Application of Textile Composite Materials as a Sorbent for Cleaning Up Oil Spills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Sorbent Materials
2.3. Analysis
2.4. Sorption Studies
2.4.1. Measurment of Sorption Capacity
2.4.2. Material Regeneration
3. Results and Discussion
3.1. SEM Analysis
3.2. Interaction of Crude Oil and Diesel Fuel or Base Oil SN 150 Droplets on Cotton Fabric, CB, and CBZ
3.3. BET Analysis
3.4. Sorption Capacity
3.5. Regenerability of Sorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chahouri, A.; Dafouf, S.; Elkassbi, M.; El Mansouri, B.; Banaoui, A. Hydrocarbon contamination along Morocco’s coastlines: Presence, impact, evaluation, and mitigation. Reg. Stud. Mar. Sci. 2024, 77, 103700. [Google Scholar] [CrossRef]
- Mittal, H.V.R.; Hammoud, M.A.E.R.; Carrasco, A.K.; Hoteit, I.; Knio, O.M. Oil spill risk analysis for the NEOM shoreline. Sci. Rep. 2024, 14, 6623. [Google Scholar] [CrossRef] [PubMed]
- Staro’, A. Sorption and Photocatalysis of Dyes on an Oil-Based Composite Enriched with Nanometric ZnO and TiO2. Sustainability 2023, 15, 11874. [Google Scholar] [CrossRef]
- Das, S.; Goud, V.V. Rice husk derived biogenic silica coated cotton as an effective, sustainable oil-water separation platform. Biomass Bioenergy 2023, 177, 106935. [Google Scholar] [CrossRef]
- Sutha, S.; Dhineshbabu, N.R. A Short Note on Naturally-derived Materials for Oil-water Separation; Application of Nanotechnology for Resource Recovery from Wastewater. In Application of Nanotechnology for Resource Recovery from Wastewater, 1st ed.; Pandey, J.K., Tauseef, S.M., Manna, S., Patel, R.K., Singh, V.K., Dasgotra, A., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 100–109. [Google Scholar]
- Zaarour, B.; Liu, W. Recent advances of textile sorbents for oil spills cleanup: A review. J. Ind. Text. 2023, 53, 1–39. [Google Scholar] [CrossRef]
- Fouladi, M.; Kavousi Heidari, M.; Tavakoli, O. Development of porous biodegradable sorbents for oil/water separation: A critical review. J. Porous Mater. 2023, 30, 1037–1053. [Google Scholar] [CrossRef]
- Blaquera, A.L.M.; Herrera, M.U.; Manalo, R.D.; Maguyon-Detras, M.C.; Futalan, C.C.M.; Balela, M.D.L. Oil Adsorption Kinetics of Calcium Stearate-Coated Kapok Fibers. Polymers 2023, 15, 452. [Google Scholar] [CrossRef]
- Sathianarayanan, M.P.; Hemani, K. Development of Bio-degradable Cotton Waste based Super Oleophilic and Super Hydrophobic Sorbent for Oil Spill Clean-up. J. Inst. Eng. (India) Ser. E 2021, 102, 215–226. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, C.; Wang, S.; Li, J. Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route. Carbohydr. Polym. 2013, 97, 59–64. [Google Scholar] [CrossRef]
- Zarghami, S.; Mohammadi, T.; Sadrzadeh, M.; Van der Bruggen, B. Superhydrophilic and underwater superoleophobic membranes A review of synthesis methods. Prog. Polym. Sci. 2019, 98, 101166. [Google Scholar] [CrossRef]
- Bian, Y.; Zhang, C.; Wang, H.; Cao, Q. Degradable nanofiber for eco-friendly air filtration: Progress and perspectives. Sep. Purif. Technol. 2023, 306 Pt A, 122642. [Google Scholar] [CrossRef]
- Ge-Zhang, S.; Cai, T.; Yang, H.; Ding, Y.; Song, M. Biology and nature: Bionic superhydrophobic surface and principle. Front. Bioeng. Biotechnol. 2022, 10, 1033514. [Google Scholar] [CrossRef]
- Rasouli, S.; Rezaei, N.; Hamedi, H.; Zendehboudi, S.; Duan, X. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review. Mater. Des. 2021, 204, 109599. [Google Scholar] [CrossRef]
