Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas
Abstract
1. Introduction
1.1. Types of Diabetes
1.2. Type 1 Diabetes
1.3. Type 2 Diabetes
2. Management of Diabetes
3. Review Strategy
4. Camellia Sinensis
Types of Teas
5. Phytochemical Properties of Teas
5.1. White Tea
5.2. Green Tea
5.3. Oolong Tea
5.4. Black Tea
5.5. Dark Tea (Pu-erh Tea)
6. The Diabetes-Remedying Effect of Teas
6.1. White Tea
6.1.1. In Vitro Studies
6.1.2. In Vivo Studies
6.1.3. Clinical Trials
Cell Lines/Tissue/Animal Model/Human | Study | Treatment | Antidiabetic Mechanism | Reference |
---|---|---|---|---|
HepG2 liver carcinoma cells | In vitro | Cells seeded culture plates were incubated in assay solution with 0.5 mL of white tea infusion |
| [75] |
Enzyme inhibition and free radical scavenging | 10–100 µg/mL of white tea methanol extract was incubated with DPPH or α-amylase carbohydrate digestive enzyme solution |
| [76] | |
0.016–0.25 mg/mL of white tea infusion was incubated with α-glucosidase enzyme at 37 °C |
| [77] | ||
0.2 mL or 0.01 mL of white tea cold and hot infusions were incubated with ABTS cation or serum LDL (100 mg protein/mL) in 96-well plates |
| [89] | ||
Sprague–Dawley rat blood DPP-IV models | Ex vivo | Blood sample was treated with 5–500 µg/mL white tea n-hexane, ethyl acetate, and methanol fractions |
| [90] |
STZ-induced diabetes in male Sprague–Dawley rats | In vivo | Animals were given daily fresh solution of 0.5% white tea aqueous extract for 4 weeks |
| [79] |
STZ-induced diabetes in male Wistar rats | Rats were given white tea filtered infusion (1 g/100 mL) ad libitum for 2 months |
| [80] | |
| [81] | |||
| [79] | |||
Animals were gavaged daily with 5.1% white tea aqueous extract for 30 days |
| [85] | ||
STZ-induced diabetes in albino rats | Rats were administered daily with 2% w/v white tea aqueous extract in drinking bottles for 4 weeks |
| [82] | |
STZ-induced prediabetes in male Wistar rats | Rats were allowed to drink filtered white tea infusion (1 g/100 mL) ad libitum for about 2 months |
| [84] | |
| [87] | |||
STZ–nicotinamide-induced diabetes in Sprague–Dawley rats | Rats were orally administered doses of 50, 100, and 200 mg/kg BW white tea ethanol extract for 14 days |
| [86] | |
Individuals with type 2 diabetes | Clinical trials | Females combined daily consumption of 150 mL of white tea infusion (made from 1 tea bag) with aerobic training for 6 months |
| [88] |
6.2. Green Tea
6.2.1. In Vitro and In Vivo Studies
6.2.2. Clinical Trials
Cell Lines/Tissue/Animal Model/Human | Study | Treatment | Antidiabetic Mechanism | Reference |
---|---|---|---|---|
Human hepatoma cells (HepG2), mouse myoblasts (C2C12), and mouse fibroblasts (3T3-L1) | In vitro | Cells incubated with 0.01, 0.1, 1, and 10 M concentrations of urolithin green tea flavonoid for 24 h. |
| [91] |
Intestinal glucose transport model in Caco-2 cells | Caco-2 cells seeded into 12-well plates were treated with 500 μL green tea crude and ethanol extracts diluted with PBS. |
| [92] | |
Glucose transport in Caco-2 cell model | Cultured cells were incubated with gelatinized wheat starch mixed with 0.02 g green tea extract for 2 h. |
| [94] | |
Cells seeded at 3.0 × 105 cells/well were incubated with 500 µL glucose-containing solution with green tea extract. |
| [95] | ||
Insulin amyloid aggregation assay | Green tea epigallocatechin gallate at 200 pM to 1 mM in insulin solution was subjected to aggregate-inducing conditions. |
| [119] | |
Wistar rat excised jejunal segments and brush border membrane vesicles from the rabbit’s small intestine | Ex vivo | Animal tissues were incubated in a solution containing green tea epicatechin gallate for 12 h. |
| [93] |
STZ-induced diabetic male Wistar rats | In vivo | 100 mg/kg BW green tea infusion administered once daily for 42 days. |
| [97] |
Ad libitum administration of 0.1% green tea extract for 8 weeks. |
| [103] | ||
Animals were given 1.5% (w/v) green tea aqueous extract as a drinking solution for 76 days. |
| [104] | ||
Oral administration of 100 mg/kg BW and 200 mg/kg BW green tea for 4 weeks. |
| [106] | ||
Rats were injected intragastrically with 5 and 10 mL/kg/day of green tea concentrated for 8 weeks. |
| [112] | ||
High-fat diet-fed male Sprague–Dawley rats | Infusion of 1 green tea bag per 200 mL water given as 100% fluid intake for 27 weeks. |
| [96] | |
High-fat diet and streptozotocin-induced diabetic rats | 75, 150, and 300 mg/kg BW green tea given daily intragastrically for 30 days. |
| [98] | |
High-fat diet-induced obese mouse model | Green tea extract 500 mg/kg BW given once a day for 12 weeks. |
| [99] | |
High-fat diet-induced obese wild-type (C57Bl/6) and adiponectin knockout mouse models | 500 mg/kg BW orally daily dose of green tea extract for 12 weeks. |
| [100] | |
High-fat diet-induced obesity model | Mice were orally administered 75 mg/kg BW green tea epigallocatechin gallate compound. |
| [96] | |
High-fat diet-induced obesity model STZ-induced diabetes in high-fat diet-fed CD-1 mice | Male rats were gavaged 0.5 mL/100 g BW green tea decoction for 6 weeks. |
| [109] | |
Female animals were administered 0.01% green tea via drinking water for 12 weeks. |
| [108] | ||
STZ-induced diabetes in high-fat diet-fed albino rats | Animals had 75 mg/kg BW, 150 mg/kg BW, and 300 mg/kg BW green tea extract for 30 days. |
| [98] | |
STZ-induced type 2 diabetes in high-fat diet-fed mice | Animals received 300 mg/kg BW green tea intragastrically for 4 weeks. |
| [114] | |
High-fructose diet-fed rat model | Fresh solution of 0.5 g/100 mL lyophilized green tea was given daily for 12 weeks. |
| [115] | |
High-fructose diet-induced insulin resistance in rats | Wistar rats fed synthetic fructose-rich diet (200 g/kg) supplemented with 1 g/kg or 2 g/kg green tea sample for 6 weeks. |
| [56] | |
STZ-induced type 1 and type 2 diabetes in rat and mice models | Animals received green tea orally for 56 days. |
| [96] | |
Sucrose-induced hyperglycemia | Rats were given 0.5 g/kg BW green tea aqueous extract after 2 g/kg BW sucrose loading. |
| [94] | |
Alloxan-induced diabetic male Balb/C mice | Animals were gavaged 300, 600, and 1200 mg/kg BW doses of green tea extract for 14 days. |
| [102] | |
db/db mouse model of diabetes | Animals fed for 10 weeks with a diet supplemented with 10 g/kg epigallocatechin gallate-rich green tea. |
| [101] | |
