Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = mesoscopic damage evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2391 KB  
Article
Investigating the Cracking Processes and Bearing Performance of Fissured Concrete SCB Specimens via DEM-Based Mesoscopic Modeling Considering Fissure Angle, Aggregate Content and Porosity
by Qinrong Li, Suyi Liu, Yifei Li, Mingyue Qiu, Ruitong Zhang, Cheng Chen and Shuyang Yu
Materials 2025, 18(22), 5140; https://doi.org/10.3390/ma18225140 - 12 Nov 2025
Viewed by 363
Abstract
To reveal the mesoscopic fracture mechanism of fissured concrete, this study employed the discrete element method (DEM) and adopted the parallel bond model (PBM) within the two-dimensional particle flow code (PFC2D) to construct a mesoscopic model of concrete semi-circular bending (SCB) specimens with [...] Read more.
To reveal the mesoscopic fracture mechanism of fissured concrete, this study employed the discrete element method (DEM) and adopted the parallel bond model (PBM) within the two-dimensional particle flow code (PFC2D) to construct a mesoscopic model of concrete semi-circular bending (SCB) specimens with prefabricated fissures. Three sets of schemes were designed by varying prefabricated fissure angles (0–45°), aggregate contents (30–45%), and porosities (3–6%), and numerical simulations of three-point bending loads were conducted to explore the effects of each parameter on the crack propagation law and load-bearing performance of the specimens. Validation was performed by comparing the simulated load–displacement curves with the typical quasi-brittle mechanical characteristics of concrete (exhibiting “linear elastic rise–pre-peak stress fluctuation–nonlinear decline”) and verifying that the DEM could accurately capture the entire process from microcrack initiation at the aggregate–mortar interface, crack deflection/bifurcation induced by pores, to macroscopic fracture penetration—consistent with the known mesoscopic damage evolution law of concrete. The results indicate that the crack propagation mode evolves from straight extension to tortuous branching as parameters change. Moreover, the peak strength first increases and then decreases with the increase in each parameter: when the fissure angle is 15°, the aggregate content is 35%, and the porosity is 4%, the specimens achieve an optimal balance between crack propagation resistance and energy dissipation, resulting in the best load-bearing performance. Specifically, the prefabricated fissure angle dominates the stress type (tension–shear transition); aggregates regulate crack resistance through a “blocking–diverting” effect; and pores, acting as defects, influence stress concentration. This study verifies the reliability of DEM in simulating concrete fracture behavior, enriches the mesoscopic fracture theory of concrete, and provides reliable references for the optimization of concrete material proportioning (e.g., aggregate–porosity ratio adjustment) and anti-cracking design of infrastructure (e.g., pavement, tunnel linings) in engineering practices. Full article
Show Figures

Figure 1

16 pages, 5794 KB  
Article
Dynamic Mechanical Properties and Mesoscopic Characteristics of Cemented Tailings Backfill Under Cyclic Dynamic Loading
by Ruhai Yin, Xi Yang, Chengbo Liu, Jiuyun Cui, Zhiyi Liu, Yuxi Zhang and Yunpeng Zhang
Minerals 2025, 15(11), 1140; https://doi.org/10.3390/min15111140 - 30 Oct 2025
Viewed by 242
Abstract
Cyclic dynamic loading significantly influences the dynamic mechanical properties of cemented tailings backfill (CTB). This study investigates the dynamic mechanical properties and mesoscopic characteristics of CTB under cyclic dynamic loading. Using a Split Hopkinson Pressure Bar (SHPB) system, impact tests were conducted on [...] Read more.
Cyclic dynamic loading significantly influences the dynamic mechanical properties of cemented tailings backfill (CTB). This study investigates the dynamic mechanical properties and mesoscopic characteristics of CTB under cyclic dynamic loading. Using a Split Hopkinson Pressure Bar (SHPB) system, impact tests were conducted on CTB specimens subjected to varying numbers of cyclic impacts. The dynamic peak compressive strength (DPCS), elastic modulus, energy evolution, and failure modes were analyzed. Additionally, computed tomography (CT) scanning and 3D reconstruction techniques were employed to examine the internal pore and crack distribution. Results indicate that cyclic impacts lead to a gradual reduction in DPCS and energy absorption capacity, while the elastic modulus shows strain-rate dependency. Mesostructural analysis reveals that cyclic loading promotes the initiation and propagation of microcracks. This study establishes a correlation between mesoscopic damage evolution and macroscopic mechanical degradation, providing insights into the durability and stability of CTB under repeated blasting disturbances in mining environments. Full article
Show Figures

