Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (164)

Search Parameters:
Keywords = mesoscale behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13331 KiB  
Article
Multi-Scale Study on Ultrasonic Cutting of Nomex Honeycomb Composites of Disc Cutters
by Yiying Liang, Feng Feng, Wenjun Cao, Ge Song, Xinman Yuan, Jie Xu, Qizhong Yue, Si Pan, Enlai Jiang, Yuan Ma and Pingfa Feng
Materials 2025, 18(15), 3476; https://doi.org/10.3390/ma18153476 - 24 Jul 2025
Abstract
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the [...] Read more.
To address the issues of burr formation, structural deformation, and tearing in the conventional machining of Nomex honeycomb composites, this study aims to clarify the mechanisms by which ultrasonic vibration-assisted cutting enhances machining quality. A multi-scale analysis framework is developed to examine the effects of ultrasonic vibration on fiber distribution, cell-level shear response, and the overall cutting mechanics. At the microscale, analyses show that ultrasonic vibration mitigates stress concentrations, thereby shortening fiber length. At the mesoscale, elastic buckling and plastic yielding models show that ultrasonic vibration lowers shear strength and modifies the deformation. A macro-scale comparison of cutting behavior with and without ultrasonic vibration was conducted. The results indicate that the intermittent contact effect induced by vibration significantly reduces cutting force. Specifically, at an amplitude of 40 μm, the cutting force decreased by approximately 29.7% compared to the condition without ultrasonic vibration, with an average prediction error below 8.6%. Compared to conventional machining, which causes the honeycomb angle to deform to approximately 130°, ultrasonic vibration preserves the original 120° geometry and reduces burr length by 36%. These results demonstrate that ultrasonic vibration effectively reduces damage through multi-scale interactions, offering theoretical guidance for high-precision machining of fiber-reinforced composites. Full article
Show Figures

Figure 1

23 pages, 4453 KiB  
Article
Nonlinear Elasticity and Damage Prediction in Automated Fiber Placement Composites via Nested Micromechanics
by Hadas Hochster, Gal Raanan, Eyal Tiosano, Yoav Harari, Golan Michaeli, Yonatan Rotbaum and Rami Haj-Ali
Materials 2025, 18(14), 3394; https://doi.org/10.3390/ma18143394 - 19 Jul 2025
Viewed by 222
Abstract
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric [...] Read more.
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress–strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

20 pages, 4335 KiB  
Article
Multi-Scale Transient Thermo-Mechanical Coupling Analysis Method for the SiCf/SiC Composite Guide Vane
by Min Li, Xue Chen, Yu Deng, Wenjun Wang, Jian Li, Evance Obara, Zhilin Han and Chuyang Luo
Materials 2025, 18(14), 3348; https://doi.org/10.3390/ma18143348 - 17 Jul 2025
Viewed by 166
Abstract
In composites, fiber–matrix thermal mismatch induces stress heterogeneity that is beyond the resolution of macroscopic approaches. The asymptotic expansion homogenization method is used to create a multi-scale thermo-mechanical coupling model that predicts the elastic modulus, thermal expansion coefficients, and thermal conductivity of ceramic [...] Read more.
In composites, fiber–matrix thermal mismatch induces stress heterogeneity that is beyond the resolution of macroscopic approaches. The asymptotic expansion homogenization method is used to create a multi-scale thermo-mechanical coupling model that predicts the elastic modulus, thermal expansion coefficients, and thermal conductivity of ceramic matrix composites at both the macro- and micro-scales. These predictions are verified to be accurate with a maximum relative error of 9.7% between the measured and predicted values. The multi-scale analysis method is then used to guide the vane’s thermal stress analysis, and a macro–meso–micro multi-scale model is created. The thermal stress distribution and stress magnitudes of the guide vane under a transient high-temperature load are investigated. The results indicate that the temperature and thermal stress distributions of the guide vane under the homogenization and lamination theory models are rather comparable, and the locations of the maximum thermal stress are predicted to be reasonably close to one another. The homogenization model allows for the rapid and accurate prediction of the guide vane’s thermal stress distribution. When compared to the macro-scale stress values, the meso-scale predicted stress levels exhibit excellent accuracy, with an inaccuracy of 11.7%. Micro-scale studies reveal significant stress concentrations at the fiber–matrix interface, which is essential for the macro-scale fatigue and fracture behavior of the guide vane. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 4854 KiB  
Article
A Multi-Scale Approach for Finite Element Method Structural Analysis of Injection-Molded Parts of Short Fiber-Reinforced Polymer Composite Materials
by Young Seok Cho, Byungwook Jeon, Juwon Min, Kiweon Kang and Haksung Lee
Appl. Sci. 2025, 15(13), 7434; https://doi.org/10.3390/app15137434 - 2 Jul 2025
Viewed by 207
Abstract
Short fiber-reinforced polymer composites are extensively used in automotive structural components, such as engine mounts and motor mount brackets, due to their favorable strength-to-weight ratio. For motor mount brackets, accurate structural analysis requires consideration of fiber orientation, as it significantly affects the mechanical [...] Read more.
Short fiber-reinforced polymer composites are extensively used in automotive structural components, such as engine mounts and motor mount brackets, due to their favorable strength-to-weight ratio. For motor mount brackets, accurate structural analysis requires consideration of fiber orientation, as it significantly affects the mechanical behavior of the composite. This study aims to investigate the influence of fiber orientation heterogeneity on the mechanical properties of short fiber-reinforced polymer composites formed by injection molding. The spatial variation of the fiber orientation tensor, which evolves from the gate to the flow end during molding, presents challenges in experimental characterization. To address this, microscale analysis was conducted using injection-molded tensile specimens, followed by mesoscale modeling through representative volume elements (RVEs). Homogenization techniques were applied to predict effective mechanical properties, which were subsequently used to evaluate the performance of actual components at the macroscale. The findings demonstrate the importance of multi-scale modeling in capturing the anisotropic behavior of fiber-reinforced composites and provide a framework for more reliable structural analysis in automotive applications. Full article
(This article belongs to the Special Issue Optimized Design and Analysis of Mechanical Structure)
Show Figures

