Reference Material (SRM) 2378 fatty acids in frozen human serum. Certification of a clinical SRM based on endogenous supplementation of polyunsaturated fatty acids. Anal. Bioanal. Chem. 2018, 410, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gómez, F.; Fontecha, J.; Rodríguez-Alcalá, L.M. A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples. Talanta 2014, 128, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.M.; Montorfano, G.; Negroni, M.; Adorni, L.; Berselli, P.; Corsetto, P.; Wahle, K.; Berra, B. A rapid method for determining arachidonic: Eicosapentaenoic acid ratios in whole blood lipids: Correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies. Lipids Health Dis. 2010, 9, 7. [Google Scholar] [CrossRef]
- Xu, Y.J.; Zhang, J.B. Determination of fatty acid methyl esters by GC-triple quadrupole MS using electron and chemical ionization. Bioanalysis 2013, 5, 1527–1543. [Google Scholar] [CrossRef]
- Wang, D.H.; Wang, Z.; Cortright, J.R.; Le, K.P.; Liu, L.; Kothapalli, K.S.D.; Brenna, J.T. Identification of Polymethylene-Interrupted Polyunsaturated Fatty Acids (PMI-PUFA) by Solvent-Mediated Covalent Adduct Chemical Ionization Triple Quadrupole Tandem Mass Spectrometry. Anal. Chem. 2020, 92, 8209–8217. [Google Scholar] [CrossRef]
- Wang, D.H.; Qi, L.; Yang, T.; Dai, C.; Brenna, J.T.; Wang, Z. Omega-3 Long-Chain Polyunsaturated Fatty Acids in Nonseafood and Estimated Intake in the USA: Quantitative Analysis by Covalent Adduct Chemical Ionization Mass Spectrometry. J. Agric. Food Chem. 2024, 72, 15311–15320. [Google Scholar] [CrossRef]
- Ecker, J.; Scherer, M.; Schmitz, G.; Liebisch, G. A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. J. Chromatogr. B 2012, 897, 98–104. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Malcata, F.X. Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: Insight studies. J. Agric. Food Chem. 2005, 53, 5049–5059. [Google Scholar] [CrossRef]
- Schreiner, M. Optimization of solvent extraction and direct transmethylation methods for the analysis of egg yolk lipids. Int. J. Food Prop. 2006, 9, 573–581. [Google Scholar] [CrossRef]
- De Paola, E.L.; Montevecchi, G.; Masino, F.; Antonelli, A.; Lo Fiego, D.P. Single step extraction and derivatization of intramuscular lipids for fatty acid Ultra Fast GC analysis: Application on pig thigh. J. Food Sci. Technol. 2017, 54, 601–610. [Google Scholar] [CrossRef]
- Bruheim, P.; Kvitvang, H.F.N.; Villas-Boas, S.G. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling. J. Chromatogr. A 2013, 1296, 196–203. [Google Scholar] [CrossRef]
- El-Maghrabey, M.H.; Kishikawa, N.; Kuroda, N. Current trends in isotope-coded derivatization liquid chromatographic-mass spectrometric analyses with special emphasis on their biomedical application. Biomed. Chromatogr. 2020, 34, e4756. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabey, M.K.; Kishikawa, N.; Kuroda, N. Utility of isotope-coded derivatization in gas chromatographic-mass spectrometric analyses with special emphasis on metabolomics. Med. Mass Spectrom. 2020, 4, 24–35. [Google Scholar] [CrossRef]
- Opekar, S.; Kvicala, J.; Moos, M.; Pejchal, V.; Simek, P. Mechanism of Alkyl Chloroformate-Mediated Esterification of Carboxylic Acids in Aqueous Media. J. Org. Chem. 2021, 86, 16293–16299. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- FDA. Bioanalytical Method Validation Guidance for Industry; U.S. Department of Health and Human Services Food and Drug Administration: Silver Spring, MD, USA, 2018; pp. 1–44.