Type 2 diabetes model in db/db mice | Oral administration of 100, 200, and 400 mg/kg fermented green tea once daily for 84 days. |
| [113] | |
Normal male Sprague–Dawley rats | Animals were provided 0.5 g/100 mL of fresh green tea drink daily for 12 weeks. |
| [110] | |
Normal female db/db mice | Animals were administered 0.1 g/kg and 1 g/kg green tea extract-enriched diet daily for 28 days. |
| [111] | |
Hyperglycemia-induced test meal in postmenopausal women | Females took green tea beverages containing 615 mg/350 mL of total catechins with breakfast daily for 4 weeks. |
| [116] | |
Obese patients with type 2 diabetes | Individuals with type 2 diabetes (BMI > 25 kg/m2) received 500 mg of decaffeinated green tea table thrice daily for 16 weeks. |
| [118] | |
Healthy human subjects | Clinical | Participants took between 1 and above 30 cups of tea green tea for 1 week (1 = 150 mL tea infusion). |
| [117] |
Healthy male subjects | Human subjects consumed 615 mg/350 mL) catechin-rich beverage with a test meal within 10–15 min. |
| [116] |
6.3. Oolong Tea
6.3.1. In Vitro Studies
6.3.2. In Vivo Studies
6.3.3. Clinical Trials
Cell Lines/Tissue/Animal Model/Human | Study | Treatment | Antidiabetic Mechanism | Reference |
---|---|---|---|---|
Rat epididymal adipocytes | In vitro | Adipocytes were incubated with 0.43 íCi of glucose, 72 íg of glucose, and insulin and/or tea extract in a final reaction volume of 2 mL of Krebs-Ringer phosphate (pH 7.4) for 1 h. |
| [120] |
Murine 3T3-L1 preadipocytes | Mature 3T3-L1 adipocytes were treated with tea extract in 1 mL of Krebs-Ringer phosphate–HEPES buffer and insulin stimulation was performed for 15 min at 100 nM, incubated with 6.5 mM 3-OMG for 30 s. |
| [121] | |
3T3-L1 preadipocytes and L6 myoblast cells | 3T3-L1 and L6 cells were initially cultured with extract and glucose for 24 h, then incubated with glucose and Krebs-Ringer bicarbonate buffer for 1 h, respectively. |
| [123] | |
Digestive enzyme inhibition | α-amylase inhibitory assay with oolong tea polyphenols. |
| [122] | |
Rat hepatoma H4IIE cells and male BALB/c mice | In vivo | 4 h incubation of cultured H4IIE cells with tea extracts Oral administration of tea ad libitum for 4 weeks. |
| [127] |
Male ICR mice | Daily consumption of tea extract for 1 week. |
| [125] | |
Male C57BL/6J mice and male ICR mice | C57BL/6J mice were fed high-fat diet with tea extract for 14 weeks, while ICR mice were fed commercial chow with tea extract for 7 days. |
| [125] | |
Healthy female Wistar albino rats | Daily oral administration of 1.2 mL oolong tea extract to rats weighing 175 g while those weighing 200 g were given 1.3 mL for 3 weeks. |
| [124] | |
Human subjects with type 2 diabetes | Clinical | 1.5 l daily consumption of tea for 30 days. |
| [128] |
6.4. Black Tea
6.4.1. In Vitro Studies
6.4.2. In Vivo Studies
6.4.3. Clinical Trials
Cell Lines/Tissue/Animal Model/Human | Study | Treatment | Antidiabetic Mechanism | Reference |
---|---|---|---|---|
NIH-3T3 cells | In vitro | Cultured NIH-3T3 cells were incubated with the tea extracts for 30 min. |
| [129] |
L6 myotubes | Cultured L6 cells were incubated with 0.1, 1, or 10 µg/mL of black tea polyphenol (BTP) for 15 min and further treated with 100 nM insulin for 15 min. |
| [131] | |
Rat epididymal fat cells | 0.43 µCi of glucose, 72 µg of glucose, and adipocytes were incubated with insulin and/or tea or its components for 1 h. |
| [120] | |
Digestive enzymes inhibition | Carbohydrate-digestive enzyme inhibitory assays with black tea extract and black tea pomace polyphenols (AOBTs). |
| [132] | |
Healthy rat Psoas muscle and intestinal jejunum | Co-incubation of muscle or intestine with 11.1 mM glucose and different doses of black tea extract for 2 h. |
| [133] | |
STZ-induced diabetes in male albino rats | In vivo | 480 mg/dL oral daily dose of tea extract for 14 days. |
| [134] |
Administration of 25, 50, and 100 mg/kg body weight (BW) black tea extract for 30 days. |
| [136] | ||
STZ-induced diabetic mice model | Administration of 100 mg/kg BW black tea extract for 30 days. |
| [148] | |
STZ and high fat-induced type 2 diabetic C57BL/6J male mice | Oral administration of 400 mg/kg BW of black tea polysaccharides (BTPs) for 6 weeks. |
| [139] | |
STZ-induced T1D and high-fat diet/STZ-induced T2D mice model | Administration for 300 mg/kg BW for 4 weeks. |
| [114] | |
High-fat diet/STZ-induced hyperglycemia | Administration of 400 mg/kg black tea extract in drinking water for 5 weeks. |
| [143] | |
1 mg/mL daily dose of tea extract for 8 weeks. |
| [108] | ||
Fructose-induced metabolic syndrome | Oral administration of 2.8 mg/kg BW of the tea extract for 7 weeks. |
| [135] | |
A daily diet of 60% fructose, 36% Purina chow, and 4% black tea leaves for 12 weeks. |
| [138] | ||
KK-Aγ/TaJcl model of type 2 diabetic mice | Oral administration of 5, 10, or 50 mg/kg of powder formulation of black tea extract dissolved in water for 4 weeks. |
| [137] | |
KK-Ay diabetic mice | Oral administration of black tea extracts for 5 weeks. |
| [140] | |
High-fat diet-induced C57BL/6J male mice | Administration of black tea ad libitum for 14 weeks. |
| [142] | |
Adults with T2D | Clinical trial | Daily ingestion of 200 or 600 mL of black tea for 12 weeks. |
| [147] |
Orally sucrose-loaded normal and prediabetes male and female adults. | Random ingestion of 50 g of sucrose solution with 110 mg of black tea polymerized polyphenol (BTPP), 220 mg BTPP of black tea drink, or placebo. |
| [145] | |
Orally glucose-loaded healthy human adults | 1 g of instant black tea and 75 g of glucose in 250 mL of water was ingested by subjects. 0.052 g of caffeine replaced tea for positive control. |
| [144] | |
Healthy Japanese subjects | A one-off ingestion of 200 mL of black tea or placebo and 200 g of cooked rice. |
| [146] |
6.5. Pu-erh Tea
6.5.1. In Vitro Studies
6.5.2. In Vivo Studies
6.5.3. Clinical Trials
Cell Lines/Tissue/Animal Model/Human | Study | Treatment | Antidiabetic Mechanism | Reference |
---|---|---|---|---|
Enzyme inhibition | In vitro | Puerin III from pu-erh tea α-glucosidase. |
| [152] |
Different solvent fractions of pu-erh tea inhibitory effects. |
| [149] | ||
Inhibitory effects of (−)-epigallo-catechin-3-O-gallate on sucrose and maltase enzymes, a compound isolated from ethyl acetate fraction of a pu-erh tea water extract. |
| |||