Figure 1

32 pages, 8357 KB  
Article
Multiscale Damage and Failure Behavior of Drainage Asphalt Mixture Under Multifactor
by Xiong Tao, Tao Bai, Jianwei Fan, Haiwei Shen and Hao Cheng
Materials 2025, 18(21), 4924; https://doi.org/10.3390/ma18214924 - 28 Oct 2025
Viewed by 392
Abstract
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the [...] Read more.
Macroscopic fatigue tests, mesoscopic finite element simulations, and microscopic molecular dynamics simulations were composed to study the damage and failure of drainage asphalt mixtures in multiscale. The applicability of the fatigue models fit by strain, stress, and the linear fitting slope of the indirect tensile modulus curves were compared. The mesoscopic damage and failure distribution and evolution characteristics were studied, considering the single or coupling effect of traffic loading, hydrodynamic pressure, mortar aging, and interfacial attenuation. The microscopic molecular mechanism of the interface adhesion failure between the aggregate and mortar under water-containing conditions was analyzed. Results show that the fatigue model based on the linear fitting slopes of the indirect tensile modulus curves has significant applicability for drainage asphalt mixtures with different void rates and gradations. The damage and failure have an obvious leap development when traffic loading increases from 0.7 MPa to 0.8 MPa. The hydrodynamic pressure significantly increases the stress of the mortar around the voids and close to the aggregate, promoting damage development and crack extension, especially when it is greater than 0.3 MPa. With the aging deepening of the mortar, the increase rate of the damage degree gradually decreases from the top to the bottom of the mixture. With the development of interfacial attenuation, the damage and failure of interfaces continue increasing, while that of the mortar increases first and then decreases, which is related to the loading concentration in the interface and the stress decrease in the mortar. Under the coupling effects, whether the cracks mainly generate in the mortar or interface depends on their damage degrees, thus causing the stripping of the aggregate wrapped or not wrapped by the mortar, respectively. The van del Waals force is the main molecular effect of interface adhesion, and both acidic and alkaline aggregate components significantly tend to form hydrogen bonds with water rather than asphalt, thus attenuating the interface adhesion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 4237 KB  
Article
Experimental Study on Failure Characteristics and Energy Evolution Law of Coal–Rock Combination Body Under Different Quasi-Static Loading Rates
by Wenlong Li, Tongbin Zhao and Shihao Tu
Eng 2025, 6(11), 287; https://doi.org/10.3390/eng6110287 - 27 Oct 2025
Viewed by 349
Abstract
The advancing speed of the coal mining face has a significant impact on the mining-induced stress and energy accumulation of the surrounding rock. To explain the influence mechanism from a mesoscopic perspective, this study conducted a uniaxial compression test on the coal–rock combination [...] Read more.
The advancing speed of the coal mining face has a significant impact on the mining-induced stress and energy accumulation of the surrounding rock. To explain the influence mechanism from a mesoscopic perspective, this study conducted a uniaxial compression test on the coal–rock combination body under different quasi-static loading rates, and analyzed their mechanical properties, failure characteristics, acoustic emission characteristics and energy evolution characteristics. The main findings are as follows: The uniaxial compressive strength and elastic modulus of the coal–rock combination body show a variation law of first increasing and then decreasing with the increase in loading rate, while the degree of impact failure significantly increases gradually as the loading rate rises. With the increase in loading rate, there is a tendency that the AE parameters concentrate from the first two stages to the latter two stages. The post-peak residual elastic energy density of the coal–rock combination body increases gradually with the increase in loading rate. The formation of the advancing speed effect of mining-induced stress concentration and elastic energy accumulation in coal–rock masses is caused by the “competitive” interaction between fracture propagation and coal matrix damage when the coal component in the coal–rock combination is deformed under stress. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

