Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = mesoporous chitosan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 766 KiB  
Correction
Correction: Ma et al. Mesoporous Ce-Ti Catalysts Modified by Phosphotungstic Acid and Chitosan for the Synergistic Catalysis of CVOCs and NOx. Catalysts 2025, 15, 119
by Mingyang Ma, Ruhan Zhang, Yanan Shen, Xin Zhou, Yumeng Zhai, Yumeng Han, Dan Wang, Longjin Zhang, Xinru Song, De Fang and Pijun Gong
Catalysts 2025, 15(7), 606; https://doi.org/10.3390/catal15070606 - 20 Jun 2025
Viewed by 277
Abstract
There was an error in the original publication [...] Full article
Show Figures

Figure 2

17 pages, 6278 KiB  
Article
Efficient Removal of Mercury Ions Stabilized by Gold Solution Using Chitosan–Guar Gum Polymer Blend in Basic Media
by Azwifunimunwe Tshikovhi, Shivani B. Mishra, Ajay K. Mishra, Mokgaotsa J. Mochane and Tshwafo E. Motaung
Polymers 2025, 17(7), 985; https://doi.org/10.3390/polym17070985 - 4 Apr 2025
Cited by 1 | Viewed by 626
Abstract
The highly efficient removal of mercury metal ions at a higher pH (basic media) is barely reported in the literature. In this study, we developed a novel adsorbent by blending chitosan with guar gum, designed to effectively remove mercury ions from basic media [...] Read more.
The highly efficient removal of mercury metal ions at a higher pH (basic media) is barely reported in the literature. In this study, we developed a novel adsorbent by blending chitosan with guar gum, designed to effectively remove mercury ions from basic media by stabilizing them with a gold (Au3⁺) solution. The FTIR confirmed the compatibility of chitosan and guar gum through hydrogen bonding. The morphology of the blend exhibited an amorphous and porous structure. A mesoporous structure with a surface area, volume, and diameter of 11.843 (m2/g), 0.184 (cm2/g), and 17.072 nm, respectively, was confirmed by BET. The adsorption behavior was analyzed using isotherms and kinetics models, which best fitted with the pseudo-second-order kinetic model and Freundlich adsorption isotherm model, respectively. The adsorbent was shown to be an excellent candidate for the removal of mercury ions in water, with an adsorption efficiency of 92% at pH 12 in 60 min and a maximum adsorption capacity of 370.37 (mg/g). Full article
Show Figures

Figure 1

14 pages, 4947 KiB  
Article
Application of Textile Composite Materials as a Sorbent for Cleaning Up Oil Spills
by Daniela Angelova, Desislava Staneva, Daniela Atanasova and Vesislava Toteva
Materials 2025, 18(5), 1146; https://doi.org/10.3390/ma18051146 - 4 Mar 2025
Cited by 1 | Viewed by 937
Abstract
This article compares two new textile materials used to clean up spills of oil or two oil products (crude oil, diesel fuel, and base oil SN 150). The plain-woven cotton fabric is hydrophilic, with a typical porous structure. After coating with a layer [...] Read more.
This article compares two new textile materials used to clean up spills of oil or two oil products (crude oil, diesel fuel, and base oil SN 150). The plain-woven cotton fabric is hydrophilic, with a typical porous structure. After coating with a layer of chitosan modified with benzaldehyde and cross-linked with glutaraldehyde (CB), its hydrophobicity increases, hence the sorption affinity to hydrophobic hydrocarbons. Including in situ synthesized zinc oxide particles in the hydrophobic chitosan layer (CBZ) changes its structure and increases the sorption capacity. The morphology of the layers was assessed using scanning electron microscopy (SEM) and by comparing the contact angles of the pollutants against the cotton fabric and the composite materials. EDX analysis and mapping for the Zn element show that zinc is homogeneously distributed on the fabric surface. The roughness enhancement and mesoporous structure under the influence of zinc oxide particles were established by the Brunauer Emmett Teller (BET) method and atomic force microscopy (AFM). The advantages of textile composites are their flexibility, stability, and ability to float on the water and wipe up oil spills. It was found that the materials can be successfully regenerated and used repeatedly, making them highly effective because the sorbed crude oil or petroleum products can be separated and utilized. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