- European Medicines Agency. Guideline On Bioanalytical Method Validation; European Medicines Agency: London, UK, 2012; pp. 1–23. [Google Scholar]
- Christie, W.W. Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. Adv. Lipid Methodol. 1993, 2, 69–111. [Google Scholar]
- Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; DiNicolantonio, J.J. The importance of a balanced omega-6 to omega-3 ratio in the prevention and management of obesity. Open Heart 2016, 3, e000385. [Google Scholar] [CrossRef] [PubMed]
Lipids and FFAs | Abbreviation | Recovery [%] | RSD [%] |
---|---|---|---|
1-hexadecanoyl-rac-glycerol | MG 16:0 | 98.4 | 3.3 |
1,2-dihexadecanoyl-rac-glycerol | DG 16:0/16:0 | 90.5 | 9.4 |
1,2,3-trihexadecanoyl-sn-glycerol | TG 16:0/16:0/16:0 | 87.6 | 5.3 |
1,2-diheptadecanoyl-sn-glycero-3-phosphate | PA 17:0/17:0 | 92.2 | 2.3 |
1,2-ditetradecanoyl-sn-glycero-3-phosphocholine | PC 14:0/14:0 | 93.9 | 3.8 |
1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine | PE 16:0/16:0 | 100.3 | 3.0 |
1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine | PE 18:1/18:1 | 82.2 | 5.1 |
1,2-di-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1′-sn-glycerol) | PG 18:1/18:1 | 97.5 | 4.2 |
1,2-ditetradecanoyl-sn-glycero-3-phosphoserine | PSer 14:0/14:0 | 83.9 | 2.8 |
1-(9Z-octadecenoyl)-sn-glycero-3-phosphate | LysoPA 18:1 | 81.2 | 4.9 |
2-tetradecanoyl-sn-glycero-3-phosphoethanolamine | LysoPE 14:0 | 85.5 | 5.0 |
1-octadecanoyl-sn-glycero-3-phospho-(1′-sn-glycerol) | LysoPG 18:0 | 92.2 | 3.4 |
1-(9Z-heptadecenoyl)-glycero-3-phosphoserine | LysoPSer 17:1 | 83.4 | 8.3 |
Cholest-5-en-3β-yl octadecenoate | CHE 18:0 | 83.8 | 2.4 |
O-hexadecanoyl-R-carnitine | Carnitine 16:0 | 94.2 | 5.9 |
N-(heptadecanoyl)-sphing-4-enine-1-phosphocholine | SM 17:0 | <0.1 | - |
N-(dodecanoyl)-sphing-4-enine | Ceramide 12:0 | <0.3 | - |
N-(dodecanoyl)-1-β-glucosyl-sphing-4-enine | GluCer 12:0 | <0.4 | - |
Pentadecanoic acid | C15:0 | <0.1 | - |
Eicosanoic acid | C20:0 | <0.1 | - |
9E-octadecenoic acid | C18:1(n − 9)t | <0.1 | - |
9Z,12Z-octadecadienoic acid | C18:2(n − 6) | <0.1 | - |
Diagnostic Ions | |||||||||
---|---|---|---|---|---|---|---|---|---|
Analyte | RT | EI (Analytes) | EI (IS) | PICI (Analytes) | PICI (IS) | ||||
m/z (1) | m/z (2) | m/z (3) | m/z (1) | m/z (2) | m/z (3) | m/z | m/z | ||
C8:0 | 4.31 | 158 | 74 | 87 | 161 | 77 | 90 | 159 | 162 |
C10:0 | 5.84 | 186 | 74 | 87 | 189 | 77 | 90 | 187 | 190 |
C12:0 | 7.18 | 214 | 74 | 87 | 217 | 77 | 90 | 215 | 218 |
C13:0 | 7.78 | 228 | 74 | 87 | 231 | 77 | 90 | 229 | 232 |
C14:0 | 8.36 | 242 | 74 | 87 | 245 | 77 | 90 | 242 | 245 |
C14:1(n − 5) | 8.66 | 240 | 74 | 87 | 243 | 77 | 90 | 241 | 244 |
C15:0 | 8.90 | 256 | 74 | 87 | 259 | 77 | 90 | 257 | 260 |
C16:0 | 9.43 | 270 | 74 | 87 | 273 | 77 | 90 | 271 | 274 |
C16:1(n − 7) | 9.64 | 268 | 74 | 87 | 271 | 77 | 90 | 269 | 272 |
C17:0 | 9.96 | 284 | 74 | 87 | 287 | 77 | 90 | 285 | 288 |
C17:1(n − 7) | 10.21 | 282 | 74 | 87 | 285 | 77 | 90 | 283 | 286 |
C18:0 | 10.64 | 298 | 74 | 87 | 301 | 77 | 90 | 299 | 302 |
C18:1(n − 9)t | 10.73 | 296 | 74 | 87 | 299 | 77 | 90 | 297 | 300 |
C18:1(n − 9) | 10.77 | 296 | 74 | 87 | 299 | 77 | 90 | 297 | 300 |