17 pages, 2065 KB  
Article
A Damage Constitutive Model for Rock Considering Crack Propagation Under Uniaxial Compression
by Shengnan Li, Hao Yang, Yu Li, Xianglong Liu, Junhao Tan, Yuecheng Guo, Qiao Liang, Yaqian Shen, Xingxing Wei and Chenzhen Ma
Modelling 2025, 6(4), 116; https://doi.org/10.3390/modelling6040116 - 1 Oct 2025
Cited by 1 | Viewed by 479
Abstract
This study aims to accurately characterize the nonlinear stress–strain evolution of rocks under uniaxial compression considering crack propagation. First, the rock meso-structure was generalized into intact rock unit cells, crack propagation damage unit cells, and pore unit cells according to phenomenological theory. A [...] Read more.
This study aims to accurately characterize the nonlinear stress–strain evolution of rocks under uniaxial compression considering crack propagation. First, the rock meso-structure was generalized into intact rock unit cells, crack propagation damage unit cells, and pore unit cells according to phenomenological theory. A mesoscopic rock stress model considering crack propagation was established based on the static equilibrium relationship of the unit cells, and the effective stress of the crack propagation damage unit cells was solved based on fracture mechanics. Then, the geometric damage theory and conservation-of-energy principle were introduced to construct the damage evolution equation for rock crack propagation. On this basis, the effective stress of the damage unit cells and the crack propagation damage equation were incorporated into the rock meso-structure static equilibrium equation, and the effect of nonlinear deformation in the soft rock compaction stage was considered to establish a rock damage constitutive model based on mesoscopic crack propagation evolution. Finally, methods for determining model parameters were proposed, and the effects of the model parameters on rock stress–strain curves were explored. The results showed that the theoretical model calculations agreed well with the experimental results, thus verifying the rationality of the damage constitutive model and the clear physical meaning of the model parameters. Full article
Show Figures

Figure 1

19 pages, 5120 KB  
Article
Paving Integrated Photovoltaic Technology: Numerical Investigation of Fatigue Performance and Design Strategy
by Peichen Cai, Yutong Chai, Susan Tighe, Meng Wang and Shunde Yin
Inventions 2025, 10(5), 83; https://doi.org/10.3390/inventions10050083 - 24 Sep 2025
Viewed by 558
Abstract
To elucidate the fatigue damage evolution of solar road panels under long-term loading and enhance their structural durability, this study develops a particle-based discrete element model and simulates fatigue responses under different structural configurations and loading rates. A strength degradation index was established [...] Read more.
To elucidate the fatigue damage evolution of solar road panels under long-term loading and enhance their structural durability, this study develops a particle-based discrete element model and simulates fatigue responses under different structural configurations and loading rates. A strength degradation index was established by introducing peak stress and terminal stress, enabling quantitative evaluation of strength deterioration. Combined with fracture evolution, the dominant mesoscopic damage mechanisms were revealed. The results indicate that structural configuration strongly influences fatigue performance, with square panels showing the best resistance due to geometric symmetry and stable boundary constraints. Loading rate regulates damage evolution: lower rates promote structural coordination but may delay cumulative failure, while higher rates suppress overall deformation yet increase localized fracture risk. Based on these findings, a nonlinear predictive model of the strength degradation rate was constructed (R2 = 0.935), offering reliable support for structural life prediction and design optimization. Finally, fatigue-resistant design strategies are proposed, including optimal structural configuration, controlled loading rates, bonding enhancement, and integration of online monitoring—providing both theoretical and technical guidance for high-performance, long-lifespan solar road systems. Full article
Show Figures