α-glycosidase inhibitory property of different solvent fractions of pu-erh tea. |
| [158] | ||
Water extract on HepG2 cells, intestinal sucrase, maltase, and porcine pancreatic amylase. |
| [150] | ||
Male Wistar rats | Ex vivo | Pu-erh tea hot-water extract for 30 min on isolated rat epitrochlearis muscle of 5-week-old male Wistar rats. |
| [129] |
Sprague–Dawley rats | In vivo | Administration of theabrownin (0.2812 g/kg BW, 0.5625 g/kg BW, and 1.125 g/kg BW) together with a swinging exercise routine of 30 min each day. |
| [153] |
Goto–Kakizaki (GK) rats | Intragastric administration of theabrownin. |
| [154] | |
Wistar rats | Pu-erh tea was incorporated into the feed. |
| [138] | |
Comparative study on ripened pu-erh tea (RIPT, with pile fermentation) and raw pu-erh tea (RAPT) in rats. |
| [156] | ||
Mice | High-fat, high-sugar diet-induced ApoE-/- mice were given oral doses of puerin III, an isolated compound from Pu-erh tea, for 6 weeks. |
| [152] | |
Administered as tea to male ICR mice for 7 days. |
| [159] | ||
Oral administration of pu-erh tea for 7 days, instead of drinking water, on excised skeletal muscle from male ICR mice. |
| [155] | ||
Intragastric administration of water extract to db/db mice for 4 weeks. |
| [150] | ||
Administration of pu-erh tea to db/db mice for 8 weeks. |
| [160] | ||
Male ICR mice were given different solvent extracts of pu-erh tea orally. |
| [158] | ||
Male patients | Clinical trial | For three months, metabolic syndrome patients (male) received either 333 mg/mL of aqueous tea extract or a placebo in the form of tea. |
| [157] |
Healthy males and mice | Male humans and 3-week-old mice were given theabrownin via oral administration. |
| [151] |
6.6. Summarized Antidiabetic Activities of White, Green, Oolong, Black, and Pu-erh Teas
7. Potential Toxic Effects of Teas
8. Conclusions
Funding
Conflicts of Interest
References
- Anderson, R.N.; Smith, B.L. Deaths: Leading causes for 2002. Natl. Vital Stat. Rep. 2005, 53, 1–89. [Google Scholar] [PubMed]
- Ali, M.K.; Narayan, K.V.; Tandon, N. Diabetes & coronary heart disease: Current perspectives. Indian J. Med. Res. 2010, 132, 584–597. [Google Scholar]
- Tang, N.; Ma, J.; Tao, R.; Chen, Z.; Yang, Y.; He, Q.; Lv, Y.; Lan, Z.; Zhou, J. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci. Rep. 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Haw, J.S.; Shah, M.; Turbow, S.; Egeolu, M.; Umpierrez, G. Diabetes complications in racial and ethnic minority populations in the USA. Curr. Diabetes Rep. 2021, 21, 2. [Google Scholar] [CrossRef]
- Vaile, E.F. The Resilience of American Indian and Alaska Native Older Adults in the Context of Major Health Disparities in Cardiovascular Disease, Diabetes, Asthma, and Arthritis: A Narrative Review. Ph.D. Thesis, University of Montana, Missoula, MT, USA, 2023. [Google Scholar]
- IDF. IDF Diabetes Atlas. International Diabetes Federation. 2025. Available online: https://diabetesatlas.org/resources/idf-diabetes-atlas-2025/ (accessed on 17 April 2025).
- Zimmet, P.; Alberti, K.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature 2001, 414, 782–787. [Google Scholar] [CrossRef]
- Perkins, R.M.; Yuan, C.M.; Welch, P.G. Dipsogenic diabetes insipidus: Report of a novel treatment strategy and literature review. Clin. Exp. Nephrol. 2006, 10, 63–67. [Google Scholar] [CrossRef]
- Saborio, P.; Tipton, G.A.; Chan, J. Diabetes insipidus. Pediatr. Rev. 2000, 21, 122–129. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Szymczak, F.; Mallone, R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat. Rev. Endocrinol. 2023, 19, 425–434. [Google Scholar] [CrossRef]
- Joseph, K.; Waikar, A.R.; Siebel, S.; Patel, A. Diagnosis of Type 1 Diabetes. Diabetes in Children and Adolescents: A Guide to Diagnosis and Management; Humana Press: Totowa, NJ, USA, 2021; pp. 25–33. [Google Scholar]
- Pasi, R.; Ravi, K.S. Type 1 diabetes mellitus in pediatric age group: A rising endemic. J. Fam. Med. Prim. Care 2022, 11, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr. Diabetes 2016, 17, 31–36. [Google Scholar] [CrossRef]
- Szablewski, L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int. Immunopharmacol. 2014, 22, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Hogendorf, A.; Abel, M.; Wyka, K.; Bodalski, J.; Młynarski, W. HLA-A gene variation modulates residual function of the pancreatic β-cells in children with type 1 diabetes. Pediatr. Endocrinol. Diabetes Metab. 2020, 26, 73–78. [Google Scholar] [CrossRef]
- Åkerblom, H.K.; Vaarala, O.; Hyöty, H.; Ilonen, J.; Knip, M. Environmental factors in the etiology of type 1 diabetes. Am. J. Med. Genet. Part A 2002, 115, 18–29. [Google Scholar] [CrossRef]
- Pirot, P.; Cardozo, A.K.; Eizirik, D.L. Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. Arq. Bras. Endocrinol. Metabol. 2008, 52, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.A.; Eisenbarth, G.S. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet 2001, 358, 221–229. [Google Scholar] [CrossRef]
- Jahromi, M.M.; Eisenbarth, G.S. Cellular and molecular pathogenesis of type 1A diabetes. Cell. Mol. Life Sci. 2007, 64, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Antar, S.A.; Ashour, N.A.; Sharaky, M.; Khattab, M.; Ashour, N.A.; Zaid, R.T.; Roh, E.J.; Elkamhawy, A.; Al-Karmalawy, A.A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed. Pharmacother. 2023, 168, 115734. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 1–22. [Google Scholar] [CrossRef]
- DeFronzo, R.A. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Makurvet, F.D. Biologics vs. small molecules: Drug costs and patient access. Med. Drug Discov. 2021, 9, 100075. [Google Scholar] [CrossRef]
- Butt, M.D.; Ong, S.C.; Rafiq, A.; Kalam, M.N.; Sajjad, A.; Abdullah, M.; Malik, T.; Yaseen, F.; Babar, Z.U.D. A systematic review of the economic burden of diabetes mellitus: Contrasting perspectives from high and low middle-income countries. J. Pharm. Policy Pract. 2024, 17, 2322107. [Google Scholar] [CrossRef] [PubMed]
- Seuring, T.; Archangelidi, O.; Suhrcke, M. The economic costs of type 2 diabetes: A global systematic review. Pharmacoeconomics 2015, 33, 811–831. [Google Scholar] [CrossRef]
- Amaryllidaceae, J.S. Plants of the World Online. Royal Botanic Gardens, Kew. Retrieved. J. St.-Hil. 2021, 134, 1805. [Google Scholar]