Figure 1

15 pages, 3947 KiB  
Article
Simulation of the Mesoscale Cracking Processes in Concrete Under Tensile Stress by Discrete Element Method
by Zhenyu Zhu, Bintang Mas Mediamartha, Shuyang Yu, Yifei Li, Jian Xu and Pingping Gu
Materials 2025, 18(13), 2981; https://doi.org/10.3390/ma18132981 - 24 Jun 2025
Viewed by 377
Abstract
Material scientists face a critical challenge in characterizing the mesoscopic damage evolution of concrete under tensile loading, as traditional experimental and theoretical approaches struggle to resolve the complexities of its multiphase heterogeneous structure. This study addresses this gap by employing the Discrete Element [...] Read more.
Material scientists face a critical challenge in characterizing the mesoscopic damage evolution of concrete under tensile loading, as traditional experimental and theoretical approaches struggle to resolve the complexities of its multiphase heterogeneous structure. This study addresses this gap by employing the Discrete Element Method (DEM) with PFC2D to model concrete’s mesoscopic cracking, integrating aggregates, mortar, interfacial transition zones (ITZ), and pores. Through parameter calibration against experimental data, uniaxial tensile simulations reveal how aggregate percentages (30–45%) and pore percentages (1–6%) influence crack propagation and tensile strength. Specifically, when the aggregate percentage increased from 30% to 40%, the peak tensile strength decreased by 26%, while increasing from 40% to 45% led to a recovery in strength. With porosity increasing from 2% to 4%, the peak strength dropped by approximately 3%, and further to 6% caused a 14% reduction, demonstrating the quantitative impact of microstructural parameters on concrete performance. Simulation results align closely with experimental data, validating DEM’s efficacy in modeling mesoscopic cracking. This work provides a mesoscopic theoretical foundation for optimizing concrete’s tensile properties and underscores the need to incorporate realistic mesoscopic features in future simulations. Full article
Show Figures