Figure 1

21 pages, 7107 KB  
Article
Study on Mesoscopic Evolution Mechanism and Influencing Factors of Concrete Blasting Damage Based on PFC
by Xueying Hu, Shuyang Yu, Yifei Li, Yihan Tang, Ying Sun and Pingping Gu
Buildings 2025, 15(17), 3000; https://doi.org/10.3390/buildings15173000 - 23 Aug 2025
Viewed by 653
Abstract
In urban construction, the efficient demolition of concrete structures imposes high-precision requirements on blasting technology. The mesoscopic evolution mechanism of concrete blasting damage is the key to optimizing blasting parameters. In this study, a numerical model of concrete blasting is established using Particle [...] Read more.
In urban construction, the efficient demolition of concrete structures imposes high-precision requirements on blasting technology. The mesoscopic evolution mechanism of concrete blasting damage is the key to optimizing blasting parameters. In this study, a numerical model of concrete blasting is established using Particle Flow Code (PFC). By comparing it with an experimental model containing a blast hole and a horizontal single fissure, the rationality and reliability of the model in simulating blasting damage evolution are verified. On this basis, four groups of control variable schemes are designed (concrete particle size distribution, aggregate content, prefabricated fissure inclination angle, and fissure length) to systematically explore the effects of mesoscopic structures and macroscopic defects on blasting damage. The results show that larger concrete particles make it easier for damage cracks to avoid large particles, forming sparse and irregular crack networks. A higher aggregate content enhances the “obstruction-guidance” effect of aggregate distribution on damage. When the aggregate content is 40%, the vertical damage expansion is the most prominent, reaching up to 3.05 cm. Fissure inclination angle affects the damage direction by guiding the propagation path of stress waves. Fissures inclined at 30°~60° serve as preferential damage channels, while 90° vertical fissures make vertical damage more significant. An increased fissure length expands the damage range, and the damage degree is the highest for a 40 mm long fissure, being 1.29 times that of a 30 mm fissure. The research results reveal the mesoscopic evolution laws of concrete blasting damage, providing a theoretical basis for the optimization of engineering blasting parameters and safety control. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

29 pages, 15691 KB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Viewed by 711
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

15 pages, 3947 KB  
Article
Simulation of the Mesoscale Cracking Processes in Concrete Under Tensile Stress by Discrete Element Method
by Zhenyu Zhu, Bintang Mas Mediamartha, Shuyang Yu, Yifei Li, Jian Xu and Pingping Gu
Materials 2025, 18(13), 2981; https://doi.org/10.3390/ma18132981 - 24 Jun 2025
Cited by 4 | Viewed by 947
Abstract
Material scientists face a critical challenge in characterizing the mesoscopic damage evolution of concrete under tensile loading, as traditional experimental and theoretical approaches struggle to resolve the complexities of its multiphase heterogeneous structure. This study addresses this gap by employing the Discrete Element [...] Read more.
Material scientists face a critical challenge in characterizing the mesoscopic damage evolution of concrete under tensile loading, as traditional experimental and theoretical approaches struggle to resolve the complexities of its multiphase heterogeneous structure. This study addresses this gap by employing the Discrete Element Method (DEM) with PFC2D to model concrete’s mesoscopic cracking, integrating aggregates, mortar, interfacial transition zones (ITZ), and pores. Through parameter calibration against experimental data, uniaxial tensile simulations reveal how aggregate percentages (30–45%) and pore percentages (1–6%) influence crack propagation and tensile strength. Specifically, when the aggregate percentage increased from 30% to 40%, the peak tensile strength decreased by 26%, while increasing from 40% to 45% led to a recovery in strength. With porosity increasing from 2% to 4%, the peak strength dropped by approximately 3%, and further to 6% caused a 14% reduction, demonstrating the quantitative impact of microstructural parameters on concrete performance. Simulation results align closely with experimental data, validating DEM’s efficacy in modeling mesoscopic cracking. This work provides a mesoscopic theoretical foundation for optimizing concrete’s tensile properties and underscores the need to incorporate realistic mesoscopic features in future simulations. Full article
Show Figures