- Yamamoto, T. Chemistry and Applications of Green Tea; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Ciccuza, D.; Kokotos, S. The invasive potential of tea: Naturalisation and spread of Camellia sinensis in natural and logged forests of the Amani Nature Reserve. Citeseer 2007. [Google Scholar]
- Piljac–Zegarac, J.; Samec, D.; Pilja, A. Herbal teas: A focus on antioxidant properties. In Tea in Health and Disease Prevention; Preedy, V., Ed.; Academic Press: London, UK, 2013; pp. 129–140. [Google Scholar]
- Hui, Y. Handbook of Food and Beverage Fermentation Technology; Marcel-Dekker Inc.: New York, NY, USA, 2004. [Google Scholar]
- Hilal, Y. Morphology, manufacturing, types, composition and medicinal properties of tea (Camellia sinensis). J. Basic Appl. Plant Sci. 2017, 1, 107. [Google Scholar]
- Chen, Q.; Shi, J.; Mu, B.; Chen, Z.; Dai, W.; Lin, Z. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chem. 2020, 332, 127412. [Google Scholar] [CrossRef]
- Gascoyne, K.; Marchand, F.; Desharnais, J.; Américi, H. Tea: History, Terroirs, Varieties; Firefly Books: Richmond Hill, ON, Canada, 2014; pp. 104–120. [Google Scholar]
- Sinija, V.; Mishra, H.N. Green tea: Health benefits. J. Nutr. Environ. Med. 2008, 17, 232–242. [Google Scholar] [CrossRef]
- Ahmed, S.; Stepp, J.R. Green tea: The plants, processing, manufacturing and production. In Tea in Health and Disease Prevention; Preedy, V., Ed.; Academic Press: London, UK, 2013; pp. 19–31. [Google Scholar]
- Boros, K.; Jedlinszki, N.; Csupor, D. Theanine and caffeine content of infusions prepared from commercial tea samples. Pharmacogn. Mag. 2016, 12, 75. [Google Scholar]
- Zhang, L.; Zhang, Z.-Z.; Zhou, Y.-B.; Ling, T.-J.; Wan, X.-C. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 2013, 53, 600–607. [Google Scholar] [CrossRef]
- Ng, K.-W.; Cao, Z.-J.; Chen, H.-B.; Zhao, Z.-Z.; Zhu, L.; Yi, T. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Crit. Rev. Food Sci. Nutr. 2018, 58, 2957–2980. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, U.H. Tea chemistry–What do and what don’t we know?–A micro review. Food Res. Int. 2020, 132, 109120. [Google Scholar] [CrossRef]
- Kong, Y.S.; Ren, H.Y.; Liu, R.; da Silva, R.R.; Aksenov, A.A.; Melnik, A.V.; Zhao, M.; Le, M.M.; Ren, Z.W.; Xu, F.Q.; et al. Microbial and nonvolatile chemical diversities of Chinese dark teas are differed by latitude and pile fermentation. J. Agric. Food Chem. 2022, 70, 5701–5714. [Google Scholar] [CrossRef]
- Gardner, E.; Ruxton, C.; Leeds, A. Black tea–helpful or harmful? A review of the evidence. Eur. J. Clin. Nutr. 2007, 61, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.K.; Haufe, T.C.; Ferruzzi, M.G.; Neilson, A.P. Production and polyphenolic composition of tea. Nutr. Today 2018, 53, 268–278. [Google Scholar] [CrossRef]
- Muthumani, T.; Kumar, R.S. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chem. 2007, 101, 98–102. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Caffin, N.; D’arcy, B.; Datta, N.; Liu, X.; Singanusong, R.; Xu, Y. Phenolic compounds in tea from Australian supermarkets. Food Chem. 2006, 96, 614–620. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Bajerska-Jarzębowska, J. Leaves of Camellia sinensis: Ordinary brewing plant or super antioxidant source. Food 2007, 1, 56–64. [Google Scholar]
- Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 1992, 21, 334–350. [Google Scholar] [CrossRef]
- Abu-Hashem, A.A.; Hakami, O.; El-Shazly, M.; El-Nashar, H.A.; Yousif, M.N. Caffeine and Purine Derivatives: A Comprehensive Review on the Chemistry, Biosynthetic Pathways, Synthesis-Related Reactions, Biomedical Prospectives and Clinical Applications. Chem. Biodivers. 2024, 21, e202400050. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.; Vincken, J.-P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Harbowy, M.E.; Balentine, D.A.; Davies, A.P.; Cai, Y. Tea chemistry. Crit. Rev. Plant Sci. 1997, 16, 415–480. [Google Scholar] [CrossRef]
- Turkmen, N.; Sarı, F.; Velioglu, Y.S. Factors affecting polyphenol content and composition of fresh and processed tea leaves. Akad. Gıda 2009, 7, 29–40. [Google Scholar]
- Jiang, H.; Yu, F.; Qin, L.I.; Zhang, N.A.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compos. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- Friedman, M.; Levin, C.E.; Choi, S.H.; Lee, S.U.; Kozukue, N. Changes in the composition of raw tea leaves from the Korean Yabukida plant during high-temperature processing to pan-fried kamairi-cha green tea. J. Food Sci. 2009, 74, C406–C412. [Google Scholar] [CrossRef]
- Donlao, N.; Ogawa, Y. The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions. LWT 2019, 116, 108567. [Google Scholar] [CrossRef]
- Svoboda, P.; Vlčková, H.; Nováková, L. Development and validation of UHPLC–MS/MS method for determination of eight naturally occurring catechin derivatives in various tea samples and the role of matrix effects. J. Pharm. Biomed. Anal. 2015, 114, 62–70. [Google Scholar] [CrossRef]
- Tanaka, T.; Watarumi, S.; Matsuo, Y.; Kamei, M.; Kouno, I. Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation–reduction dismutation of dehydrotheasinensin A. Tetrahedron 2003, 59, 7939–7947. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Liu, P.-P.; Shi, J.; Gao, Y.; Wang, Q.-S.; Yin, J.-F. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 2018, 249, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.T.; Li, D.; Wan, X. Impact of six typical processing methods on the chemical composition of tea leaves using a single Camellia sinensis cultivar, Longjing 43. J. Agric. Food Chem. 2018, 67, 5423–5436. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Lo, L.-C.; Chen, I.-Z.; Chen, P.-A. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. Food Drug Anal. 2016, 24, 500–507. [Google Scholar] [CrossRef]
- Hirose, S.; Tomatsu, K.; Yanase, E. Isolation of key intermediates during formation of oolongtheanins. Tetrahedron Lett. 2013, 54, 7040–7043. [Google Scholar] [CrossRef]
- Chen, Y.L.; Duan, J.; Jiang, Y.M.; Shi, J.; Peng, L.; Xue, S.; Kakuda, Y. Production, quality, and biological effects of oolong tea (Camellia sinensis). Food Rev. Int. 2010, 27, 1–15. [Google Scholar] [CrossRef]
- Teshome, K. Effect of tea processing methods on biochemical composition and sensory quality of black tea (Camellia sinensis (L.) O. Kuntze), A review. J. Hortic. For. 2019, 11, 84–95. [Google Scholar]