C18:2(n − 6)t | 11.34 | 294 | 87 | 59 | 297 | 90 | 62 | 295 | 298 |
C18:2(n − 6) | 11.35 | 294 | 87 | 297 | 90 | 295 | 298 | ||
C18:3(n − 6) | 11.73 | 292 | 194 | 87 | 295 | 197 | 90 | 293 | 296 |
C18:3(n − 3) | 12.10 | 292 | 87 | 236 | 295 | 90 | 239 | 293 | 296 |
C20:0 | 12.45 | 326 | 74 | 87 | 329 | 77 | 90 | 327 | 330 |
C20:1(n − 9) | 12.71 | 324 | 74 | 87 | 327 | 77 | 90 | 325 | 328 |
C20:2(n − 6) | 13.47 | 322 | 87 | 325 | 90 | 323 | 326 | ||
C21:0 | 13.69 | 340 | 74 | 87 | 343 | 77 | 90 | 341 | 344 |
C20:3(n − 6) | 14.05 | 320 | 87 | 74 | 323 | 90 | 77 | 321 | 324 |
C20:4(n − 6) | 14.52 | 318 | 321 | 319 | 322 | ||||
C20:3(n − 3) | 14.61 | 320 | 323 | 321 | 324 | ||||
C22:0 | 15.49 | 354 | 74 | 87 | 357 | 77 | 90 | 355 | 358 |
C22:1(n − 9) | 15.86 | 352 | 74 | 87 | 355 | 77 | 90 | 353 | 356 |
C20:5(n − 3) | 15.96 | 316 | 319 | 317 | 320 | ||||
C23:0 | 16.99 | 368 | 74 | 87 | 371 | 77 | 90 | 369 | 372 |
C24:0 | 18.19 | 382 | 74 | 87 | 385 | 77 | 90 | 383 | 386 |
C24:1(n − 9) | 18.38 | 380 | 87 | 74 | 383 | 90 | 77 | 381 | 284 |
C22:6(n − 3) | 18.72 | 342 | 345 | 343 | 346 |
Method | A. Single-IS EI-MS | B. IC-Multi-IS EI-MS | C. Single-IS PICI-MS | D. IC-Multi-IS PICI-MS | ||||
---|---|---|---|---|---|---|---|---|
FAME | Ranges of Quantification | LLOQ RSD [%] | Ranges of Quantification | LLOQ RSD [%] | Ranges of Quantification | LLOQ RSD [%] | Ranges of Quantification | LLOQ RSD [%] |
C8:0 | 0.183–23.5 | 3.37 | 0.183–93.7 | 1.91 | 0.091–93.4 | 5.01 | 0.046–93.4 | 2.95 |
C10:0 | 0.180–23.5 | 1.64 | 0.180–92.4 | 1.41 | 0.090–92.4 | 4.35 | 0.045–92.4 | 1.52 |
C12:0 | 0.180–23.5 | 3.03 | 0.180–2.3 | 1.81 | 0.180–93.6 | 7.14 | 0.180–93.6 | 2.91 |
C13:0 | 0.046–23.3 | 6.88 | 0.046–11.7 | 3.19 | 0.023–46.7 | 1.97 | 0.023–46.7 | 0.90 |
C14:0 | 0.183–23.2 | 1.99 | 0.365–12.2 | 1.84 | 0.183–93.5 | 3.69 | 0.046–93.5 | 1.43 |
C14:1(n − 5) | 0.182–23.3 | 0.53 | 0.046–5.8 | 3.94 | 0.046–46.7 | 2.09 | 0.023–46.7 | 2.74 |
C15:0 | 0.023–23.2 | 13.93 | 0.045–11.6 | 2.24 | 0.023–23.2 | 2.24 | 0.045–46.5 | 2.31 |
C16:0 | 0.273–35.5 | 4.23 | 0.273–35.0 | 1.21 | 0.068–70.1 | 0.69 | 0.137–140.1 | 0.79 |
C16:1(n − 7) | 0.047–47.7 | 7.57 | 0.047–11.9 | 2.83 | 0.047–24.4 | 2.36 | 0.023–47.7 | 4.97 |
C17:0 | 0.044–22.4 | 0.21 | 0.084–11.2 | 2.05 | 0.022–22.4 | 6.41 | 0.044–44.8 | 1.10 |
C17:1(n − 7) | 0.047–24.0 | 3.09 | 0.093–12.0 | 1.43 | 0.093–47.9 | 3.26 | 0.047–47.9 | 3.94 |
C18:0 | 0.092–93.9 | 2.76 | 0.183–93.9 | 0.78 | 0.046–47.5 | 2.07 | 0.046–93.9 | 1.73 |
C18:1(n − 9)t | 0.022–44.7 | 8.79 | NA | 0.022–22.3 | 2.02 | 0.022–44.7 | 1.78 | |
C18:1(n − 9) | 0.092–47.5 | 1.13 | 0.183–11.7 | 4.53 | 0,092–93.9 | 0.91 | 0.046–93.9 | 5.43 |
C18:2(n − 6)t | 0.180–45.6 | 6.68 | 0.022–11.4 | 7.26 | 0.022–23.5 | 1.70 | 0.022–45.6 | 4.74 |
C18:2(n − 6) | 0.180–47.3 | 6.00 | 0.023–11.8 | 3.97 | 0.023–24.3 | 4.68 | 0.023–47.3 | 3.69 |
C18:3(n − 6) | 0.180–23.5 | 1.74 | 0.183–11.7 | 5.45 | 0.023–23.5 | 1.22 | 0.023–46.9 | 0.60 |
C18:3(n − 3) | 0.092–47.0 | 4.40 | 0.023–11.8 | 7.16 | 0.023–24.5 | 2.57 | 0.023–47.0 | 2.08 |
C20:0 | 0.186–94.5 | 0.75 | 0.186–47.3 | 1.43 | 0.046–47.3 | 3.77 | 0.046–94.5 | 3.20 |
C20:1(n − 9) | 0.180–46.8 | 0.43 | 0.091–11.7 | 2.35 | 0.091–23.4 | 2.19 | 0.047–46.8 | 0.48 |
C20:2(n − 6) | 1.460–46.8 | 3.04 | 0.182–11.7 | 7.46 | 0.046–46.8 | 5.83 | 0.023–46.8 | 6.71 |
C21:0 | 0.180–46.8 | 0.78 | 0.040–11.7 | 8.84 | 0.023–23.4 | 3.36 | 0.023–46.8 | 2.93 |