Figure 1

25 pages, 51954 KB  
Article
Mechanical Properties of Marble Under Triaxial and Cyclic Loading Based on Discrete Elements
by Yanshuang Yang, Jiancheng Peng, Zhen Cui, Lei Yan and Zhaopeng Kang
Appl. Sci. 2025, 15(7), 3576; https://doi.org/10.3390/app15073576 - 25 Mar 2025
Cited by 1 | Viewed by 885
Abstract
The excavation process for a deeply buried chamber in a high ground stress area is often dynamic. The design of reasonable excavation methods for differing geological conditions and surrounding pressure environments is of great engineering significance in order to improve the stability of [...] Read more.
The excavation process for a deeply buried chamber in a high ground stress area is often dynamic. The design of reasonable excavation methods for differing geological conditions and surrounding pressure environments is of great engineering significance in order to improve the stability of surrounding rocks during construction. Based on the findings from conventional triaxial and cyclic loading laboratory tests on marble, this paper obtains a set of mesoscopic parameters that accurately represent the macro-mechanical characteristics of marble, uses the discrete element method (DEM) to establish a numerical model, and carries out numerical tests of triaxial and cyclic loading under varying circumferential pressures. The mechanical parameter evolution, crack propagation mechanism and mesoscopic force field distribution of marble under conventional triaxial stress and cyclic load-reversal conditions are compared and analyzed. The findings suggest that the peak strength, residual strength, peak axial strain, elastic modulus, and Poisson’s ratio of marble increase as the circumferential pressures rises for both stress paths. The peak strength and elastic modulus under cyclic loading at different circumferential pressures are lower than those observed under conventional triaxial conditions, while the Poisson’s ratio is higher compared to conventional triaxial conditions. The cumulative total number of microcracks in marble damage under cyclic loading is higher and the damage is more complete compared to conventional triaxial loading. The rock specimens in both stress paths are dominated by tension cracks. Nevertheless, a greater number of shear cracks are exhibited by the specimens subjected to cyclic loading conditions. The proportion of tension cracks in the rock specimens gradually decreases with increasing circumferential pressure, while the proportion of shear cracks gradually increases. For both stress paths, the angular distribution of microcracks following rock specimen failure is similar, and the force chain becomes progressively denser as the circumferential pressures increase. The force chain distribution within the rock specimens is more heterogeneous under cyclic loading conditions than under conventional triaxial conditions. Full article
Show Figures

Figure 1

17 pages, 11556 KB  
Article
Simulation Tests on Granite Pillar Rockburst
by Xinmu Xu, Peng Zeng, Kui Zhao, Daxing Lei, Liangfeng Xiong, Cong Gong and Yifan Chen
Appl. Sci. 2025, 15(4), 2087; https://doi.org/10.3390/app15042087 - 17 Feb 2025
Viewed by 723
Abstract
Parallelepipeds specimens were made to further investigate the rockburst occurrence mechanism of ore pillars in underground mining units. The investigation was carried out with uniaxial compression systems and real-time testing systems, such as stress, video, and acoustic emission, combined with digital image correlation [...] Read more.
Parallelepipeds specimens were made to further investigate the rockburst occurrence mechanism of ore pillars in underground mining units. The investigation was carried out with uniaxial compression systems and real-time testing systems, such as stress, video, and acoustic emission, combined with digital image correlation (DIC) and SEM electron microscope scanning technology, to systematically analyze the evolution of rockburst of ore pillars, strain field characteristics, acoustic emission characteristics, mesoscopic characteristics of the rockburst fracture, morphology of the bursting crater, and debris characteristics. The findings demonstrate that the pillar’s rockburst process went through four stages, including the calm period, the particle ejection period, the block spalling period, and the full collapse period. According to DIC digital image correlation technology, the development of cracks in the rock is not obvious during the calm period, but during the small particle ejection and block spalling periods, the microcracks started to form and expand more quickly and eventually reached the critical surface of the rock, resulting in the formation of a complete macro-rockburst rupture zone. During stage I of the test, the rate of acoustic emission events and energy was relatively low; from stages II to IV, the rate gradually increased; and in stage V, the rate of acoustic emission events and energy reached its maximum value at the precise moment the rock exploded, releasing all of its stored energy. The specimen pit section primarily exhibits shear damage and the fracture exhibits shear fracture morphology, while the ejecta body primarily exhibits tensile damage and the fracture exhibits tensile fracture morphology. The location of the explosion pit is distributed on the left and right sides of the middle pillar of the specimen, and the shape is a deep “V”. The majority of the rockburst debris is greater than 5 mm, and it mostly takes the shape of thin plates, which is comparable to the field rockburst debris’s shape features. Full article
(This article belongs to the Special Issue Recent Advances in Rock Mass Engineering)
Show Figures