14 pages, 10433 KiB  
Article
Mesoporous Ce-Ti Catalysts Modified by Phosphotungstic Acid and Chitosan for the Synergistic Catalysis of CVOCs and NOx
by Mingyang Ma, Ruhan Zhang, Yanan Shen, Xin Zhou, Yumeng Zhai, Yumeng Han, Dan Wang, Longjin Zhang, Xinru Song, De Fang and Pijun Gong
Catalysts 2025, 15(2), 119; https://doi.org/10.3390/catal15020119 - 26 Jan 2025
Cited by 3 | Viewed by 900 | Correction
Abstract
Nitrogen oxides (NOx) and chlorinated volatile organic compounds (CVOCs) are major environmental pollutants, posing severe risks to human health and ecosystems. Traditional single-component catalysts often fail to remove both pollutants efficiently, making synergistic catalytic technologies a critical research focus. In this study, a [...] Read more.
Nitrogen oxides (NOx) and chlorinated volatile organic compounds (CVOCs) are major environmental pollutants, posing severe risks to human health and ecosystems. Traditional single-component catalysts often fail to remove both pollutants efficiently, making synergistic catalytic technologies a critical research focus. In this study, a mesoporous HPW-CS-Ce-Ti oxide catalyst, modified with H3PW12O40 (HPW) and chitosan (CS), was synthesized via self-assembly. The optimized 10HPW-CS-Ce0.3-Ti catalyst achieved nearly 100% NO conversion at 167–288 °C and a T90 of 291 °C for CVOC conversion, demonstrating superior dual-pollutant removal. HPW and chitosan facilitated mesoporous structure formation, enhancing mass transfer and active site availability. HPW doping also modulated the Ce4+/Ce3+ ratio, boosting redox capacity and surface-active oxygen species, while increasing acidity to promote NH3 and CVOC adsorption. This study presents a novel catalyst and synthesis method with significant potential for environmental protection and human health. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Figure 1

17 pages, 9476 KiB  
Article
Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection
by Thenmozhi Rajarathinam, Sivaguru Jayaraman, Chang-Seok Kim, Jaewon Lee and Seung-Cheol Chang
Biosensors 2024, 14(12), 623; https://doi.org/10.3390/bios14120623 - 18 Dec 2024
Cited by 6 | Viewed by 1459
Abstract
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, [...] Read more.
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported. Therefore, highly sensitive and selective amperometric biosensors that enable real-time measurements within <1.0 min are needed. To achieve this, a chitosan–polyaniline polymer nanocomposite (CS–PANI NC), a carrier for dispersing mesoporous carbon (MC), was synthesized and modified on a screen-printed carbon electrode (SPCE) to detect hydrogen peroxide (H2O2). The sarcosine oxidase (SOx) enzyme-immobilized CS–PANI–MC-2 ternary NCs were referred to as supramolecular architectures (SMAs). The excellent electron transfer ability of the SMA-modified SPCE (SMA/SPCE) sensor enabled highly sensitive H2O2 detection for immediate trace Sar biomarker detection. Therefore, the system included an SMA/SPCE coupled to a portable potentiostat linked to a smartphone for data acquisition. The high catalytic activity, porous architecture, and sufficient biocompatibility of CS–PANI–MC ternary NCs enabled bioactivity retention and immobilized SOx stability. The fabricated biosensor exhibited a detection limit of 0.077 μM and sensitivity of 8.09 μA mM−1 cm−2 toward Sar, demonstrating great potential for use in rapid PCa screening. Full article
(This article belongs to the Special Issue Integrated Biosensing for Point-of-Care Detection)
Show Figures