C20:3(n − 6) | 0.047–24.1 | 6.74 | NA | 0.047–24.1 | 3.72 | 0.023–48.2 | 7.87 | |
C20:4(n − 6) | 0.045–23.2 | 1.51 | NA | 0.725–23.2 | 2.89 | 0.023–46.4 | 7.76 | |
C20:3(n − 3) | 0.087–45.0 | 5.25 | 0.174–22.4 | 12.33 | 0.699–22.4 | 1.45 | 0.044–22.4 | 7.90 |
C22:0 | 0.182–93.3 | 0.99 | 0.046–23.3 | 8.58 | 0.090–47.1 | 2.32 | 0.046–93.3 | 8.32 |
C22:1(n − 9) | 0.370–47.1 | 1.05 | NA | 0.046–23.7 | 2.87 | 0.046–47.1 | 15.00 | |
C20:5(n − 3) | 0.084–21.5 | 10.41 | NA | 0.042–21.5 | 2.39 | 0.042–21.5 | 9.42 | |
C23:0 | 0.170–11.1 | 0.58 | 0.021–11.1 | 15.37 | 0.087–44.4 | 9.01 | 0.087–11.1 | 10.00 |
C24:0 | 0.370–94.1 | 1.26 | NA | 0.092–94.1 | 2.92 | 0.046–94.1 | 5.54 | |
C24:1(n − 9) | 1.470–46.9 | 5.66 | 0.046–11.7 | 5.16 | 0.180–46.9 | 5.49 | 0.023–46.9 | 5.69 |
C22:6(n − 3) | 0.092–47.4 | 0.64 | NA | 1.91 | 0.023–24.3 | 6.88 | 0.046–47.4 | 12.65 |
Average | 3.7 | 4.6 | 3.4 | 4.7 |
(A) | |||||||||||
FAME | Calibration Curve | Precision (CV [%]) | Accuracy [%] | Ranges of Quantification | |||||||
Regression Line | R2 | LLOQ | Low QC | Medium QC | High QC | LLOQ | Low QC | Medium QC | High QC | [µg/mL] | |
C8:0 | y = 0.8648x + 0.0073 | 0.9983 | 3.37 | 4.22 | 2.13 | 0.99 | 103 | 127 | 106 | 88 | 0.183–23.5 |
C10:0 | y = 0.8864x − 0.0053 | 0.9905 | 1.64 | 1.21 | 1.85 | 13.36 | 81 | 103 | 100 | 89 | 0.180–23.5 |
C12:0 | y = 1.2164x − 0.0018 | 0.9995 | 3.03 | 0.19 | 0.10 | 0.03 | 92 | 118 | 122 | 85 | 0.180–23.5 |
C13:0 | y = 1.5193x − 0.0033 | 0.9981 | 6.88 | 2.43 | 1.04 | 0.34 | 89 | 92 | 107 | 90 | 0.046–23.3 |
C14:0 | y = 1.1725x − 0.0070 | 0.9996 | 1.99 | 1.34 | 0.65 | 0.43 | 121 | 106 | 101 | 87 | 0.183–23.2 |
C14:1(n − 5) | y = 0.1785x − 0.0030 | 0.9991 | 0.53 | 1.33 | 0.35 | 0.40 | 91 | 97 | 103 | 93 | 0.182–23.3 |
C15:0 | y = 1.1309x − 0.0046 | 0.9988 | 13.93 | 2.66 | 0.83 | 0.00 | 104 | 94 | 104 | 94 | 0.023–23.2 |
C16:0 | y = 1.2985x − 0.0083 | 0.9997 | 4.23 | 2.03 | 0.79 | 0.32 | 88 | 109 | 117 | 88 | 0.273–35.5 |
C16:1(n − 7) | y = 0.6513x − 0.0035 | 0.9991 | 7.57 | 2.37 | 0.95 | 0.21 | 86 | 98 | 102 | 94 | 0.047–47.7 |
C17:0 | y = 1.6466x − 0.0099 | 0.9972 | 0.21 | 3.56 | 0.34 | 1.13 | 80 | 80 | 97 | 97 | 0.044–22.4 |
C17:1(n − 7) | y = 1.0234x − 0.0084 | 0.9982 | 3.09 | 3.52 | 0.18 | 0.36 | 115 | 105 | 96 | 96 | 0.047–24.0 |
C18:0 | y = 1.7571x − 0.1444 | 0.9985 | 2.76 | 3.39 | 1.11 | 1.13 | 101 | 85 | 99 | 97 | 0.092–93.9 |
C18:1(n − 9)t | y = 0.5991x − 0.0085 | 0.9973 | 8.79 | 7.21 | 0.03 | 1.28 | 90 | 96 | 106 | 93 | 0.022–44.7 |
C18:1(n − 9) | y = 2.4115x − 0.0092 | 0.9995 | 1.13 | 9.73 | 0.49 | 0.26 | 105 | 76 | 89 | 102 | 0.092–47.5 |
C18:2(n − 6)t | y = 0.6864x − 0.0148 | 0.9971 | 6.68 | 0.81 | 2.54 | 0.47 | 103 | 85 | 94 | 99 | 0.180–45.6 |
C18:2(n − 6) | y = 0.5903x − 0.0108 | 0.9985 | 6.00 | 6.84 | 0.74 | 0.84 | 106 | 80 | 89 | 100 | 0.180–47.3 |
C18:3(n − 6) | y = 0.2870x − 0.0067 | 0.9992 | 1.74 | 2.39 | 0.19 | 0.94 | 101 | 92 | 100 | 96 | 0.180–23.5 |
C18:3(n − 3) | y = 0.2874x − 0.0016 | 0.9982 | 4.40 | 2.02 | 5.13 | 2.52 | 116 | 210 | 76 | 102 | 0.092–47.0 |
C20:0 | y = 2.1778x − 0.0403 | 0.9976 | 0.75 | 1.37 | 0.44 | 2.84 | 102 | 86 | 93 | 99 | 0.186–94.5 |
C20:1(n − 9) | y = 1.3961x − 0.0244 | 0.9967 | 0.43 | 8.54 | 1.61 | 2.44 | 110 | 88 | 91 | 101 | 0.180–46.8 |
C20:2(n − 6) | y = 0.5982x − 0.0358 | 0.9972 | 3.04 | 1.54 | 0.15 | 1.54 | 87 | 90 | 100 | 100 | 1.460–46.8 |