Figure 1

26 pages, 10867 KB  
Article
An Experimental and Numerical Study on the Mechanical Properties and Damage Evolution of Cemented Tailings Backfill Under Uniaxial Compression
by Congxiang Yuan, Houqiang Wang, Zhixiang Liu, Shuangxia Zhang, Mengyang Yan, Xiaodie Liang, Zhiwei Liu and Weijun Liu
Materials 2025, 18(4), 856; https://doi.org/10.3390/ma18040856 - 15 Feb 2025
Cited by 1 | Viewed by 1106
Abstract
A comprehensive understanding of the mechanical behavior of backfill under compression is crucial for optimizing its design, improving stope stability and enhancing resource recovery. Laboratory testing and numerical simulation were conducted to study the mechanical properties and damage mechanism of cemented tailings backfill [...] Read more.
A comprehensive understanding of the mechanical behavior of backfill under compression is crucial for optimizing its design, improving stope stability and enhancing resource recovery. Laboratory testing and numerical simulation were conducted to study the mechanical properties and damage mechanism of cemented tailings backfill (CTB) with different cement-to-tailings (c/t) ratios under uniaxial compression. Laboratory testing was used to investigate the strength and deformation characteristics, macroscopic failure modes, and energy evolution patterns of CTB, while simulation with Particle Flow Code (PFC) was employed to explore the distribution of microcracks and mesoscopic damage mechanisms. A constitutive model accounting for the initial compaction stage was proposed, validated, and applied to practical engineering. The results show that as the c/t ratio decreases, the failure mode of CTB transforms from shear failure to combined tensile–shear failure, and tensile failure. Mesoscopically, a higher c/t ratio leads to more bond contacts, which increases the bearing capacity and consequently causes more cracks to damage CTB. From an energy standpoint, the damage mechanism of CTB is further analyzed and the development of energy is characterized by four stages. Moreover, to explore the failure mechanism of CTB, an innovative constitutive model was proposed and verified through experiments. The matching coefficients, based on the novel constitutive model, indicate that CTB with a c/t ratio of 1:6 is qualified for all current mining depths, and a c/t ratio of 1:10 is sufficient to depths below 300 m. Full article
Show Figures

Figure 1

21 pages, 13380 KB  
Article
Macro-Mesoscopic Failure Mechanism Based on a Direct Shear Test of a Cemented Sand and Gravel Layer
by Long Qian, Xingwen Guo, Qinghui Liu, Xin Cai and Xiaochuan Zhang
Buildings 2024, 14(12), 4078; https://doi.org/10.3390/buildings14124078 - 23 Dec 2024
Cited by 1 | Viewed by 1289
Abstract
In order to explore the influence of different layer treatment methods on the macro- and meso-mechanical properties of cemented sand and gravel (CSG), in this paper, the shear behavior of CSG material was simulated by a three-dimensional particle flow program (PFC3D) based on [...] Read more.
In order to explore the influence of different layer treatment methods on the macro- and meso-mechanical properties of cemented sand and gravel (CSG), in this paper, the shear behavior of CSG material was simulated by a three-dimensional particle flow program (PFC3D) based on the results of direct shear test in the laboratory. In shear tests, untreated CSG samples with interface coating mortar and chiseling were used, and granular discrete element software (PDC3D 7.0) was used to establish mesoscopic numerical models of CSG samples with the above three interface treatment methods, in order to reveal the effects of interface treatment methods on the interface strength and damage mechanism of CSG samples. The results show that, with the increase in normal stress, the amount of aggregate falling off the shear failure surface increases, the bump and undulation are more obvious, and the failure mode of the test block is inferred to be extrusion friction failure. The shear strength of the mortar interface is 40% higher than that of the untreated interface, and the failure surface is smooth and flat under different normal stresses. The shear strength of the chiseled interface is 10% higher than that of the untreated interface, and the failure surface fluctuates significantly under different normal stresses. Through the analysis of the fracture evolution process in the numerical simulation, it is found that the fracture of the sample at the mortar interface mainly expands along the mortar–aggregate interface and the damage mode is shear slip. However, the cracks of the samples at the gouged interface are concentrated on the upper and lower sides of the interface, and the damage mode is tension–shear. The failure mode of the samples without surface treatment is mainly tensile and shear failure, and the failure mode gradually changes to extrusion friction failure. Full article
Show Figures