Figure 1

14 pages, 5844 KiB  
Article
Hybrid Nanoparticles Based on Mesoporous Silica and Functionalized Biopolymers as Drug Carriers for Chemotherapeutic Agents
by Federica Curcio, Michela Sanguedolce, Luigino Filice, Flaviano Testa, Gerardo Catapano, Francesca Giordano, Sonia Trombino and Roberta Cassano
Materials 2024, 17(15), 3877; https://doi.org/10.3390/ma17153877 - 5 Aug 2024
Cited by 2 | Viewed by 1608
Abstract
Mesoporous silica nanoparticles (MSNs) are promising drug carriers for cancer therapy. Their functionalization with ligands for specific tissue/cell targeting and stimuli-responsive cap materials for sealing drugs within the pores of MSNs is extensively studied for biomedical and pharmaceutical applications. The objective of the [...] Read more.
Mesoporous silica nanoparticles (MSNs) are promising drug carriers for cancer therapy. Their functionalization with ligands for specific tissue/cell targeting and stimuli-responsive cap materials for sealing drugs within the pores of MSNs is extensively studied for biomedical and pharmaceutical applications. The objective of the present work was to establish MSNs as ideal nanocarriers of anticancer drugs such as 5-FU and silymarin by exploiting characteristics such as their large surface area, pore size, and biocompatibility. Furthermore, coating with various biopolymeric materials such as carboxymethyl chitosan–dopamine and hyaluronic acid–folic acid on their surface would allow them to play the role of ligands in the process of active targeting to tumor cells in which there is an overexpression of specific receptors for them. From the results obtained, it emerged, in fact, that these hybrid nanoparticles not only inhibit the growth of glioblastoma and breast cancer cells, but also act as pH-responsive release systems potentially useful as release vectors in tumor environments. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

16 pages, 3498 KiB  
Article
Preparation and Characterization of Chitosan-Modified Bentonite Hydrogels and Application for Tetracycline Adsorption from Aqueous Solution
by Xuebai Guo, Zhenjun Wu, Zheng Lu, Zelong Wang, Shunyi Li, Freeman Madhau, Ting Guo and Rongqican Huo
Gels 2024, 10(8), 503; https://doi.org/10.3390/gels10080503 - 28 Jul 2024
Cited by 4 | Viewed by 2067
Abstract
The “sol–gel method” was used to prepare spherical chitosan-modified bentonite (SCB) hydrogels in this study. The SCB hydrogels were characterized and used as sorbents to remove tetracycline (TC) from aqueous solutions. The adsorbents were characterized by SEM, XRD, FTIR, TG, and BET techniques. [...] Read more.
The “sol–gel method” was used to prepare spherical chitosan-modified bentonite (SCB) hydrogels in this study. The SCB hydrogels were characterized and used as sorbents to remove tetracycline (TC) from aqueous solutions. The adsorbents were characterized by SEM, XRD, FTIR, TG, and BET techniques. Various characterization results showed that the SCB adsorbent had fewer surface pores and a specific surface area that was 96.6% lower than the powder, but the layered mesoporous structure of bentonite remained unchanged. The adsorption process fit to both the Freundlich model and the pseudo-second-order kinetic model showed that it was a non-monolayer chemical adsorption process affected by intra-particle diffusion. The maximum monolayer adsorption capacity determined by the Langmuir model was 39.49 mg/g. Thermodynamic parameters indicated that adsorption was a spontaneous, endothermic, and entropy-increasing process. In addition, solid–liquid separation was easy with the SCB adsorbent, providing important reference information for the synthesis of SCB as a novel and promising adsorbent for the removal of antibiotics from wastewater at the industrial level. Full article
Show Figures