- Lee, M.K.; Kim, H.W.; Lee, S.H.; Kim, Y.J.; Asamenew, G.; Choi, J.; Lee, J.W.; Jung, H.A.; Yoo, S.M.; Kim, J.B. Characterization of catechins, theaflavins, and flavonols by leaf processing step in green and black teas (Camellia sinensis) using UPLC-DAD-QToF/MS. Eur. Food Res. Technol. 2019, 245, 997–1010. [Google Scholar] [CrossRef]
- Lee, L.K.; Foo, K.Y. Recent advances on the beneficial use and health implications of Pu-Erh tea. Food Res. Int. 2013, 53, 619–628. [Google Scholar] [CrossRef]
- Peterson, J.; Dwyer, J.; Jacques, P.; Rand, W.; Prior, R.; Chui, K. Tea variety and brewing techniques influence flavonoid content of black tea. J. Food Compos. Anal. 2004, 17, 397–405. [Google Scholar] [CrossRef]
- Das, S.; Samanta, T.; Datta, A. Analysis and modeling of major polyphenols during oxidation in production of black tea. J. Food Process. Preserv. 2019, 43, e14283. [Google Scholar] [CrossRef]
- Wong, M.; Sirisena, S.; Ng, K. Phytochemical profile of differently processed tea: A review. J. Food Sci. 2022, 87, 1925–1942. [Google Scholar] [CrossRef]
- Lv, H.-p.; Zhang, Y.-j.; Lin, Z.; Liang, Y.-r. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Chen, H.; Cui, F.; Li, H.; Sheng, J.; Lv, J. Metabolic changes during the pu-erh tea pile-fermentation revealed by a liquid chromatography tandem mass-spectrometry-based metabolomics approach. J. Food Sci. 2013, 78, C1665–C1672. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-H.; Li, N.; Tu, P.-F.; Ma, Z.-Z.; Zhang, L. Change in tea polyphenol and purine alkaloid composition during solid-state fungal fermentation of postfermented tea. J. Agric. Food Chem. 2012, 60, 1213–1217. [Google Scholar] [CrossRef]
- Wang, Q.; Peng, C.; Gong, J. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. J. Sci. Food Agric. 2011, 91, 2412–2418. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, M.; Wu, Y.; Zhong, K.; Gao, H. Structural characteristics and hypolipidemic activity of theabrownins from dark tea fermented by single species Eurotium cristatum PW-1. Biomolecules 2020, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ho, C.T.; Zhou, J.; Santos, J.S.; Armstrong, L.; Granato, D. Chemistry and biological activities of processed Camellia sinensis teas: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1474–1495. [Google Scholar] [CrossRef]
- Tenore, G.C.; Stiuso, P.; Campiglia, P.; Novellino, E. In vitro hypoglycaemic and hypolipidemic potential of white tea polyphenols. Food Chem. 2013, 141, 2379–2384. [Google Scholar] [CrossRef]
- Kalauni, S.K.; Sharma, M. Phytochemical screening of methanolic extract of white tea and its antioxidant and antidiabetic activity. J. Chem. Chem. Sci. 2018, 8, 1086–1091. [Google Scholar] [CrossRef]
- Esposito, F.; Pala, N.; Carcelli, M.; Boateng, S.T.; D’Aquila, P.S.; Mariani, A.; Satta, S.; Chamcheu, J.C.; Sechi, M.; Sanna, V. α-Glucosidase inhibition by green, white and oolong teas: In vitro activity and computational studies. J. Enzym. Inhib. Med. Chem. 2023, 38, 2236802. [Google Scholar] [CrossRef]
- Islam, M.S. Effects of the aqueous extract of white tea (Camellia sinensis) in a streptozotocin-induced diabetes model of rats. Phytomedicine 2011, 19, 25–31. [Google Scholar] [CrossRef]
- Nunes, A.R.; Alves, M.G.; Tomás, G.D.; Conde, V.R.; Cristóvao, A.C.; Moreira, P.I.; Oliveira, P.F.; Silva, B.M. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Br. J. Nutr. 2015, 113, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.G.; Martins, A.D.; Teixeira, N.F.; Rato, L.; Oliveira, P.F.; Silva, B.M. White tea consumption improves the cardiac glycolytic and oxidative profile of prediabetic rats. J. Funct. Foods 2015, 14, 102–110. [Google Scholar] [CrossRef]
- Dias, T.R.; Alves, M.G.; Rato, L.; Casal, S.; Silva, B.M.; Oliveira, P.F. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J. Nutr. Biochem. 2016, 37, 83–93. [Google Scholar] [CrossRef]
- Al-Shiekh, A.A.M.; Al-Shati, A.A.; Sarhan, M.A.A. Effect of White Tea Extract on Antioxidant Enzyme Activities of Streptozotocin –Induced Diabetic Rats. Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol. 2014, 6, 17–30. [Google Scholar] [CrossRef]
- Xia, X.; Wang, X.; Wang, H.; Lin, Z.; Shao, K.; Xu, J.; Zhao, Y. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. J. Ethnopharmacol. 2021, 272, 113919. [Google Scholar] [CrossRef]
- Oliveira, P.F.; Tomás, G.D.; Dias, T.R.; Martins, A.D.; Rato, L.; Alves, M.G.; Silva, B.M. White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reprod. Biomed. Online 2015, 31, 544–556. [Google Scholar] [CrossRef]
- Amanzadeh, Z.; Zargari, F.; Khalilaria, A. The Effect of Aqueous Extract of White Tea on Glucose and Lipid Profile in Diabetic Rats. J. Biochem. Technol. 2021, 1, 117–122. [Google Scholar]
- Ardiana, L.; Sauriasari, R.; Elya, B. Antidiabetic activity studies of white tea (Camellia sinensis (L.) O. Kuntze) ethanolic extracts in streptozotocin-nicotinamide induced diabetic rats. Pharmacogn. J. 2018, 10, 186–189. [Google Scholar] [CrossRef]
- Silveira, A.C.; Rato, L.; Oliveira, P.F.; Alves, M.G.; Silva, B.M. White tea intake abrogates markers of streptozotocin-induced prediabetes oxidative stress in rat lungs’. Molecules 2021, 26, 3894. [Google Scholar] [CrossRef]
- Yaghobian, F.; Dehghan, F.; Azarbayjani, M.A. Forecast of ameliorating effect of dietary flavonol consumption in white tea with or without aerobic training on type 2 diabetes (T2D) in females. Clin. Nutr. ESPEN 2021, 45, 134–140. [Google Scholar]
- Damiani, E.; Bacchetti, T.; Padella, L.; Tiano, L.; Carloni, P. Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. J. Food Compos. Anal. 2014, 33, 59–66. [Google Scholar] [CrossRef]
- Meiliza, E.; Rani, S.; Berna, E. Dipeptidyl peptidase IV Inhibitory Activity of Fraction from White Tea Ethanolic Extract (Camellia sinensis (L.) Kuntze) ex vivo. Pharmacogn. J. 2018, 10, 190–193. [Google Scholar]
- Tolmie, M.; Bester, M.; Serem, J.; Nell, M.; Apostolides, Z. The potential antidiabetic properties of green and purple tea [Camellia sinensis (L.) O Kuntze], purple tea ellagitannins, and urolithins. J. Ethnopharmacol. 2023, 309, 116377. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.O.; Yoo, S.H.; Lee, Y.E.; Shin, K.S.; Yoo, S.J.; Park, S.H.; Park, T.S.; Shim, S.M. Hypoglycemic potential of whole green tea: Water-soluble green tea polysaccharides combined with green tea extract delays digestibility and intestinal glucose transport of rice starch. Food Funct. 2019, 10, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Suzuki, M.; Satsu, H.; Arai, S.; Hara, Y.; Suzuki, K.; Miyamoto, Y.; Shimizu, M. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J. Agric. Food Chem. 2000, 48, 5618–5623. [Google Scholar] [CrossRef]