C21:0 | y = 2.3365x − 0.0556 | 0.9946 | 0.78 | 3.02 | 0.71 | 2.90 | 116 | 83 | 87 | 101 | 0.180–46.8 |
C20:3(n − 6) | y = 2.6294x − 0.0194 | 0.9930 | 6.74 | 1.94 | 0.35 | 1.87 | 111 | 81 | 91 | 95 | 0.047–24.1 |
C20:4(n − 6) | y = 2.5061x − 0.0164 | 0.9974 | 1.51 | 9.17 | 14.44 | 13.50 | 82 | 73 | 115 | 83 | 0.045–23.2 |
C20:3(n − 3) | y = 3.3064x − 0.0268 | 0.9970 | 5.25 | 3.93 | 1.22 | 6.29 | 85 | 70 | 89 | 99 | 0.087–45.0 |
C22:0 | y = 2.4066x − 0.0387 | 0.9958 | 0.99 | 2.60 | 1.46 | 0.24 | 97 | 77 | 91 | 100 | 0.182–93.3 |
C22:1(n − 9) | y = 1.5481x − 0.0566 | 0.9935 | 1.05 | 1.50 | 2.03 | 2.73 | 103 | 81 | 86 | 102 | 0.370–47.1 |
C20:5(n − 3) | y = 3.2896x − 0.0422 | 0.9992 | 10.41 | 4.77 | 1.09 | 1.88 | 102 | 74 | 102 | 90 | 0.084–21.5 |
C23:0 | y = 2.4795x − 0.0678 | 0.9973 | 0.58 | 3.05 | 2.59 | 1.82 | 102 | 70 | 89 | 109 | 0.170–11.1 |
C24:0 | y = 2.3837x − 0.1272 | 0.9869 | 1.26 | 2.30 | 0.65 | 0.21 | 122 | 75 | 84 | 99 | 0.370–94.1 |
C24:1(n − 9) | y = 1.6454x − 0.1225 | 0.9891 | 5.66 | 3.81 | 2.80 | 4.49 | 77 | 78 | 93 | 103 | 1.470–46.9 |
C22:6(n − 3) | y = 2.7694x − 0.0237 | 0.9973 | 0.64 | 4.02 | 1.29 | 1.99 | 86 | 56 | 77 | 101 | 0.092–47.4 |
(B) | |||||||||||
FAME | Calibration Curve | Precision (RSD [%]) | Accuracy [%] | Ranges of Quantification | |||||||
Regression Line | R2 | LLOQ | Low QC | Medium QC | High QC | LLOQ | Low QC | Medium QC | High QC | [µg/mL] | |
C8:0 | y = 0.044421x + 0.006586 | 0.9991 | 2.95 | 3.36 | 2.95 | 2.99 | 112 | 96 | 94 | 99 | 0.046–93.4 |
C10:0 | y = 0.034702x + 0.006729 | 0.9991 | 1.52 | 3.36 | 2.87 | 2.25 | 105 | 99 | 98 | 98 | 0.045–92.4 |
C12:0 | y = 0.082740x + 0.011580 | 0.9989 | 2.91 | 2.63 | 2.85 | 1.62 | 86 | 80 | 98 | 97 | 0.180–93.6 |
C13:0 | y = 0.067952x + 0.008966 | 0.9993 | 0.90 | 1.20 | 2.85 | 1.78 | 106 | 99 | 97 | 98 | 0.023–46.7 |
C14:0 | y = 0.035838x + 0.014784 | 0.9990 | 1.43 | 2.11 | 2.81 | 1.19 | 82 | 94 | 100 | 97 | 0.046–93.5 |
C14:1(n − 5) | y = 0.062693x + 0.007128 | 0.9990 | 2.74 | 2.51 | 2.85 | 1.56 | 115 | 100 | 98 | 97 | 0.023–46.7 |
C15:0 | y = 0.084334x + 0.017704 | 0.9987 | 2.31 | 1.81 | 2.95 | 1.11 | 89 | 99 | 94 | 95 | 0.045–46.5 |
C16:0 | y = 0.047038x + 0.0436814 | 0.9978 | 0.79 | 1.57 | 2.97 | 1.27 | 82 | 98 | 105 | 94 | 0.137–140.1 |
C16:1(n − 7) | y = 0.038496x + 0.004194 | 0.9992 | 4.97 | 3.37 | 2.94 | 1.20 | 105 | 97 | 97 | 98 | 0.023–47.7 |
C17:0 | y = 0.177612x + 0.058213 | 0.9967 | 1.10 | 1.79 | 3.14 | 0.87 | 85 | 99 | 106 | 92 | 0.044–44.8 |
C17:1(n − 7) | y = 0.048395x + 0.005794 | 0.9987 | 3.94 | 4.69 | 3.04 | 1.16 | 120 | 104 | 99 | 96 | 0.047–47.9 |
C18:0 | y = 0.033797x + 0.005894 | 0.9974 | 1.73 | 2.63 | 2.91 | 0.80 | 91 | 97 | 97 | 96 | 0.046–93.9 |
C18:1(n − 9)t | y = 0.107772x + 0.021827 | 0.9883 | 1.78 | 3.14 | 3.01 | 10.15 | 87 | 98 | 101 | 98 | 0.022–44.7 |
C18:1(n − 9) | y = 0.072445x + 0.000584 | 0.9955 | 5.43 | 3.38 | 2.99 | 6.68 | 84 | 102 | 99 | 96 | 0.046–93.9 |
C18:2(n − 6)t | y = 0.033203x + 0.002258 | 0.9989 | 4.74 | 2.63 | 2.90 | 1.38 | 108 | 97 | 94 | 98 | 0.022–45.6 |
C18:2(n − 6) | y = 0.032044x + 0.002257 | 0.9989 | 3.69 | 1.93 | 2.90 | 1.38 | 106 | 98 | 94 | 98 | 0.023–47.3 |
C18:3(n − 6) | y = 0.146237x + 0.152019 | 0.9957 | 0.60 | 1.23 | 1.95 | 0.94 | 100 | 108 | 100 | 94 | 0.023–46.9 |
C18:3(n − 3) | y = 0.024105x + 0.002638 | 0.9993 | 2.08 | 2.80 | 2.92 | 1.93 | 120 | 97 | 93 | 99 | 0.023–47.0 |