Figure 1

20 pages, 6644 KiB  
Article
Fabrication of Electrospun Double Layered Biomimetic Collagen–Chitosan Polymeric Membranes with Zinc-Doped Mesoporous Bioactive Glass Additives
by Dilan Altan, Ali Can Özarslan, Cem Özel, Kadriye Tuzlakoğlu, Yesim Muge Sahin and Sevil Yücel
Polymers 2024, 16(14), 2066; https://doi.org/10.3390/polym16142066 - 19 Jul 2024
Cited by 2 | Viewed by 2004
Abstract
Several therapeutic approaches have been developed to promote bone regeneration, including guided bone regeneration (GBR), where barrier membranes play a crucial role in segregating soft tissue and facilitating bone growth. This study emphasizes the importance of considering specific tissue requirements in the design [...] Read more.
Several therapeutic approaches have been developed to promote bone regeneration, including guided bone regeneration (GBR), where barrier membranes play a crucial role in segregating soft tissue and facilitating bone growth. This study emphasizes the importance of considering specific tissue requirements in the design of materials for tissue regeneration, with a focus on the development of a double-layered membrane to mimic both soft and hard tissues within the context of GBR. The hard tissue-facing layer comprises collagen and zinc-doped bioactive glass to support bone tissue regeneration, while the soft tissue-facing layer combines collagen and chitosan. The electrospinning technique was employed to achieve the production of nanofibers resembling extracellular matrix fibers. The production of nano-sized (~116 nm) bioactive glasses was achieved by microemulsion assisted sol-gel method. The bioactive glass-containing layers developed hydroxyapatite on their surfaces starting from the first week of simulated body fluid (SBF) immersion, demonstrating that the membranes possessed favorable bioactivity properties. Moreover, all membranes exhibited distinct degradation behaviors in various mediums. However, weight loss exceeding 50% was observed in all tested samples after four weeks in both SBF and phosphate-buffered saline (PBS). The double-layered membranes were also subjected to mechanical testing, revealing a tensile strength of approximately 4 MPa. The double-layered membranes containing zinc-doped bioactive glass demonstrated cell viability of over 70% across all tested concentrations (0.2, 0.1, and 0.02 g/mL), confirming the excellent biocompatibility of the membranes. The fabricated polymer bioactive glass composite double-layered membranes are strong candidates with the potential to be utilized in tissue engineering applications. Full article
Show Figures

Figure 1

16 pages, 1476 KiB  
Article
Nanostructured Magnetic Particles for Removing Cyanotoxins: Assessing Effectiveness and Toxicity In Vitro
by Alejandro Cao, Natalia Vilariño, Lisandra de Castro-Alves, Yolanda Piñeiro, José Rivas, Ana M. Botana, Cristina Carrera, María J. Sainz and Luis M. Botana
Toxins 2024, 16(6), 269; https://doi.org/10.3390/toxins16060269 - 13 Jun 2024
Cited by 1 | Viewed by 1452
Abstract
The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using [...] Read more.
The rise in cyanobacterial blooms due to eutrophication and climate change has increased cyanotoxin presence in water. Most current water treatment plants do not effectively remove these toxins, posing a potential risk to public health. This study introduces a water treatment approach using nanostructured beads containing magnetic nanoparticles (MNPs) for easy removal from liquid suspension, coated with different adsorbent materials to eliminate cyanotoxins. Thirteen particle types were produced using activated carbon, CMK-3 mesoporous carbon, graphene, chitosan, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidised cellulose nanofibers (TOCNF), esterified pectin, and calcined lignin as an adsorbent component. The particles’ effectiveness for detoxification of microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-A (ATX-A) was assessed in an aqueous solution. Two particle compositions presented the best adsorption characteristics for the most common cyanotoxins. In the conditions tested, mesoporous carbon nanostructured particles, P1-CMK3, provide good removal of MC-LR and Merck-activated carbon nanostructured particles, P9-MAC, can remove ATX-A and CYN with high and fair efficacy, respectively. Additionally, in vitro toxicity of water treated with each particle type was evaluated in cultured cell lines, revealing no alteration of viability in human renal, neuronal, hepatic, and intestinal cells. Although further research is needed to fully characterise this new water treatment approach, it appears to be a safe, practical, and effective method for eliminating cyanotoxins from water. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