- Oh, J.H.; Chung, J.O.; Lee, C.Y.; Yun, Y.; Park, M.Y.; Hong, Y.D.; Kim, W.G.; Cha, H.Y.; Shin, K.S.; Hong, G.P.; et al. Characterized polysaccharides from green tea inhibited starch hydrolysis and glucose intestinal uptake by inducing microstructural changes of wheat starch. J. Agric. Food Chem. 2021, 69, 14075–14085. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Z.; Li, L.; Joshi, M.K.; Huang, N.; Niu, J.; Lu, Y. Catechins play key role in green tea extract–induced postprandial hypoglycemic potential in vitro. Eur. Food Res. Technol. 2013, 237, 89–99. [Google Scholar] [CrossRef]
- Chen, N.; Bezzina, R.; Hinch, E.; Lewandowski, P.A.; Cameron-Smith, D.; Mathai, M.L.; Jois, M.; Sinclair, A.J.; Begg, D.P.; Wark, J.D.; et al. Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr. Res. 2009, 29, 784–793. [Google Scholar] [CrossRef]
- Ladeira, L.C.M.; Dos Santos, E.C.; Santos, T.A.; da Silva, J.; de Almeida Lima, G.D.; Machado-Neves, M.; da Silva, R.C.; Freitas, M.B.; Maldonado, I.R.D.S.C. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control. J. Ethnopharmacol. 2021, 274, 114032. [Google Scholar] [CrossRef]
- Sundaram, R.; Naresh, R.; Shanthi, P.; Sachdanandam, P. Modulatory effect of green tea extract on hepatic key enzymes of glucose metabolism in streptozotocin and high fat diet induced diabetic rats. Phytomedicine 2013, 20, 577–584. [Google Scholar] [CrossRef]
- Otton, R.; Bolin, A.P.; Ferreira, L.T.; Marinovic, M.P.; Rocha, A.L.S.; Mori, M.A. Polyphenol-rich green tea extract improves adipose tissue metabolism by down-regulating miR-335 expression and mitigating insulin resistance and inflammation. J. Nutr. Biochem. 2018, 57, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Bolin, A.P.; Sousa-Filho, C.P.B.; Marinovic, M.P.; Rodrigues, A.C.; Otton, R. Polyphenol-rich green tea extract induces thermogenesis in mice by a mechanism dependent on adiponectin signaling. J. Nutr. Biochem. 2020, 78, 108322. [Google Scholar] [CrossRef] [PubMed]
- Ortsäter, H.; Grankvist, N.; Wolfram, S.; Kuehn, N.; Sjöholm, Å. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr. Metab. 2012, 9, 11. [Google Scholar] [CrossRef]
- Holidah, D.; Christianty, F.M.; Ilma, W.Z. Green tea extract effect on blood glucose level and liver histopathology in diabetic mice. UNEJ e-Proc. 2017, 35–38. [Google Scholar]
- Thomson, M.; Al-Qattan, K.; Mansour, M.H.; Ali, M. Green tea attenuates oxidative stress and downregulates the expression of angiotensin II AT 1 receptor in renal and hepatic tissues of streptozotocin-induced diabetic rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 409047. [Google Scholar] [CrossRef]
- Abolfathi, A.A.; Mohajeri, D.; Rezaie, A.; Nazeri, M. Protective effects of green tea extract against hepatic tissue injury in streptozotocin-induced diabetic rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 740671. [Google Scholar] [CrossRef] [PubMed]
- Hininger-Favier, I.; Benaraba, R.; Coves, S.; Anderson, R.A.; Roussel, A.-M. Green tea extract decreases oxidative stress and improves insulin sensitivity in an animal model of insulin resistance, the fructose-fed rat. J. Am. Coll. Nutr. 2009, 28, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Haidari, F.; Shahi, M.M.; Zarei, M.; Rafiei, H.; Omidian, K. Effect of green tea extract on body weight, serum glucose and lipid profile in streptozotocin-induced diabetic rats. Saudi Med. J. 2012, 33, 128–133. [Google Scholar]
- Ueda-Wakagi, M.; Nagayasu, H.; Yamashita, Y.; Ashida, H. Green tea ameliorates hyperglycemia by promoting the translocation of glucose transporter 4 in the skeletal muscle of diabetic rodents. Int. J. Mol. Sci. 2019, 20, 2436. [Google Scholar] [CrossRef]
- Tang, W.; Li, S.; Liu, Y.; Huang, M.-T.; Ho, C.-T. Anti-diabetic activity of chemically profiled green tea and black tea extracts in a type 2 diabetes mice model via different mechanisms. J. Funct. Foods 2013, 5, 1784–1793. [Google Scholar] [CrossRef]
- Snoussi, C.; Ducroc, R.; Hamdaoui, M.H.; Dhaouadi, K.; Abaidi, H.; Cluzeaud, F.; Nazaret, C.; Le Gall, M.; Bado, A. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. J. Nutr. Biochem. 2014, 25, 557–564. [Google Scholar] [CrossRef]
- Wu, L.-Y.; Juan, C.-C.; Ho, L.-T.; Hsu, Y.-P.; Hwang, L.S. Effect of green tea supplementation on insulin sensitivity in Sprague–Dawley rats. J. Agric. Food Chem. 2004, 52, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Wein, S.; Schrader, E.; Rimbach, G.; Wolffram, S. Oral green tea catechins transiently lower plasma glucose concentrations in female db/db mice. J. Med. Food 2013, 16, 312–317. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S.; Zhu, L.; Dai, L.; Qian, W.; Zhang, J.; Li, X.; Pan, W. Green tea protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting JNK/MLCK signaling. Mol. Med. Rep. 2021, 24, 575. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Lee, J.E.; Lee, E.K.; Jung, D.H.; Song, C.H.; Park, S.J.; Choi, S.H.; Han, C.H.; Ku, S.K.; Lee, Y.J. Fermentation with Aquilariae Lignum enhances the anti-diabetic activity of green tea in type II diabetic db/db mouse. Nutrients 2014, 6, 3536–3571. [Google Scholar] [CrossRef]
- Qu, F.; Liu, S.; He, C.; Zhou, J.; Zhang, S.; Ai, Z.; Chen, Y.; Yu, Z.; Ni, D. Comparison of the effects of green and black tea extracts on Na+/K+-ATPase activity in intestine of type 1 and type 2 diabetic mice. Mol. Nutr. Food Res. 2019, 63, 1801039. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-Y.; Juan, C.-C.; Hwang, L.S.; Hsu, Y.-P.; Ho, P.-H.; Ho, L.-T. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur. J. Nutr. 2004, 43, 116–124. [Google Scholar] [CrossRef]
- Takahashi, M.; Miyashita, M.; Suzuki, K.; Bae, S.R.; Kim, H.K.; Wakisaka, T.; Matsui, Y.; Takeshita, M.; Yasunaga, K. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br. J. Nutr. 2014, 112, 1542–1550. [Google Scholar] [CrossRef]
- Huang, H.; Guo, Q.; Qiu, C.; Huang, B.; Fu, X.; Yao, J.; Liang, J.; Li, L.; Chen, L.; Tang, K.; et al. Associations of green tea and rock tea consumption with risk of impaired fasting glucose and impaired glucose tolerance in Chinese men and women. PLoS ONE 2013, 8, e79214. [Google Scholar] [CrossRef]
