Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = medium carbon martensitic steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5090 KB  
Review
Advanced High-Strength Medium-Manganese Steels as an Alternative to Conventional Forging Steels: A Review
by Aleksandra Kozłowska and Anna Wojtacha
Materials 2026, 19(1), 109; https://doi.org/10.3390/ma19010109 - 28 Dec 2025
Viewed by 452
Abstract
This review highlights conventional forging steels and advanced medium-Mn steels containing retained austenite (RA), emphasizing their potential for industrial forging applications. Modern steels intended for forgings are required to combine strength, ductility, toughness and fatigue resistance with good hardenability and machinability at minimal [...] Read more.
This review highlights conventional forging steels and advanced medium-Mn steels containing retained austenite (RA), emphasizing their potential for industrial forging applications. Modern steels intended for forgings are required to combine strength, ductility, toughness and fatigue resistance with good hardenability and machinability at minimal cost. Medium-Mn multiphase steels fulfill these requirements by the strain-induced martensitic transformation (SIMT) of fine, lath-type RA, which can create a strength–ductility balance. Ferritic–austenitic steels provide high ductility with moderate strength, martensitic–austenitic steels show very high strength at the expense of ductility, and bainitic–austenitic steels achieve intermediate properties. Impact toughness and fatigue resistance are strongly influenced by the morphology of RA. The lath-type RA enhances energy absorption and delays crack initiation, while blocky RA may promote intergranular fracture. Low carbon (0.2–0.3 wt.%) combined with elevated manganese (3–7 wt.%) contents provides superior hardenability and machinability, enabling cost-effective air-hardening of components with various cross-sections. Advanced medium-Mn steels provide a superior mechanical performance and economically attractive solution for modern forgings, exceeding the limitations of conventional steel grades. Full article
(This article belongs to the Special Issue Advanced High-Strength Steels: Processing and Characterization)
Show Figures

Figure 1

26 pages, 7134 KB  
Article
Effect of Si on the Impact-Abrasive Wear Behavior of Medium-Carbon Low Alloy Steels with Different Microstructure
by Ziduan Wang and Changhong Cai
Materials 2025, 18(24), 5575; https://doi.org/10.3390/ma18245575 - 11 Dec 2025
Viewed by 384
Abstract
This work systematically investigated the effect of Si content on the impact-abrasive wear mechanism of medium-carbon low-alloy steels processed through different heat treatment processes, quenching and tempering (QT), austempering, and quenching and partitioning (QP). Three experimental steels with different Si contents were subjected [...] Read more.
This work systematically investigated the effect of Si content on the impact-abrasive wear mechanism of medium-carbon low-alloy steels processed through different heat treatment processes, quenching and tempering (QT), austempering, and quenching and partitioning (QP). Three experimental steels with different Si contents were subjected to optimized heat treatment parameters. Microstructural characterization revealed that Si addition significantly enhanced the volume fraction and mechanical stability of retained austenite (RA), refined bainitic and martensitic structures, and suppressed carbide precipitation. The results of mechanical properties demonstrated that austempering yielded the optimal balance of strength, hardness, ductility, and toughness. Impact-abrasive wear tests showed that the 2 B-300 steel exhibited the lowest wear mass loss due to its high work-hardening capacity, deep strain-hardened layer, and low residual tensile stress. In contrast, QT and QP processes resulted in higher wear losses, correlated with high residual tensile stress and reduced RA stability. The above results underscore that Si alloying, combined with appropriate heat treatment, effectively tailors microstructural evolution and residual stress distribution, thereby enhancing impact-abrasive wear resistance for applications in mining and mineral processing equipment. This study provides a comprehensive framework for optimizing Si content and heat treatment parameters to achieve superior wear performance in medium-carbon low-alloy steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 7131 KB  
Article
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Vanadis 60 Steel: A Statistical Design Approach
by Florentino Alvarez-Antolin and Alejandro González-Pociño
Solids 2025, 6(3), 46; https://doi.org/10.3390/solids6030046 - 19 Aug 2025
Viewed by 1673
Abstract
This study investigates the influence of key heat treatment parameters on the microstructure and mechanical properties of the powder metallurgy tool steel Vanadis 60. A fractional factorial design of experiments was applied to evaluate the effects of austenitising temperature, quenching medium, tempering temperature, [...] Read more.
This study investigates the influence of key heat treatment parameters on the microstructure and mechanical properties of the powder metallurgy tool steel Vanadis 60. A fractional factorial design of experiments was applied to evaluate the effects of austenitising temperature, quenching medium, tempering temperature, and number of tempering cycles on hardness, flexural strength, and microstructure, using detailed phase characterisation by X-ray diffraction. The results reveal two distinct processing routes tailored to different performance objectives. Maximum hardness was achieved by combining austenitisation at 1180 °C, rapid oil quenching, and tempering at 560 °C. These conditions enhance the solubility of carbon and other alloying elements, promote secondary hardening, and reduce retained austenite. Conversely, higher toughness and ductility were obtained by austenitising at 1020 °C, air cooling, and tempering at 560 °C. These parameters favour the formation of a bainitic microstructure, together with lower martensite tetragonality and minimal retained austenite. A statistically significant interaction was identified between the austenitising temperature and the number of tempering cycles; three temperings were sufficient to compensate for the lower hardness associated with reduced austenitising temperatures. The results provide a robust guidance for optimising thermal processing in highly alloyed tool steels, enabling the precise tailoring of microstructure and properties in accordance with specific mechanical service requirements. Full article
Show Figures