2 pages, 127 KiB  
Abstract
Study of the Effect of Synthesis Conditions on the Structural Properties of Biomimetic Polysaccharide-Templated Mesoporous Silica
by Nataliya Zatonskaya and Sergey Karpov
Proceedings 2024, 107(1), 4; https://doi.org/10.3390/proceedings2024107004 - 15 May 2024
Viewed by 404
Abstract
In our work, we chose chitosan (polysaccharide) as a template for the synthesis of mesoporous silica-based material (ZChM) [...] Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Biomimetics)
26 pages, 22269 KiB  
Article
Synthesis of Composite Sorbents with Chitosan and Varied Silica Phases for the Adsorption of Anionic Dyes
by Magdalena Blachnio, Malgorzata Zienkiewicz-Strzalka and Anna Derylo-Marczewska
Molecules 2024, 29(9), 2087; https://doi.org/10.3390/molecules29092087 - 1 May 2024
Cited by 9 | Viewed by 1869
Abstract
In this work, various types of silica materials were used for the synthesis of chitosan–silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica [...] Read more.
In this work, various types of silica materials were used for the synthesis of chitosan–silica composites. The composites were obtained using the chitosan (Ch) immobilization process from an aqueous solution on various silica phases, i.e., amorphous diatomite (ChAD), crystalline diatomite (ChCD), mesoporous silica MCM-41 (ChMCM), and mesoporous silica SBA-15 (ChSBA). Textural, structural, morphological, and surface properties of the materials were determined by using various measurement techniques, i.e., low-temperature adsorption/desorption isotherms of nitrogen, X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), potentiometric titration, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The adsorption properties towards various anionic dyes, i.e., acid red 88 (AR88), acid orange 8 (AO8), and orange G (OG), were evaluated based on kinetic and equilibrium measurements. The ChSBA, ChAD, and ChMCM composites were characterized by relatively high adsorption capacities (am) for AR88, with values equal to 0.78, 0.71, and 0.69 mmol/g, respectively. These composites were also distinguished by the rapid AR88 adsorption rate, with the values of half-time parameter t0.5 equal to 0.35, 2.84, and 1.53 min, respectively. The adsorption equilibrium and kinetic data were analyzed by applying the generalized Langmuir isotherm and the multi-exponential equation (m-exp), respectively. An interaction mechanism between the dyes and the obtained materials was proposed. Full article
Show Figures

Figure 1

23 pages, 6956 KiB  
Article
Ozonated Sunflower Oil Embedded within Spray-Dried Chitosan Microspheres Cross-Linked with Azelaic Acid as a Multicomponent Solid Form for Broad-Spectrum and Long-Lasting Antimicrobial Activity
by Roberto Spogli, Caterina Faffa, Valeria Ambrogi, Vincenzo D’Alessandro and Gabriele Pastori
Pharmaceutics 2024, 16(4), 502; https://doi.org/10.3390/pharmaceutics16040502 - 6 Apr 2024
Cited by 1 | Viewed by 1891
Abstract
Multicomponent solid forms for the combined delivery of antimicrobials can improve formulation performance, especially for poorly soluble drugs, by enabling the modified release of the active ingredients to better meet therapeutic needs. Chitosan microspheres incorporating ozonated sunflower oil were prepared by a spray-drying [...] Read more.
Multicomponent solid forms for the combined delivery of antimicrobials can improve formulation performance, especially for poorly soluble drugs, by enabling the modified release of the active ingredients to better meet therapeutic needs. Chitosan microspheres incorporating ozonated sunflower oil were prepared by a spray-drying method and using azelaic acid as a biocompatible cross-linker to improve the long time frame. Two methods were used to incorporate ozonated oil into microspheres during the atomization process: one based on the use of a surfactant to emulsify the oil and another using mesoporous silica as an oil absorbent. The encapsulation efficiency of the ozonated oil was evaluated by measuring the peroxide value in the microspheres, which showed an efficiency of 75.5–82.1%. The morphological aspects; particle size distribution; zeta potential; swelling; degradation time; and thermal, crystallographic and spectroscopic properties of the microspheres were analyzed. Azelaic acid release and peroxide formation over time were followed in in vitro analyses, which showed that ozonated oil embedded within chitosan microspheres cross-linked with azelaic acid is a valid system to obtain a sustained release of antimicrobials. In vitro tests showed that the microspheres exhibit synergistic antimicrobial activity against P. aeruginosa, E. coli, S. aureus, C. albicans and A. brasiliensis. This makes them ideal for use in the development of biomedical devices that require broad-spectrum and prolonged antimicrobial activity. Full article
Show Figures