- Hua, C.; Liao, Y.; Lin, S.; Tsai, T.; Huang, C.; Chou, P. Does supplementation with green tea extract improve insulin resistance in obese type 2 diabetics? A randomized, double-blind, and placebocontrolled clinical trial. Altern. Med. Rev. 2011, 16, 157–163. [Google Scholar]
- Gancar, M.; Kurin, E.; Bednarikova, Z.; Marek, J.; Mucaji, P.; Nagy, M.; Gazova, Z. Amyloid aggregation of insulin: An interaction study of green tea constituents. Sci. Rep. 2020, 10, 9115. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Polansky, M.M. Tea enhances insulin activity. J. Agric. Food Chem. 2002, 50, 7182–7186. [Google Scholar] [CrossRef] [PubMed]
- Furuyashiki, T.; Terashima, S.; Nagayasu, H.; Kaneko, A.; Sakane, I.; Kakuda, T.; Kanazawa, K.; Danno, G.I.; Ashida, H. Tea Extracts Modulate a Glucose Transport System in 3T3-L1 Adipocytes; ACS Publications: Washington, DC, USA, 2003. [Google Scholar]
- Fei, Q.; Gao, Y.; Zhang, X.; Sun, Y.; Hu, B.; Zhou, L.; Jabbar, S.; Zeng, X. Effects of Oolong tea polyphenols, EGCG, and EGCG3 ″Me on pancreatic α-amylase activity in vitro. J. Agric. Food Chem. 2014, 62, 9507–9514. [Google Scholar] [CrossRef]
- Rujanapun, N.; Jaidee, W.; Duangyod, T.; Phuneerub, P.; Paojumroom, N.; Maneerat, T.; Pringpuangkeo, C.; Ramli, S.; Charoensup, R. Special Thai Oolong Tea: Chemical Profile and In Vitro Antidiabetic Activities. Front. Pharmacol. 2022, 13, 500. [Google Scholar] [CrossRef]
- Imaga, N.A.; Hunga, S. Antidiabetic and Hypolipidemic Implications of Oolong Tea (Camellia sinensis Extract). Asian J. Biochem. Pharm. Res. 2013, 3, 197–207. [Google Scholar]
- Wang, L.; Ashida, H. Fermented tea ameliorate hyperglycemia through stimulating insulin-and AMPK-signaling pathway. In Proceedings of the 4th International Conference on O-CHA (Tea) Culture and Science, Shizuoka, Japan, 26–28 October 2010. [Google Scholar]
- Yamashita, Y.; Ashida, H. Intake of tea prevents postprandial hyperglycemia by promoting GLUT4 translocation in skeletal muscle. In Proceedings of the 5th International Conference on O-CHA (Tea) Science and Culture, Shizuoka, Japan, 6–8 November 2013. [Google Scholar]
- Yasui, K.; Miyoshi, N.; Tababe, H.; Ishigami, Y.; Fukutomi, R.; Imai, S.; Isemura, M. Effects of oolong tea on gene expression of gluconeogenic enzymes in the mouse liver and in rat hepatoma H4IIE cells. J. Med. Food 2011, 14, 930–938. [Google Scholar] [CrossRef]
- Hosoda, K.; Wang, M.F.; Liao, M.L.; Chuang, C.K.; Iha, M.; Clevidence, B.; Yamamoto, S. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care 2003, 26, 1714–1718. [Google Scholar] [CrossRef]
- Ma, J.; Li, Z.; Xing, S.; Ho, W.-T.T.; Fu, X.; Zhao, Z.J. Tea contains potent inhibitors of tyrosine phosphatase PTP1B. Biochem. Biophys. Res. Commun. 2011, 407, 98–102. [Google Scholar] [CrossRef]
- Coronell-Tovar, A.; Pardo, J.P.; Rodríguez-Romero, A.; Sosa-Peinado, A.; Vásquez-Bochm, L.; Cano-Sánchez, P.; Álvarez-Añorve, L.I.; González-Andrade, M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett. 2024, 598, 1811–1838. [Google Scholar] [CrossRef]
- Nagano, T.; Hayashibara, K.; Ueda-Wakagi, M.; Yamashita, Y.; Ashida, H. Black tea polyphenols promotes GLUT4 translocation through both PI3K-and AMPK-dependent pathways in skeletal muscle cells. Food Sci. Technol. Res. 2015, 21, 489–494. [Google Scholar] [CrossRef]
- Striegel, L.; Kang, B.; Pilkenton, S.J.; Rychlik, M.; Apostolidis, E. Effect of black tea and black tea pomace polyphenols on α-glucosidase and α-amylase inhibition, relevant to type 2 diabetes prevention. Front. Nutr. 2015, 2, 3. [Google Scholar] [CrossRef]
- Xiao, X.; Erukainure, O.L.; Sanni, O.; Koorbanally, N.A.; Islam, M.S. Phytochemical properties of black tea (Camellia sinensis) and rooibos tea (Aspalathus linearis); and their modulatory effects on key hyperglycaemic processes and oxidative stress. J. Food Sci. Technol. 2020, 57, 4345–4354. [Google Scholar] [CrossRef]
- Abeywickrama, K.; Ratnasooriya, W.; Amarakoon, A. Oral hypoglycaemic, antihyperglycaemic and antidiabetic activities of Sri Lankan Broken Orange Pekoe Fannings (BOPF) grade black tea (Camellia sinensis L.) in rats. J. Ethnopharmacol. 2011, 135, 278–286. [Google Scholar] [CrossRef]
- Atiku, M.; Abdulrahman, Y.; Muhammad, B. Phytochemistry and effect of oral administration of (Camellia sinesis) Turkish and Ceylon tea on the development of metabolic syndrome in albino rats. Pak. J. Biochem. Mol. Biol. 2013, 46, 55–58. [Google Scholar]
- Ramalingam, S.; Ramasamy, S.M.; Vasu, G.; Gopalarishnan, R. Antihyperglycemic potential of back tea extract attenuates tricarboxylic acid cycle enzymes by modulating carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Indian J. Clin. Biochem. 2020, 35, 322–330. [Google Scholar] [CrossRef]
- Shoji, Y.; Nakashima, H. Glucose-lowering effect of powder formulation of African black tea extract in KK-A y/TaJcl diabetic mouse. Arch. Pharmacal Res. 2006, 29, 786–794. [Google Scholar] [CrossRef]
- Huang, H.-C.; Lin, J.-K. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 2012, 3, 170–177. [Google Scholar] [CrossRef]
- Akalın, K.; Ekiz, A.T.; Karakaya, F.; Karadag, A.; Pelvan, E.; Doğan, K.; Alasalvar, C.; Aksu, S. In vivo antidiabetic activities of green and black tea polysaccharides using streptozotocin-induced diabetic mice fed with a high-fat diet. J. Food Bioact. 2019, 8, 74–83. [Google Scholar] [CrossRef]
- Imada, S.; Ashida, H. Black tea prevents hyperglycemia and obesity in KK-A y mice. In Proceedings of the 4th International Conference on O-CHA (Tea) Science and Culture, Shizuoka, Japan, 26–28 October 2010. [Google Scholar]
- Rohdiana, D.; Deswati, D.; Suharti, A.; Maulana, H.; Kusmiyati, M. Antidiabetic activity of first grade orthodox black tea in alloxan induced male albino mice. Int. J. Pharm. Clin. Res. 2016, 8, 1175–1177. [Google Scholar]
- Nishiumi, S.; Bessyo, H.; Kubo, M.; Aoki, Y.; Tanaka, A.; Yoshida, K.I.; Ashida, H. Green and black tea suppress hyperglycemia and insulin resistance by retaining the expression of glucose transporter 4 in muscle of high-fat diet-fed C57BL/6J mice. J. Agric. Food Chem. 2010, 58, 12916–12923. [Google Scholar] [CrossRef]
- Shang, L.; Li, F.; Zhu, J.; Sun, C.; Wang, Y. Selenium-enriched and ordinary black teas regulate the metabolism of glucose and lipid and intestinal flora of hyperglycemic mice. Plant Foods Hum. Nutr. 2023, 78, 61–67. [Google Scholar] [CrossRef]