Figure 1

24 pages, 8513 KiB  
Article
Dynamic Compressive Behavior and Fracture Mechanisms of Binary Mineral Admixture-Modified Concrete
by Jianqing Bu, Qin Liu, Longwei Zhang, Shujie Li and Liping Zhang
Materials 2025, 18(12), 2883; https://doi.org/10.3390/ma18122883 - 18 Jun 2025
Viewed by 267
Abstract
Fly ash and slag powder, as two of the most widely utilized industrial solid waste-based mineral admixtures, have demonstrated through extensive validation that their combined incorporation technology effectively enhances the mechanical properties and microstructural characteristics of concrete. Systematic investigations remain imperative regarding material [...] Read more.
Fly ash and slag powder, as two of the most widely utilized industrial solid waste-based mineral admixtures, have demonstrated through extensive validation that their combined incorporation technology effectively enhances the mechanical properties and microstructural characteristics of concrete. Systematic investigations remain imperative regarding material response mechanisms under dynamic loading conditions. This study conducted microstructural analysis, static compression tests, and dynamic Split Hopkinson Pressure Bar (SHPB) impact compression tests on concrete specimens, complemented by dynamic impact simulations employing an established three-dimensional mesoscale concrete aggregate model. Through integrated analysis of macroscopic mechanical test results, mesoscale numerical simulations, and microstructural characterization data, the research systematically elucidated the influence mechanisms of different mineral admixture combinations on concrete’s dynamic mechanical behavior, energy dissipation characteristics, and fracture mechanisms. The results showed that all specimens exhibited strain rate enhancement characteristics as the strain rate increased. As the admixture approach transitioned from non-admixture to single admixture and subsequently to binary admixture, the dynamic strength, elastic modulus, and DIF of concrete increased progressively. Both the energy dissipation capacity and its proportion relative to total energy absorption showed continuous enhancement. The simulated stress–strain curves, failure modes, and fracture processes show good agreement with experimental results, this effectively verifies both the scientific validity of the mesoscale concrete model’s multiscale modeling approach and the reliability of the numerical simulations. Compared to FHC1, FMHC1’s mesoscale structure can more effectively convert externally applied energy into stored internal energy, thereby achieving superior dynamic compressive energy dissipation capacity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 25943 KiB  
Article
Effect of Porosity and Pore Size on the Axial Compressive Properties of Recycled Aggregate Concrete
by Chunqi Zhu, Eryu Zhu, Bin Wang, Jiacheng Li, Tong Yao and Zhu Zhang
Materials 2025, 18(12), 2830; https://doi.org/10.3390/ma18122830 - 16 Jun 2025
Cited by 1 | Viewed by 347
Abstract
Pores of different sizes and quantities are formed during the molding process of recycled aggregate concrete (RAC). However, few studies have examined the individual and combined effects of porosity and mesoscale pore size (pore size) on the axial compressive mechanical properties of RAC. [...] Read more.
Pores of different sizes and quantities are formed during the molding process of recycled aggregate concrete (RAC). However, few studies have examined the individual and combined effects of porosity and mesoscale pore size (pore size) on the axial compressive mechanical properties of RAC. In this study, the influence of porosity and pore size on the axial compressive mechanical behavior of RAC was examined by incorporating expanded polystyrene (EPS) particles to create prefabrication of pores. Additionally, crack development influenced by pores was analyzed using high-energy X-ray computed tomography (CT). Gray correlation analysis was employed to quantify the influence of pore size and porosity on compressive mechanical parameters. Furthermore, the combined effects of pore characteristics were assessed by introducing damage variables. It was shown that the compressive strength, strength reduction, elastic modulus, and modulus reduction exhibited linear correlations with porosity and exponential correlations with pore size. Cracks within the specimen predominantly propagate through the pores or along their edges. The influence of porosity on both strength and elastic modulus is more substantial than that of pore size. Moreover, the deterioration in mechanical properties is more pronounced when small pore size is coupled with high porosity, compared to the combination of large pore size and low porosity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 2724 KiB  
Review
From Different Systems to a Single Common Model: A Review of Dynamical Systems Leading to Lorenz Equations
by Juan Carlos Chimal-Eguía, Florencio Guzmán-Aguilar, Víctor Manuel Silva-García, Héctor Báez-Medina and Manuel Alejandro Cardona-López
Axioms 2025, 14(6), 465; https://doi.org/10.3390/axioms14060465 - 13 Jun 2025
Viewed by 424
Abstract
This paper presents an analytical exploration of how diverse dynamical systems, arising from different scientific domains, can be reformulated (under specific approximations and assumptions) into a common set of equations formally equivalent to the Lorenz system originally derived to model atmospheric convection. Unlike [...] Read more.
This paper presents an analytical exploration of how diverse dynamical systems, arising from different scientific domains, can be reformulated (under specific approximations and assumptions) into a common set of equations formally equivalent to the Lorenz system originally derived to model atmospheric convection. Unlike previous studies that focus on analyzing or applying the Lorenz equations, our objective is to show how these equations emerge from distinct models, emphasizing the underlying structural and dynamical similarities. The mathematical steps involved in these reformulations are included. The systems examined include Lorenz’s original atmospheric convection model, the chaotic water wheel, the Maxwell–Bloch equations for lasers, mechanical gyrostat, solar dynamo model, mesoscale reaction dynamics, an interest rate economic model, and a socioeconomic control system. This work includes a discussion of the unifying features that lead to similar qualitative behaviors across seemingly unrelated systems. By highlighting the Lorenz system as a paradigmatic limit of a broad class of nonlinear models, we underscore its relevance as a unifying framework in the study of complex dynamics. Full article
Show Figures