C20:0 | y = 0.043131x + 0.006331 | 0.9947 | 3.20 | 2.50 | 3.07 | 0.21 | 90 | 95 | 99 | 94 | 0.046–94.5 |
C20:1(n − 9) | y = 0.053086x + 0.007816 | 0.9956 | 0.48 | 1.96 | 3.06 | 0.79 | 122 | 98 | 98 | 95 | 0.047–46.8 |
C20:2(n − 6) | y = 0.035234x + 0.001038 | 0.9986 | 6.71 | 5.64 | 3.25 | 0.80 | 113 | 98 | 93 | 98 | 0.023–46.8 |
C21:0 | y = 0.086359x + 0.017468 | 0.9933 | 2.93 | 3.46 | 2.95 | 0.31 | 105 | 102 | 96 | 94 | 0.023–46.8 |
C20:3(n − 6) | y = 0.42075x + 0.000673 | 0.9986 | 7.87 | 4.27 | 3.24 | 1.39 | 110 | 98 | 94 | 98 | 0.023–48.2 |
C20:4(n − 6) | y = 0.046109x + 0.002527 | 0.9985 | 7.76 | 2.49 | 1.50 | 0.07 | 115 | 115 | 87 | 98 | 0.023–46.4 |
C20:3(n − 3) | y = 0.200742x + 0.001243 | 0.9964 | 7.90 | 3.93 | 3.96 | 0.65 | 86 | 100 | 108 | 103 | 0.044–22.4 |
C22:0 | y = 0.66042x + 0.002884 | 0.9929 | 8.32 | 4.76 | 3.33 | 1.14 | 87 | 89 | 102 | 90 | 0.046–93.3 |
C22:1(n − 9) | y = 0.027032x + 0.001728 | 0.9974 | 15.00 | 3.80 | 1.81 | 0.88 | 104 | 85 | 85 | 101 | 0.046–47.1 |
C20:5(n − 3) | y = 0.04466x + 0.002449 | 0.9983 | 9.42 | 6.15 | 2.68 | 0.14 | 109 | 99 | 94 | 94 | 0.042–21.5 |
C23:0 | y = 0.246018x + 0.005347 | 0.9939 | 10.00 | 8.00 | 3.49 | 1.98 | 85 | 113 | 114 | 85 | 0.087–11.1 |
C24:0 | y = 0.063509x + 0.003896 | 0.9842 | 5.54 | 12.80 | 0.54 | 0.26 | 108 | 85 | 95 | 108 | 0.046–94.1 |
C24:1(n − 9) | y = 0.032070x + 0.004694 | 0.9827 | 5.69 | 8.21 | 4.35 | 15.00 | 104 | 87 | 99 | 98 | 0.023–46.9 |
C22:6(n − 3) | y = 0.008756x + 0.001292 | 0.9987 | 12.65 | 4.37 | 2.82 | 2.32 | 95 | 88 | 90 | 100 | 0.046–47.4 |
Lipid FA | Single IS GC-EI-SIM-MS | IC Multiple IS GC-PICI-SIM-MS | Reference Serum | ||||
---|---|---|---|---|---|---|---|
Concentration ± SD (n = 6) | CV | Concentration ± SD (n = 6) | CV | p-Value * | NIST® SRM® 2378 Serum 1 ** | Fold Change Measured vs. Reference *** | |
[µg/mL] | % | [µg/mL] | % | - | [µg/mL] | % | |
C10:0 | 1.92 ± 0.96 | 50.1 | 2.69 ± 0.29 | 10.6 | 0.135 | 3.64 ± 0.03 | −25.9 |
C12:0 | 9.48 ± 1.11 | 11.7 | 14.45 ± 3.4 | 23.5 | - | - | - |
C14:0 | 46.4 ± 3.4 | 7.3 | 40.8 ± 4.6 | 11.4 | 0.059 | 45.7 ± 1.6 | −10.6 |
C14:1(n − 5) | 3.62 ± 0.14 | 3.9 | 2.94 ± 0.22 | 7.5 | 0.00029 | 3.62 ± 1.58 | −19.0 |
C15:0 | 6.46 ± 0.58 | 9.0 | 5.92 ± 0.37 | 6.2 | 0.115 | 5.26 ± 0.17 | 12.6 |
C16:0 | 743 ± 56 | 7.6 | 730 ± 71 | 9.7 | 0.757 | 851 ± 90 | −14.2 |
C16:1(n − 7) | 51.2 ± 4.9 | 9.5 | 47.6 ± 3.9 | 8.2 | 0.223 | 54.4 ± 3.8 | −12.6 |
C17:0 | 7.16 ± 0.33 | 4.6 | 6.97 ± 0.44 | 6.2 | 0.445 | 7.28 ± 0.49 | −4.3 |
C18:0 | 198 ± 7 | 3.4 | 220 ± 19 | 8.8 | 0.052 | 226 ± 26 | −2.8 |
C18:1(n − 9) | 494 ± 21 | 4.2 | 525 ± 40 | 7.7 | 0.168 | 619 ± 68 | −15.2 |
C18:1(n − 7) | NQ | - | NQ | - | - | 12 ± 2 | - |
C18:2(n − 6) | 749 ± 66 | 8.8 | 769 ± 61 | 7.9 | 0.622 | 1049 ± 179 | −26.7 |
C18:3(n − 6) | 9.2 ± 0.5 | 5.5 | 11.9 ± 0.6 | 5.4 | 3.65 E-05 | 12.6 ± 1.7 | −5.2 |
C18:3(n − 3) | 27.4 ± 1.1 | 4.1 | 26 ± 2 | 7.6 | 0.216 | 33.1 ± 4.2 | −21.4 |
C20:0 | 1.96 ± 0.31 | 15.8 | 2.99 ± 0.25 | 8.5 | 0.00022 | 7.81 ± 1.13 | −61.8 |
C20:1(n − 9) | 3.97 ± 0.67 | 16.8 | 5.82 ± 0.34 | 5.8 | 0.00072 | 6.12 ± 1.02 | −4.8 |
C20:2(n − 6) | 4.4 ± 0.5 | 12.0 | 4.6 ± 0.3 | 6.8 | 0.310 | - | - |
C20:3(n − 6) | ND | - | 27.9 ± 5 | 18.0 | - | - | - |
C20:4(n − 6) | 144 ± 15 | 10.5 | 152 ± 26 | 17.2 | 0.540 | 201 ± 21 | −24.1 |
C20:3(n − 3) | ND | - | ND | - | - | - | - |