Graphical abstract

16 pages, 3532 KiB  
Article
pH-Triggered Controlled Release of Chlorhexidine Using Chitosan-Coated Titanium Silica Composite for Dental Infection Prevention
by Mrinal Gaurav Srivastava, Nur Hidayatul Nazirah Kamarudin, Merve Kübra Aktan, Kai Zheng, Naiera Zayed, Derick Yongabi, Patrick Wagner, Wim Teughels, Aldo R. Boccaccini and Annabel Braem
Pharmaceutics 2024, 16(3), 377; https://doi.org/10.3390/pharmaceutics16030377 - 8 Mar 2024
Cited by 2 | Viewed by 2622
Abstract
Peri-implantitis is a growing pathological concern for dental implants which aggravates the occurrence of revision surgeries. This increases the burden on both hospitals and the patients themselves. Research is now focused on the development of materials and accompanying implants designed to resist biofilm [...] Read more.
Peri-implantitis is a growing pathological concern for dental implants which aggravates the occurrence of revision surgeries. This increases the burden on both hospitals and the patients themselves. Research is now focused on the development of materials and accompanying implants designed to resist biofilm formation. To enhance this endeavor, a smart method of biofilm inhibition coupled with limiting toxicity to the host cells is crucial. Therefore, this research aims to establish a proof-of-concept for the pH-triggered release of chlorhexidine (CHX), an antiseptic commonly used in mouth rinses, from a titanium (Ti) substrate to inhibit biofilm formation on its surface. To this end, a macroporous Ti matrix is filled with mesoporous silica (together referred to as Ti/SiO2), which acts as a diffusion barrier for CHX from the CHX feed side to the release side. To limit release to acidic conditions, the release side of Ti/SiO2 is coated with crosslinked chitosan (CS), a pH-responsive and antimicrobial natural polymer. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX) and Fourier transform infrared (FTIR) spectroscopy confirmed successful CS film formation and crosslinking on the Ti/SiO2 disks. The presence of the CS coating reduced CHX release by 33% as compared to non-coated Ti/SiO2 disks, thus reducing the antiseptic exposure to the environment in normal conditions. Simultaneous differential scanning calorimetry and thermogravimetric analyzer (SDT) results highlighted the thermal stability of the crosslinked CS films. Quartz crystal microbalance with dissipation monitoring (QCM-D) indicated a clear pH response for crosslinked CS coatings in an acidic medium. This pH response also influenced CHX release through a Ti/SiO2/CS disk where the CHX release was higher than the average trend in the neutral medium. Finally, the antimicrobial study revealed a significant reduction in biofilm formation for the CS-coated samples compared to the control sample using viability quantitative polymerase chain reaction (v-qPCR) measurements, which were also corroborated using SEM imaging. Overall, this study investigates the smart triggered release of pharmaceutical agents aimed at inhibiting biofilm formation, with potential applicability to implant-like structures. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