- Otitoju, T.A.; Ahmad, A.L.; Ooi, B.S. Superhydrophilic (superwetting) surfaces: A review on fabrication and application. J. Ind. Eng. Chem. 2017, 47, 19–40. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Dinh, H.N.H.; Phan, T.P.; Le, T.X.; Truong, V.D.; Tran, T.T.V.; Hoang, D. High performance superabsorbent material based on biopolymers as a promising and sustainable framework for enhancing fresh water resources. J. Environ. Chem. Eng. 2024, 12, 113181. [Google Scholar] [CrossRef]
- Bidgoli, H.; Khodadadi, A.A.; Mortazavi, Y. A hydrophobic/oleophilic chitosan-based sorbent: Toward an effective oil spill remediation technology. J. Environ. Chem. Eng. 2019, 7, 103340. [Google Scholar] [CrossRef]
- Ivanov, N.P.; Dran’kov, A.N.; Shichalin, O.O.; Lembikov, A.O.; Buravlev, I.Y.; Mayorov, V.Y.; Balanov, M.I.; Rogachev, K.A.; Kaspruk, G.D.; Pisarev, S.M.; et al. Composite magnetic sorbents based on magnetic Fe3O4 coated by Zn and Al layered double hydroxide for U(VI) removal from aqueous media. J. Radioanal. Nucl. Chem. 2024, 333, 1213–1230. [Google Scholar] [CrossRef]
- Balybina, V.A.; Dran’kov, A.N.; Shichalin, O.O.; Savel’eva, N.Y.; Kokorina, N.G.; Kuular, Z.C.; Ivanov, N.P.; Krasitskaya, S.G.; Ivanets, A.I.; Papynov, E.K. Mesoporous Layered Double Hydroxides: Synthesis for High Effective Uranium Ions Sorption from Seawater and Salt Solutions on Nanocomposite Functional Materials. J. Compos. Sci. 2023, 7, 458. [Google Scholar] [CrossRef]
- Toteva, V.; Staneva, D.; Grabchev, I. Pollutants Sorbent Made of Cotton Fabric Modified with Chitosan-Glutaraldehyde and Zinc Oxide Particles. Materials 2021, 14, 3242. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Alsaad, A.M.; Aljarrah, I.A.; Al-Bataineh, Q.M.; Telfah, A.D. Optical, electronic, and structural properties of different nanostructured ZnO morphologies. Eur. Phys. J. Plus 2022, 137, 752. [Google Scholar] [CrossRef]
- Murrieta-Rico, F.N.; Yocupicio-Gaxiola, R.I.; Antúnez-García, J.; Reyes-Serrato, A.; Sánchez, P.; Petranovskii, V. Textile Functionalization Using LTA and FAU Zeolitic Materials. Polymers 2023, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Busila, M.; Musat, V.; Alexandru, P.; Romanitan, C.; Brincoveanu, O.; Tucureanu, V.; Mihalache, I.; Iancu, A.-V.; Dediu, V. Antibacterial and Photocatalytic Activity of ZnO/Au and ZnO/Ag Nanocomposites. Int. J. Mol. Sci. 2023, 24, 16939. [Google Scholar] [CrossRef]
- Lei, E.; Li, W.; Ma, C.; Liu, S. An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Mater. Chem. Phys. 2018, 214, 291–296. [Google Scholar] [CrossRef]
- Doshi, B.; Sillanpaa, M.; Kalliola, S. A review of bio-based materials for oil spill treatment. Water Res. 2018, 135, 262–277. [Google Scholar] [CrossRef]
- Dan, Y.; Popowski, Y.; Buzhor, M.; Menashe, E.; Rachmani, O.; Amir, E. Covalent surface modification of cellulose-based textiles for oil-water separation applications. Ind. Eng. Chem. Res. 2020, 59, 5456–5465. [Google Scholar] [CrossRef]
- Paula Dionísio, A.; Molina, G.; Souza de Carvalho, D.; dos Santos, R.; Bicas, J.L.; Pastore, G.M. 11—Natural flavourings from biotechnology for foods and beverages. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Natural Food Additives, Ingredients and Flavourings, 1st ed.; Baines, D., Seal, R., Eds.; Woodhead Publishing: Sawston, UK, 2012; pp. 231–259. ISBN 9781845698119. [Google Scholar] [CrossRef]
- Leung, H.W. Ecotoxicology of Glutaraldehyde: Review of Environmental Fate and Effects Studies. Ecotoxicol. Environ. Saf. 2001, 49, 26–39. [Google Scholar] [CrossRef]
- EN ISO 3675; Crude Petroleum and Liquid Petroleum Products—Laboratory Determination of Density—Hydrometer Method. ISO: Geneva, Switzerland, 1998.