C22:0 | 12.3 ± 0.3 | 2.4 | 15.3 ± 0.2 | 1.3 | 2.72 E-08 | 19.4 ± 4.4 | −21.2 |
C22:1(n − 9) | ND | - | 2.31 ± 0.27 | 11.8 | - | 1.69 ± 1.02 | 36.2 |
C20:5(n − 3) | 73.1 ± 5.1 | 7.0 | 71.9 ± 3.7 | 5.1 | 0.678 | 85.9 ± 11.2 | −16.3 |
C24:0 | 21.9 ± 4.8 | 22.0 | 16.6 ± 0.1 | 0.4 | 0.0588 | 19.9 ± 4.8 | −16.5 |
C24:1(n − 9) | 21.8 ± 0.4 | 1.8 | 23.4 ± 0.3 | 1.2 | 4.67 E-05 | 32.6 ± 9.5 | −28.4 |
C22:6(n − 3) | 77.4 ± 15.6 | 20.1 | 80.4 ± 19.5 | 24.2 | 0.788 | 106.1 ± 5.3 | −24.2 |
∑SAFA | 1049 ± 75 | 7.1 | 1056 ± 100 | 9.4 | 1187 ± 128 | −11.0 | |
∑ MUFA | 574 ± 27 | 4.7 | 607 ± 45 | 7.4 | 729 ± 87 | −16.8 | |
∑PUFA (n − 6) | 906 ± 82 | 9.1 | 966 ± 93 | 9.6 | 1262 ± 202 | −23.5 | |
∑PUFA (n − 3) | 178 ± 22 | 12.3 | 178 ± 25 | 14.1 | 225 ± 21 | −20.8 | |
∑ FAs | 2602 ± 196 | 7.5 | 2691 ± 255 | 9.4 | 3271 ± 410 | −17.7 | |
∑PUFA (n − 6)/(n − 3) | 5.1 | 5.2 | 5.6 | ||||
∑PUFA(n − 3)/∑FAs | 5.8% | 5.7% | 5.9% |
Lipid FA | Patient 1 Serum | Patient 2 Serum | Patient 3 Serum | Average FA Serum Levels in 3 Patients | Reference Serum | ||||
---|---|---|---|---|---|---|---|---|---|
FAME | Concentration ± SD (n = 6) | CV | Concentration ± SD (n = 6) | CV | Concentration ± SD (n = 6) | CV | Concentration ± SD | NIST® SRM® 2378 Serum 3 * | Fold Change Measured vs. Reference ** |
[µg/mL] | [%] | [µg/mL] | [%] | [µg/mL] | [%] | [µg/mL] | [µg/mL] | [%] | |
C10:0 | 0.28 ± 0.031 | 11.0 | 0.2 ± 0.038 | 18.6 | 0.06 ± 0.003 | 5.9 | 0.18 ± 0.024 | 0.91 ± 0.16 | −80.1 |
C12:0 | 0.92 ± 0.36 | 39.2 | 1.02 ± 0.41 | 40.3 | 1.2 ± 0.48 | 40.2 | 1.05 ± 0.21 | - | - |
C14:0 | 20.7 ± 1.19 | 5.8 | 34.9 ± 3.78 | 10.8 | 40.3 ± 2.95 | 7.3 | 32 ± 2.64 | 35.4 ± 0.9 | −9.7 |
C14:1(n − 5) | 1.69 ± 0.06 | 3.3 | 2.33 ± 0.16 | 7.0 | 3.25 ± 0.2 | 6.3 | 2.42 ± 0.14 | 3.17 ± 1.81 | −23.6 |
C15:0 | 6.67 ± 0.25 | 3.8 | 6.04 ± 0.47 | 7.8 | 8.62 ± 0.64 | 7.4 | 7.11 ± 0.46 | 5.02 ± 0.12 | 41.7 |
C16:0 | 507 ± 16.41 | 3.2 | 699 ± 39.45 | 5.6 | 586 ± 44.73 | 7.6 | 597 ± 33.53 | 656 ± 118 | −9.0 |
C16:1(n − 7) | 40.7 ± 1.44 | 3.5 | 59.1 ± 3.84 | 6.5 | 76.9 ± 6.67 | 8.7 | 58.9 ± 3.99 | 46.8 ± 3.3 | 25.8 |
C17:0 | 5.64 ± 0.21 | 3.8 | 6.3 ± 0.47 | 7.4 | 6.33 ± 0.56 | 8.8 | 6.09 ± 0.41 | 7.17 ± 0.38 | −15.0 |
C18:0 | 153 ± 5.84 | 3.8 | 234 ± 13.99 | 6.0 | 169 ± 15.43 | 9.2 | 185 ± 11.75 | 198 ± 21 | −6.4 |
C18:1(n − 9) | 483 ± 15.8 | 3.3 | 723 ± 37.04 | 5.1 | 642 ± 53.61 | 8.4 | 616 ± 35.49 | 582 ± 68 | 5.8 |
C18:1(n − 7) | NQ | - | NQ | - | NQ | - | 33 ± 3 | - | |
C18:2(n − 6) | 836 ± 26.78 | 3.2 | 865 ± 45.08 | 5.2 | 859 ± 75.84 | 8.8 | 853 ± 49.24 | 934 ± 6 | −8.6 |
C18:3(n − 6) | 5.4 ± 0.17 | 3.1 | 8.1 ± 0.45 | 5.6 | 10.5 ± 0.92 | 8.8 | 8 ± 0.51 | 14.9 ± 1 | −46.5 |
C18:3(n − 3) | 24.6 ± 1.21 | 4.9 | 41.4 ± 2.95 | 7.1 | 24.4 ± 2.67 | 10.9 | 30.1 ± 2.28 | 17.4 ± 0.1 | 73.4 |
C20:0 | 4.94 ± 0.03 | 0.5 | 5.19 ± 0.05 | 1.0 | 4.87 ± 0.04 | 0.8 | 5 ± 0.04 | 8.13 ± 2.81 | −38.5 |
C20:1(n − 9) | 4.39 ± 0.17 | 3.9 | 8.66 ± 0.53 | 6.1 | 4.56 ± 0.25 | 5.4 | 5.87 ± 0.31 | 6.02 ± 0.43 | −2.5 |
C20:2(n − 6) | 4.33 ± 0.17 | 3.8 | 9.57 ± 0.54 | 5.7 | 5.88 ± 0.46 | 7.9 | 6.59 ± 0.39 | - | - |
C20:3(n − 6) | 23.5 ± 1.22 | 5.2 | 50.9 ± 2.66 | 5.2 | 49 ± 4.02 | 8.2 | 41.1 ± 2.63 | - | - |
C20:4(n − 6) | 138 ± 4.77 | 3.4 | 140 ± 5.2 | 3.7 | 136 ± 9.12 | 6.7 | 138 ± 6.36 | 233 ± 14 | −40.7 |
C20:3(n − 3) | 22.3 ± 1.22 | 5.5 | 23.7 ± 1.46 | 6.2 | 22.5 ± 2.36 | 10.5 | 22.9 ± 1.68 | - | - |