24 pages, 6461 KiB  
Article
Evaluation of the Dye Extraction Using Designed Hydrogels for Further Applications towards Water Treatment
by Magdalena Blachnio and Malgorzata Zienkiewicz-Strzalka
Gels 2024, 10(3), 159; https://doi.org/10.3390/gels10030159 - 21 Feb 2024
Cited by 9 | Viewed by 2092
Abstract
In this work, novel chitosan–silica hydrogels were synthesized and investigated by various complementary techniques. The hydrogels were obtained via the immobilization of chitosan (Ch) on the surface of mesoporous cellular foams (MCFs). The latter silica materials were obtained by a sol–gel process, varying [...] Read more.
In this work, novel chitosan–silica hydrogels were synthesized and investigated by various complementary techniques. The hydrogels were obtained via the immobilization of chitosan (Ch) on the surface of mesoporous cellular foams (MCFs). The latter silica materials were obtained by a sol–gel process, varying the composition of the reaction mixture (copolymer Pluronic 9400 or Pluronic 10500) and the ageing temperature conditions (80 °C or 100 °C). The role of the silica phase in the hydrogels was the formation of a scaffold for the biopolymeric chitosan component and providing chemical, mechanical, and thermal stability. In turn, the chitosan phase enabled the binding of anionic pollutions from aqueous solutions based on electrostatic interaction mechanisms and hydrogen bonds. To provide information on structural, morphological, and surface properties of the chitosan–silica hydrogels, analyses such as the low-temperature adsorption/desorption of nitrogen, small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) were performed. Moreover, the verification of the utility of the chitosan–silica hydrogels as adsorbents for water and wastewater treatment was carried out based on kinetic and equilibrium studies of the Acid Red 88 (AR88) adsorption. Adsorption data were analyzed by applying various equations and discussed in terms of the adsorption on heterogeneous solid-surfaces theory. The adsorption mechanism for the AR88 dye–chitosan–silica hydrogel systems was proposed. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment)
Show Figures

Graphical abstract

19 pages, 4498 KiB  
Article
Development and Characterization of Thermoresponsive Smart Self-Adaptive Chitosan-Based Polymer for Wellbore Plugging
by Huimei Wu, Yishan Lou, Zhonghui Li, Xiaopeng Zhai and Fei Gao
Polymers 2023, 15(24), 4632; https://doi.org/10.3390/polym15244632 - 7 Dec 2023
Cited by 1 | Viewed by 1393
Abstract
To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer [...] Read more.
To meet the escalating demand for oil and gas exploration in microporous reservoirs, it has become increasingly crucial to develop high-performance plugging materials. Through free radical grafting polymerization technology, a carboxymethyl chitosan grafted poly (oligoethylene glycol) methyl ether methyl methacrylate acrylic acid copolymer (CCMMA) was successfully synthesized. The resulting CCMMA exhibited thermoresponsive self-assembling behavior. When the temperature was above its lower critical solution temperature (LCST), the nanomicelles began to aggregate, forming mesoporous aggregated structures. Additionally, the electrostatic repulsion of AA chains increased the value of LCST. By precisely adjusting the content of AA, the LCST of CCMMA could be raised from 84.7 to 122.9 °C. The rheology and filtration experiments revealed that when the temperature surpassed the switching point, CCMMA exhibited a noteworthy plugging effect on low-permeability cores. Furthermore, it could be partially released as the temperature decreased, exhibiting temperature-switchable and self-adaptive plugging properties. Meanwhile, CCMMA aggregates retained their reversibility, along with thermal thickening behavior in the pores. However, more detailed experiments and analysis are needed to validate these claims, such as a comprehensive study of the CCMMA copolymer’s physical properties, its interaction with the reservoir environment, and its performance under various conditions. Additionally, further studies are required to optimize its synthesis process and improve its efficiency as a plugging material for oil and gas recovery in microporous reservoirs. Full article
Show Figures

Figure 1

Back to TopTop