Figure 1

19 pages, 2894 KiB  
Article
Mesoscale Modelling of the Mechanical Behavior of Metaconcretes
by Antonio Martínez Raya, Gastón Sal-Anglada, María Pilar Ariza and Matías Braun
Appl. Sci. 2025, 15(12), 6543; https://doi.org/10.3390/app15126543 - 10 Jun 2025
Viewed by 461
Abstract
Metaconcrete (MC) is a class of engineered cementitious composites that integrates locally resonant inclusions to filter stress waves. While the dynamic benefits are well established, the effect of resonator content and geometry on static compressive resistance remains unclear. This study develops the first [...] Read more.
Metaconcrete (MC) is a class of engineered cementitious composites that integrates locally resonant inclusions to filter stress waves. While the dynamic benefits are well established, the effect of resonator content and geometry on static compressive resistance remains unclear. This study develops the first two-dimensional mesoscale finite-element model that explicitly represents steel cores, rubber coatings, and interfacial transition zones to predict the quasi-static behavior of MC. The model is validated against benchmark experiments, reproducing the 56% loss of compressive strength recorded for a 10.6% resonator volume fraction with an error of less than 1%. A parametric analysis covering resonator ratios from 1.5% to 31.8%, diameters from 16.8 mm to 37.4 mm, and coating thicknesses from 1.0 mm to 4.2 mm shows that (i) strength decays exponentially with volumetric content, approaching an asymptote at ≈20% of plain concrete strength; (ii) larger cores with thinner coatings minimize stiffness loss (<10%) while limiting strength reduction to 15–20%; and (iii) material properties of the resonator have a secondary influence (<6%). Two closed-form expressions for estimating MC strength and Young’s modulus (R2 = 0.83 and 0.94, respectively) are proposed to assist with the preliminary design. The model and correlations lay the groundwork for optimizing MC that balances vibration mitigation with structural capacity. Full article
Show Figures

Figure 1

20 pages, 8651 KiB  
Article
Hierarchical Modeling of Archaeological and Modern Flax Fiber: From Micro- to Macroscale
by Vasuki Rajakumaran, Johnny Beaugrand, Alessia Melelli, Mario Scheel, Timm Weitkamp, Jonathan Perrin, Alain Bourmaud, Henry Proudhon and Sofiane Guessasma
Fibers 2025, 13(6), 76; https://doi.org/10.3390/fib13060076 - 9 Jun 2025
Viewed by 882
Abstract
Flax fiber reinforcements weaken with aging and microstructural changes, limiting their applications. Here, we examine the effects of microstructure and aging on flax fiber elements’ performance by using 4000-year-old and modern Egyptian flax as references through multi-scale numerical modeling. This study introduces a [...] Read more.
Flax fiber reinforcements weaken with aging and microstructural changes, limiting their applications. Here, we examine the effects of microstructure and aging on flax fiber elements’ performance by using 4000-year-old and modern Egyptian flax as references through multi-scale numerical modeling. This study introduces a novel investigation into the tensile stress distribution behavior of archaeological and modern flax yarns. The finite element (FE) model is derived from 3D volumes obtained via X-ray microtomography and tensile testing in the elastic domain. At the microscale, fibers exhibit higher axial stress concentrations around surface defects and pores, particularly in regions with kink bands and lumens. At the mesoscale, fiber bundles show increased stress concentrations at inter-fiber voids and lumen, with larger bundles exhibiting greater stress heterogeneity, especially around pores and surface roughness. At the macroscale, yarns display significant stress heterogeneity, especially around microstructural defects like pores and fiber–fiber cohesion points. Aged fibers from ancient Egyptian cultural heritage in particular demonstrate large fiber discontinuities due to long-term degradation or aging. These numerical observations highlight how porosity, surface imperfections, and structural degradation increase stress concentration, leading to fiber rupture and mechanical failure. This insight reveals how aging and defects impact flax fiber performance and durability. Full article
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 480
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