C22:0 | 4 ± 0.06 | 1.6 | 4.1 ± 0.03 | 0.7 | 3.9 ± 0.03 | 0.8 | 4 ± 0.04 | 19.8 ± 19.8 | −79.8 |
C22:1(n − 9) | 0.2 ± 0.02 | 9.1 | 2.07 ± 0.21 | 10.3 | 1.85 ± 0.07 | 4.0 | 1.37 ± 0.1 | 2.03 ± 2.03 | −32.3 |
C20:5(n − 3) | 33.5 ± 1.69 | 5.0 | 24.7 ± 1.31 | 5.3 | 28.4 ± 2.47 | 8.7 | 28.8 ± 1.82 | 19.3 ± 19.3 | 49.5 |
C24:0 | 4.93 ± 0.022 | 0.4 | 4.97 ± 0.015 | 0.3 | 4.91 ± 0.015 | 0.3 | 4.94 ± 0.017 | 18.1 ± 18.1 | −72.7 |
C24:1(n − 9) | 0.89 ± 0.12 | 14.0 | 1.21 ± 0.09 | 7.3 | 0.93 ± 0.11 | 11.8 | 1.01 ± 0.11 | 22.4 ± 22.4 | −95.5 |
C22:6(n − 3) | 50 ± 3.13 | 6.3 | 45 ± 2.22 | 4.9 | 51 ± 4.27 | 8.4 | 49 ± 3.21 | 56.2 ± 56.2 | −13.3 |
∑SAFA | 708 ± 24 | 3.4 | 995 ± 59 | 5.9 | 824 ± 65 | 7.9 | 843 ± 49 | 949 ± 154 | −11.2 |
∑MUFA | 531 ± 18 | 3.3 | 796 ± 42 | 5.3 | 729 ± 61 | 8.4 | 685 ± 40 | 695 ± 87 | −1.4 |
∑PUFA (n − 6) | 1007 ± 33 | 3.3 | 1074 ± 54 | 5.0 | 1060 ± 90 | 8.5 | 1047 ± 59 | 1182 ± 21 | −11.4 |
∑PUFA (n − 3) | 136 ± 7 | 5.4 | 141 ± 8 | 5.7 | 132 ± 12 | 9.0 | 136 ± 9 | 93 ± 5 | 47.0 |
∑FAs | 2333 ± 81 | 2941 ± 159 | 2683 ± 224 | 2652 ± 155 | 2778 ± 236 | −4.5 | |||
∑PUFA (n − 6)/(n − 3) | 9.1 | 9.1 | 9.7 | 9.3 | 12.7 | ||||
∑PUFA(n − 3)/∑FAs | 3.6% | 2.4% | 3.0% | 3.0% | 2.7% |
Calibration Method | Pros | Cons |
---|---|---|
(A) Single-IS GC-EI-SIM-MS | Acceptable statistics in quantitation range | Highest LLOQ Narrower quantitation range Diagnostic ions in PUFA of low intensity |
(B) IC-multi-IS GC-EI-SIM-MS | Acceptable statistics in quantitation range Wider dynamic range | Higher LLOQ for most FAs Diagnostic ions in PUFA of low intensity PUFA quantitation not available Preparation of ISs |
(C) Single-IS GC-PICI-SIM-MS | Diagnostic [M+H]+ for all FAs Wide quantitation range | Higher LLOQ Narrower quantitation range |
(D) IC-multi-IS GC-PICI-SIM-MS | Diagnostic [M+H]+ for all FAs Lowest LLOQ Widest quantitation range (mostly over three orders) | Preparation of ISs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vodrážka, P.; Řimnáčová, L.; Berková, P.; Vojtíšek, J.; Verner, M.; Moos, M.; Šimek, P. A New, Validated GC-PICI-MS Method for the Quantification of 32 Lipid Fatty Acids via Base-Catalyzed Transmethylation and the Isotope-Coded Derivatization of Internal Standards. Metabolites 2025, 15, 104. https://doi.org/10.3390/metabo15020104
Vodrážka P, Řimnáčová L, Berková P, Vojtíšek J, Verner M, Moos M, Šimek P. A New, Validated GC-PICI-MS Method for the Quantification of 32 Lipid Fatty Acids via Base-Catalyzed Transmethylation and the Isotope-Coded Derivatization of Internal Standards. Metabolites. 2025; 15(2):104. https://doi.org/10.3390/metabo15020104
Chicago/Turabian StyleVodrážka, Petr, Lucie Řimnáčová, Petra Berková, Jan Vojtíšek, Miroslav Verner, Martin Moos, and Petr Šimek. 2025. "A New, Validated GC-PICI-MS Method for the Quantification of 32 Lipid Fatty Acids via Base-Catalyzed Transmethylation and the Isotope-Coded Derivatization of Internal Standards" Metabolites 15, no. 2: 104. https://doi.org/10.3390/metabo15020104
APA StyleVodrážka, P., Řimnáčová, L., Berková, P., Vojtíšek, J., Verner, M., Moos, M., & Šimek, P. (2025). A New, Validated GC-PICI-MS Method for the Quantification of 32 Lipid Fatty Acids via Base-Catalyzed Transmethylation and the Isotope-Coded Derivatization of Internal Standards. Metabolites, 15(2), 104. https://doi.org/10.3390/metabo15020104