Figure 1

17 pages, 14485 KB  
Article
Quantitative Analysis of Crack Propagation Behavior in Recycled Concrete Subjected to Axial Compression Using Digital Image Correlation (DIC) Technology and Fractal Theory
by Cheng-Gong Lu, Xiu-Cheng Zhang, Wei-Zhi Chen and Xue-Fei Chen
Fractal Fract. 2024, 8(12), 686; https://doi.org/10.3390/fractalfract8120686 - 23 Nov 2024
Cited by 8 | Viewed by 2594
Abstract
The current research endeavors to explore the mechanical properties of recycled concrete cubic specimens, predominantly concentrating on macroscopic attributes such as compressive strength and splitting tensile strength. However, at the mesoscopic scale, the internal structure of recycled concrete becomes increasingly intricate due to [...] Read more.
The current research endeavors to explore the mechanical properties of recycled concrete cubic specimens, predominantly concentrating on macroscopic attributes such as compressive strength and splitting tensile strength. However, at the mesoscopic scale, the internal structure of recycled concrete becomes increasingly intricate due to the adherence of substantial mortar on the surface of recycled coarse aggregates, ultimately influencing its macroscopic mechanical behavior and crack propagation trajectories. To address this complexity, Digital Image Correlation (DIC) technology is harnessed to quantitatively analyze crack tip displacement fields and crack propagation behavior in recycled concrete, considering variations in aggregate replacement ratios and particle sizes. This analysis encompasses quantitative assessments of pre-cracking damage, post-cracking crack morphology characteristics, and size. Utilizing the advanced 3D-DIC algorithmic technique, this study delves into the evolution of crack propagation patterns in recycled concrete during the loading process, evaluating the impact of both aggregate replacement ratios and particle sizes on crack propagation behavior. Ultimately, fractal theory is employed to provide a quantitative analysis of the crack morphology on the surface of recycled concrete. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

19 pages, 3453 KB  
Review
Opportunities and Challenges for Predicting the Service Status of SLM Metal Parts Under Big Data and Artificial Intelligence
by Xiaoling Yan and Huiwen Fu
Materials 2024, 17(22), 5648; https://doi.org/10.3390/ma17225648 - 19 Nov 2024
Viewed by 1489
Abstract
Selective laser melting (SLM) technology is a high-end dual-use technology that is implemented in aerospace and medical equipment, as well as the automotive industry and other military and civilian industries, and is urgently needed for major equipment manufacturing and national defense industries. This [...] Read more.
Selective laser melting (SLM) technology is a high-end dual-use technology that is implemented in aerospace and medical equipment, as well as the automotive industry and other military and civilian industries, and is urgently needed for major equipment manufacturing and national defense industries. This paper examines the challenges of uncontrollable service states and the inability to ensure service safety of SLM metal parts under nonlinear and complex operating conditions. An overview of the prediction of the service status of SLM metal parts was introduced, and an effective approach solving the problem was provided in this paper. In this approach, the cross-scale coupling mechanism between mesoscopic damage evolution and macroscopic service state evolution is clarified by tracking the mesoscopic damage evolution process of SLM metal parts based on ultrasonic nonlinear responses. The failure mechanism is organically integrated with hidden information from monitoring big data, and a “chimeric” model to accurately evaluate the service status of SLM metal parts is constructed. Combining nonlinear ultrasound technology with big data and artificial intelligence to construct a “chimeric” model and consummate the corresponding methods and theories for evaluating the service status of SLM metal parts is an effective way to reveal the mesoscopic damage evolution and service status evolution mechanisms of SLM metal parts under complex factor coupling, and to accurately describe and characterize the service status of parts under complex operating conditions. The proposed approach will provide a theoretical basis and technical guarantee for the precise management of SLM parts’ service safety in key equipment fields such as aerospace, medical equipment, and the automotive industry. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

Back to TopTop