17 pages, 3009 KiB  
Article
Toughening Effect of Micro-Cracks on Low-Temperature Crack Propagation in Asphalt Concrete
by Jianhuan Du, Xianxing Dai, Qingyang Liu and Zhu Fu
Materials 2025, 18(11), 2429; https://doi.org/10.3390/ma18112429 - 22 May 2025
Viewed by 357
Abstract
Asphalt concrete has a unique low-temperature fracture mechanism due to the complex interaction between macro- and micro-cracks. This study investigated the toughening effect of micro-cracks on the crack propagation behavior of asphalt concrete at low temperatures. The Taylor model was applied to establish [...] Read more.
Asphalt concrete has a unique low-temperature fracture mechanism due to the complex interaction between macro- and micro-cracks. This study investigated the toughening effect of micro-cracks on the crack propagation behavior of asphalt concrete at low temperatures. The Taylor model was applied to establish a modulus damage model of asphalt concrete. In combination with the discrete element method (DEM), a 2D microstructure damage model of asphalt concrete with heterogeneity (aggregate, mortar, and voids) and multi-level (aggregate gradation) characteristics was constructed. A virtual semi-circular bending (SCB) test was performed to reveal the toughening effect of the micro-cracks in terms of macroscopic and microscopic parameters, such as the modulus damage variable, dynamic parameters associated with the main crack propagation, and stress field distribution, laying a foundation for predicting the propagation behavior and path of macroscopic cracks in asphalt concrete. The results showed that (1) the proposed modulus damage model based on the Taylor model produced results that were in good agreement with the numerical simulation (virtual SCB test) results. With an increase in the micro-crack density, the influence of the main cracks on the modulus damage of asphalt concrete gradually reduced, indicating that the micro-cracks exhibited a toughening effect on the main crack propagation; (2) At the meso-scale, the toughening effect of the micro-cracks extended the duration of the crack propagation stage and macro-crack formation stage; that is, the toughening effect of the micro-cracks had a shielding effect on the main crack propagation; (3) The toughening effect could inhibit the shear stress field, contributing to preventing the deterioration in the modulus of asphalt concrete. Full article
(This article belongs to the Special Issue Novel Materials in Highway Engineering)
Show Figures

Figure 1

36 pages, 28595 KiB  
Article
Study of the Macro-Mesoscopic Shear Anisotropic Mechanical Behavior of Reservoir Shale
by Zifang Zhu, Bowen Zheng, Shengwen Qi, Songfeng Guo, Guangming Luo, Tao Wang and Jianrui Jiao
Processes 2025, 13(5), 1404; https://doi.org/10.3390/pr13051404 - 4 May 2025
Viewed by 400
Abstract
Shear failure is pivotal in fracture evolution and stimulated reservoir volume (SRV) during hydraulic fracturing, particularly in bedded shale formations. However, the limited availability of coupled macro- and mesoscale experimental data on the shear behavior of reservoir shale constrains a comprehensive understanding of [...] Read more.
Shear failure is pivotal in fracture evolution and stimulated reservoir volume (SRV) during hydraulic fracturing, particularly in bedded shale formations. However, the limited availability of coupled macro- and mesoscale experimental data on the shear behavior of reservoir shale constrains a comprehensive understanding of its anisotropic shear mechanical properties across scales. This study systematically investigates shear anisotropy at both macro- and mesoscales in shale with varying bedding orientations under different normal stress conditions. The key findings are summarized as follows: (1) At lower normal stresses, the anisotropy of peak shear strength was more pronounced, whereas the anisotropy of residual shear strength was relatively weak. As the normal stress increased, the anisotropic effects of bedding on peak and residual shear strengths exhibited opposite trends. The former exhibited a fluctuating decline, whereas the latter showed a progressive increase. (2) The internal friction angle of shale bedding planes was higher than that of the matrix, whereas cohesion exhibited the opposite trend. The internal friction angle corresponding to the peak shear strength reached its maximum at a bedding angle of 45°, while cohesion peaked at a bedding angle of 60°. (3) At lower normal stresses, the cumulative acoustic emission (AE) ringing count curves for shale shear failure followed an “S”-shaped pattern for bedded and matrix shear, differing from the piecewise linear pattern observed in bedded-matrix coupled shear. As the normal stress increased, the bedding-induced effects on macro- and mesoscale shear behavior evolved from non-uniformity to uniformity, reflecting a transition of anisotropy from uncoordinated to coordinated characteristics. Full article
Show Figures