- EN ISO 3104; Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity. ISO: Geneva, Switzerland, 2023.
- Staneva, D.; Atanasova, D.; Angelova, D.; Grozdanov, P.; Nikolova, I.; Grabchev, I. Antimicrobial Properties of Chitosan-Modified Cotton Fabric Treated with Aldehydes and Zinc Oxide Particles. Materials 2023, 16, 5090. [Google Scholar] [CrossRef]
- Yurdakal, S.; Garlisi, C.; Özcan, L.; Bellardita, M.; Palmisano, G. (Photo)catalystcharacterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV-Vis, photoluminescence, and electrochemical characterizations (Chapter 4). In Heterogeneous Photocatalysis; Marcì, G., Palmisano, L., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 87–152. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Fingas, M. Introduction to Oil Chemistry and Properties Related to Oil Spills. In Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology; Wilkes, H., Ed.; Springer: Cham, Switzerland, 2020; ISBN 978-3-319-54529-5. [Google Scholar] [CrossRef]
- Kovačević, A.; Marković, D.; Radoičić, M.; Šaponjić, Z.; Radetić, M. Sustainable non-woven sorbents based on jute post-industrial waste for cleaning of oil spills. J. Clean. Prod. 2023, 386, 135811. [Google Scholar] [CrossRef]
- Abidli, A.; Huang, Y.; Park, C.B. In situ oils/organic solvents cleanup and recovery using advanced oil-water separation system. Chemosphere 2020, 260, 127586. [Google Scholar] [CrossRef]
- Sidik, S.M.; Jalil, A.A.; Triwahyono, S.; Adam, S.H.; Satar, M.A.H.; Hameed, B.H. Modified oil palm leaves adsorbent with enhanced hydrophobicity for crude oil removal. Chem. Eng. J. 2012, 203, 9–18. [Google Scholar] [CrossRef]
- Sokker, H.H.; El-Sawy, N.M.; Hassan, M.A.; Al-Anadouli, B.E. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. J. Hazard. Mater. 2011, 190, 359–365. [Google Scholar] [CrossRef]
- Wang, D.; Silbaugh, T.; Pfeffer, R.; Lin, Y.S. Removal of emulsified oil from water by inverse fluidization of hydrophobic aerogels. Powder Technol. 2010, 203, 298–309. [Google Scholar] [CrossRef]
- El Gheriany, I.A.; El Saqa, F.A.; El Razek Amer, A.A.; Hussein, M. Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 2020, 59, 925–932. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Liu, G. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angew. Chem. 2016, 55, 1291–1294. [Google Scholar] [CrossRef]
- Obi, A.I.; Ajiwe, A.C.; Okoye, P.A.C.; Umeh, C.T.; Amadi, E.G. Crude oil sorption performance of native and acetylated Siamese senna seed pods. Sustain. Chem. Environ. 2024, 8, 100173. [Google Scholar] [CrossRef]
- Sittinun, A.; Pisitsak, P.; Ummartyotin, S. Improving the oil sorption capability of porous polyurethane composites by the incorporation of cellulose fibers extracted from water hyacinth. Compos. Commun. 2020, 20, 100351. [Google Scholar] [CrossRef]