- Bryans, J.A.; Judd, P.A.; Ellis, P.R. The effect of consuming instant black tea on postprandial plasma glucose and insulin concentrations in healthy humans. J. Am. Coll. Nutr. 2007, 26, 471–477. [Google Scholar] [CrossRef]
- Butacnum, A.; Chongsuwat, R.; Bumrungpert, A. Black tea consumption improves postprandial glycemic control in normal and pre-diabetic subjects: A randomized, double-blind, placebo-controlled crossover study. Asia Pac. J. Clin. Nutr. 2017, 26, 59–64. [Google Scholar]
- Isono, Y.; Watanabe, H.; Kumada, M.; Takara, T.; Iio, S.-I. Black tea decreases postprandial blood glucose levels in healthy humans and contains high-molecular-weight polyphenols that inhibit α-glucosidase and α-amylase in vitro: A randomized, double blind, placebo-controlled, crossover trial. Funct. Foods Health Dis. 2021, 11, 222–237. [Google Scholar] [CrossRef]
- Mahmoud, F.; Haines, D.; Al-Ozairi, E.; Dashti, A. Effect of black tea consumption on intracellular cytokines, regulatory T cells and metabolic biomarkers in type 2 diabetes patients. Phytother. Res. 2016, 30, 454–462. [Google Scholar] [CrossRef]
- Ramalingam, S. Hypoglycemic effect of black tea extract attenuates carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Int. J. Green Pharm. 2019, 13, 147–154. [Google Scholar]
- Wang, X.; Liu, Q.; Zhu, H.; Wang, H.; Kang, J.; Shen, Z.; Chen, R. Flavanols from the Camellia sinensis var. assamica and their hypoglycemic and hypolipidemic activities. Acta Pharm. Sin. B 2017, 7, 342–346. [Google Scholar] [CrossRef]
- Du, W.-h.; Peng, S.-M.; Liu, Z.-h.; Shi, L.; Tan, L.-F.; Zou, X.-Q. Hypoglycemic effect of the water extract of Pu-erh tea. J. Agric. Food Chem. 2012, 60, 10126–10132. [Google Scholar] [CrossRef]
- Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019, 10, 4971. [Google Scholar] [CrossRef]
- Gu, X.; Meng, Y.; Jin, F.; Wang, L.; Ma, J.; Wang, X.; Zhao, Y.; Shi, J.; Li, J.; Zhao, Y. Puerin III alleviates glucose and lipid metabolism disorders in high-fat high-sucrose diet-induced hyperlipidemic and hyperglycemic ApoE−/− mice. J. Funct. Foods 2022, 93, 105085. [Google Scholar] [CrossRef]
- Wu, E.; Zhang, T.; Tan, C.; Peng, C.; Chisti, Y.; Wang, Q.; Gong, J. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur. J. Nutr. 2020, 59, 1937–1950. [Google Scholar] [CrossRef]
- Yue, S.; Shan, B.; Peng, C.; Tan, C.; Wang, Q.; Gong, J. Theabrownin-targeted regulation of intestinal microorganisms to improve glucose and lipid metabolism in Goto-Kakizaki rats. Food Funct. 2022, 13, 1921–1940. [Google Scholar] [CrossRef]
- Yamashita, Y.; Wang, L.; Tinshun, Z.; Nakamura, T.; Ashida, H. Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle. J. Agric. Food Chem. 2012, 60, 11366–11371. [Google Scholar] [CrossRef]
- Ding, Q.; Zheng, W.; Zhang, B.; Chen, X.; Zhang, J.; Pang, X.; Zhang, Y.; Jia, D.; Pei, S.; Dong, Y.; et al. Comparison of hypoglycemic effects of ripened pu-erh tea and raw pu-erh tea in streptozotocin-induced diabetic rats. RSC Adv. 2019, 9, 2967–2977. [Google Scholar] [CrossRef]
- Yang, T.Y.; Chou, J.I.; Ueng, K.C.; Chou, M.Y.; Yang, J.J.; Lin-Shiau, S.Y.; Hu, M.E.; Lin, J.K. Weight reduction effect of Puerh tea in male patients with metabolic syndrome. Phytother. Res. 2014, 28, 1096–1101. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, S.; Chen, H.; Wang, Y.; Wang, Y.; Hochstetter, D.; Xu, P. Studies on the bioactivity of aqueous extract of pu-erh tea and its fractions: In vitro antioxidant activity and α-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice. Food Chem. Toxicol. 2013, 53, 75–83. [Google Scholar] [CrossRef]
- Yamashita, Y.; Wang, L.; Wang, L.; Tanaka, Y.; Zhang, T.; Ashida, H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014, 5, 2420–2429. [Google Scholar] [CrossRef]
- Yan, S.J.; Wang, L.; Li, Z.; Zhu, D.N.; Guo, S.C.; Xin, W.F.; Yang, Y.F.; Cong, X.; Ma, T.; Shen, P.P.; et al. Inhibition of advanced glycation end product formation by Pu-erh tea ameliorates progression of experimental diabetic nephropathy. J. Agric. Food Chem. 2012, 60, 4102–4110. [Google Scholar] [CrossRef]
- Mazzanti, G.; Di Sotto, A.; Vitalone, A. Hepatotoxicity of green tea: An update. Arch. Toxicol. 2015, 89, 1175–1191. [Google Scholar] [CrossRef]
- Bedrood, Z.; Rameshrad, M.; Hosseinzadeh, H. Toxicological effects of Camellia sinensis (green tea), A review. Phytother. Res. 2018, 32, 1163–1180. [Google Scholar] [CrossRef]
- Abdelkawy, K.S.; Abdelaziz, R.M.; Abdelmageed, A.M.; Donia, A.M.; El-Khodary, N.M. Effects of green tea extract on atorvastatin pharmacokinetics in healthy volunteers. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 351–360. [Google Scholar] [CrossRef]
- Misaka, S.; Miyazaki, N.; Fukushima, T.; Yamada, S.; Kimura, J. Effects of green tea extract and (−)-epigallocatechin-3-gallate on pharmacokinetics of nadolol in rats. Phytomedicine 2013, 20, 1247–1250. [Google Scholar] [CrossRef]
- Wang, D.; Wei, Y.; Wang, T.; Wan, X.; Yang, C.S.; Reiter, R.J.; Zhang, J. Melatonin attenuates (-)-epigallocatehin-3-gallate-triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice. J. Pineal Res. 2015, 59, 497–507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erukainure, O.L.; Chukwuma, C.I.; Nambooze, J.; Tripathy, S.; Salau, V.F.; Olofinsan, K.; Ogunlakin, A.D.; Ebuehi, O.A.T.; Unuofin, J.O. Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas. Plants 2025, 14, 1898. https://doi.org/10.3390/plants14131898
Erukainure OL, Chukwuma CI, Nambooze J, Tripathy S, Salau VF, Olofinsan K, Ogunlakin AD, Ebuehi OAT, Unuofin JO. Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas. Plants. 2025; 14(13):1898. https://doi.org/10.3390/plants14131898
Chicago/Turabian StyleErukainure, Ochuko L., Chika I. Chukwuma, Jennifer Nambooze, Satyajit Tripathy, Veronica F. Salau, Kolawole Olofinsan, Akingbolabo D. Ogunlakin, Osaretin A. T. Ebuehi, and Jeremiah O. Unuofin. 2025. "Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas" Plants 14, no. 13: 1898. https://doi.org/10.3390/plants14131898
APA StyleErukainure, O. L., Chukwuma, C. I., Nambooze, J., Tripathy, S., Salau, V. F., Olofinsan, K., Ogunlakin, A. D., Ebuehi, O. A. T., & Unuofin, J. O. (2025). Tea Consumption and Diabetes: A Comprehensive Pharmacological Review of Black, White, Green, Oolong, and Pu-erh Teas. Plants, 14(13), 1898. https://doi.org/10.3390/plants14131898