Figure 1

15 pages, 6477 KiB  
Article
A Metallurgically Informed Multiscale Integrated Computational Framework for Metal Forming Processes
by Vasilis Loukadakis and Spyros Papaefthymiou
Crystals 2025, 15(5), 399; https://doi.org/10.3390/cryst15050399 - 24 Apr 2025
Viewed by 850
Abstract
: Predicting the mechanical response of industrial alloys is crucial for optimizing manufacturing processes and improving material performance. Traditional, solely experimental approaches, though effective, are inefficient as they are resource-intensive, requiring extensive laboratory testing and the iterative calibration of processing conditions. These costs [...] Read more.
: Predicting the mechanical response of industrial alloys is crucial for optimizing manufacturing processes and improving material performance. Traditional, solely experimental approaches, though effective, are inefficient as they are resource-intensive, requiring extensive laboratory testing and the iterative calibration of processing conditions. These costs can be avoided through computational/virtual experiments based on a multiscale hierarchical framework that integrates macroscopic approaches, mesoscale modelling as well as atomic level and advanced thermodynamical simulations to study and predict the mechanical response of metallic systems. In the context of this work, a framework for studying the effect of forming on metallic materials is proposed, applied, and validated on the hot extrusion of AA6063. Coupling thermodynamic simulations (including Phase Field) results with literature data establishes a microstructurally accurate representative volume element (RVE) design. This way, the phase fraction and the grain size of the RVE are determined by thermodynamic simulations (ThermoCalc, MICRESS), which can be validated via microstructure characterization. It is known that the mechanical properties of the individual phases affect the macroscopical properties of the material. Using atomic level simulations (i.e., molecular dynamics), the dislocation density of the material is calculated and utilized as an input for a Crystal Plasticity Fast Fourier Transformation simulation. This iterative process can be applied to match all stages of manufacturing processes. The hierarchical and systematic integration of these computational methodologies enables a rigorous analysis of the effect that processing parameters have on the microstructure. This work contributes to the broader effort of creating experiment-free workflows for designing materials and processes by leveraging a multiscale modeling approach. Coupled with experimental data, the predictive accuracy of the mechanical behavior can be further enhanced. Full article
(This article belongs to the Special Issue Innovative Insights into Deformation and Failure of Metallic Alloys)
Show Figures

Figure 1

21 pages, 11678 KiB  
Article
Finite Element Simulation and Process Analysis for Hot-Forming WE43 Magnesium Alloy Fasteners: Comparison of Crystal Plasticity with Traditional Method
by Anqi Jiang, Yuanming Huo, Zixin Zhou, Zhenrong Yan and Yue Sun
Metals 2025, 15(5), 475; https://doi.org/10.3390/met15050475 - 23 Apr 2025
Viewed by 619
Abstract
The WE43 magnesium alloy has gained attention in orthopedic implants due to its biodegradable properties, particularly for fabricating degradable fasteners. However, research on its hot-forming processes remains limited, primarily focusing on macroscopic finite element mechanical analyses. This study introduces a simplified high-temperature upsetting [...] Read more.
The WE43 magnesium alloy has gained attention in orthopedic implants due to its biodegradable properties, particularly for fabricating degradable fasteners. However, research on its hot-forming processes remains limited, primarily focusing on macroscopic finite element mechanical analyses. This study introduces a simplified high-temperature upsetting process and employs a mesoscale crystal plasticity finite element method to model the thermoforming behavior of WE43 fasteners for the first time. Comparative analyses with conventional finite element methods reveal that the crystal plasticity finite element method effectively captures the influence of microstructural evolution on macroscopic deformation. Additionally, temperature effects (25–650 °C) on mechanical performance were systematically evaluated. The results demonstrate that temperatures between 350 °C and 450 °C optimize formability, balancing thermal softening and strain hardening. The crystal plasticity finite element method framework provides enhanced predictive accuracy for micro–macro interactions, offering critical insights for designing biodegradable magnesium alloy implants. Full article
(This article belongs to the Special Issue Modeling, Simulation and Experimental Studies in Metal Forming)
Show Figures

Figure 1

Back to TopTop