- Songsaeng, S.; Thamyongkit, P.; Poompradub, S. Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills. J. Adv. Res. 2019, 20, 79–89. [Google Scholar] [CrossRef]
- Alhassani, W.; Alhogbi, B.G.; Hussein, M.A. Efficient adsorbents for oil spill removal using a cellulose acetate-based natural fibers developed by zinc oxide bionanocomposites. J. Indian Chem. Soc. 2024, 101, 101179. [Google Scholar] [CrossRef]
Sorbate | Density, g/cm3 (15 °C) EN ISO 3675 [29] | Kinematic Viscosity, mm2/s (40 °C) EN ISO 3104 [30] |
---|---|---|
Crude oil | 0.830 | 12.3 |
Diesel fuel | 0.827 | 2.9 |
Base oil SN 150 | 0.864 | 34.3 |
Sample | Contact Angles, [°] | |||
---|---|---|---|---|
Crude Oil | Diesel Fuel | Base Oil | Water [31] | |
CO | 71.13 ± 1.05 | 26.00 ± 2.54 | 83.49 ± 1.05 | 0 |
CB | 63.60 ± 1.82 | 28.93 ± 0.23 | 69.84 ± 0.25 | 77.13 ± 0.91 |
CBZ | 60.78 ± 2.21 | 25.69 ± 0.22 | 68.29 ± 1.61 | 101.76 ± 1.14 |
Sample | Total Pore Volume cm3/g | Average Pore Diameter nm | BET Specific Surface Area m2/g |
---|---|---|---|
CO | 0.01097 | 4.061 | 10.80 |
CB | 0.00944 | 5.496 | 6.870 |
CBZ | 0.01202 | 6.619 | 7.265 |
Sorbent | Oil Type | Sorption Capacity | Time | Ref. |
---|---|---|---|---|
Lauric acid-treated oil palm leaves | Crude oil | 1.20 g/g | 20 min | [37] |
Hydrogel of chitosan based on polyacrylamide (HCP) | Crude oil | 2.30 g/g | 200 min | [38] |
Hydrophobic aerogel (HA) | Crude oil | 2.8 g/g | 180 min | [39] |
Orange peel Thermally modified orange peel | crude oil, diesel oil, kerosene, and gasoline | 3–5 g/g 3.5–7 g/g | 30 min | [40] |
Woven cotton, modified with poly(N,N-dimethylaminoethyl methacrylate) and poly(dimethylsiloxane) | hexadecane | 2.2 g/g | 90 min | [41] |
Acetylated Siamese senna seed pods | Crude oil | 6.83 g/g | 15 min | [42] |
Polyurethane foam cellulose composite | Engine oil | 3.91–12.49 g/g | 5 h | [43] |
Natural rubber | Crude oil | 6–7 g/g | 15 min | [44] |
DPF DPF-CA/ZnO | Diesel oil | 26.5 mg/g 66.4 mg/g | 60 min | [45] |
CBZ | Crude oil, Diesel oil Base oil | 2.2 g/g 1.0 g/g 1.93 g/g | 10 min | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, D.; Staneva, D.; Atanasova, D.; Toteva, V. Application of Textile Composite Materials as a Sorbent for Cleaning Up Oil Spills. Materials 2025, 18, 1146. https://doi.org/10.3390/ma18051146
Angelova D, Staneva D, Atanasova D, Toteva V. Application of Textile Composite Materials as a Sorbent for Cleaning Up Oil Spills. Materials. 2025; 18(5):1146. https://doi.org/10.3390/ma18051146
Chicago/Turabian StyleAngelova, Daniela, Desislava Staneva, Daniela Atanasova, and Vesislava Toteva. 2025. "Application of Textile Composite Materials as a Sorbent for Cleaning Up Oil Spills" Materials 18, no. 5: 1146. https://doi.org/10.3390/ma18051146
APA StyleAngelova, D., Staneva, D., Atanasova, D., & Toteva, V. (2025). Application of Textile Composite Materials as a Sorbent for Cleaning Up Oil Spills. Materials, 18(5), 1146. https://doi.org/10.3390/ma18051146