Figure 1

22 pages, 7102 KB  
Article
Electrolytic Plasma Hardening of 20GL Steel: Thermal Modeling and Experimental Characterization of Surface Modification
by Bauyrzhan Rakhadilov, Rinat Kurmangaliyev, Yerzhan Shayakhmetov, Rinat Kussainov, Almasbek Maulit and Nurlat Kadyrbolat
Appl. Sci. 2025, 15(15), 8288; https://doi.org/10.3390/app15158288 - 25 Jul 2025
Cited by 1 | Viewed by 688
Abstract
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an [...] Read more.
This study investigates the thermal response and surface modification of low-carbon manganese-alloyed 20GL steel during electrolytic plasma hardening. The objective was to evaluate the feasibility of surface hardening 20GL steel—traditionally considered difficult to quench—by combining high-rate surface heating with rapid cooling in an electrolyte medium. To achieve this, a transient two-dimensional heat conduction model was developed to simulate temperature evolution in the steel sample under three voltage regimes. The model accounted for dynamic thermal properties and non-linear boundary conditions, focusing on temperature gradients across the thickness. Experimental temperature measurements were obtained using a K-type thermocouple embedded at a depth of 2 mm, with corrections for sensor inertia based on exponential response behavior. A comparison between simulation and experiment was conducted, focusing on peak temperatures, heating and cooling rates, and the effective thermal penetration depth. Microhardness profiling and metallographic examination confirmed surface strengthening and structural refinement, which intensified with increasing voltage. Importantly, the study identified a critical cooling rate threshold of approximately 50 °C/s required to initiate martensitic transformation in 20GL steel. These findings provide a foundation for future optimization of quenching strategies for low-carbon steels by offering insight into the interplay between thermal fluxes, surface kinetics, and process parameters. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

16 pages, 5802 KB  
Article
Enhancing the Mechanical Performance of Dual-Phase Steel Through Multi-Axis Compression and Inter-Critical Annealing
by Pooja Dwivedi, Aditya Kumar Padap, Sachin Maheshwari, Faseeulla Khan Mohammad, Mohammed E. Ali Mohsin, SK Safdar Hossain, Hussain Altammar and Arshad Noor Siddiquee
Materials 2025, 18(13), 3139; https://doi.org/10.3390/ma18133139 - 2 Jul 2025
Viewed by 1166
Abstract
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined [...] Read more.
This study examines the microstructural evolution, mechanical properties, and wear behavior of medium-carbon dual-phase steel (AISI 1040) processed via Multi-Axis Compression (MAC). The DP steel was produced through inter-critical annealing at 745 °C, followed by MAC at 500 °C, resulting in a refined grain microstructure. Optical micrographs confirmed the presence of ferrite and martensite phases after annealing, with significant grain refinement observed following MAC. The average grain size decreased from 66 ± 4 μm to 18 ± 1 μm after nine MAC passes. Mechanical testing revealed substantial improvements in hardness (from 145 ± 9 HV to 298 ± 18 HV) and ultimate tensile strength (from 557 ± 33 MPa to 738 ± 44 MPa), attributed to strain hardening and the Hall–Petch effect. Fractographic analysis revealed a ductile failure mode in the annealed sample, while DP0 and DP9 exhibited a mixed fracture mode. Both DP0 and DP9 samples demonstrated superior wear resistance compared to the annealed sample. However, the DP9 sample exhibited slightly lower wear resistance than DP0, likely due to the fragmentation of martensite induced by high accumulated strain, which could act as crack initiation sites during sliding wear. Furthermore, wear resistance was significantly enhanced due to the combined effects of the DP structure and Severe Plastic Deformation (SPD). These findings highlight the potential of MAC processing for developing high-performance steels suitable for lightweight automotive applications. Full article
Show Figures

Figure 1

16 pages, 8638 KB  
Article
Rapid Heating-Driven Variant Selection and Martensitic Refinement for Superior Strength–Ductility Synergy
by Siming Huang, Liejun Li, Haixiao Ye, Xianqiang Xing, Jianping Ouyang, Zhuoran Li, Xinkui Zhang, Songjun Chen and Zhengwu Peng
Materials 2025, 18(11), 2488; https://doi.org/10.3390/ma18112488 - 26 May 2025
Cited by 2 | Viewed by 1075
Abstract
This study elucidates the influence of rapid heating (300 °C/s) on martensitic transformation pathways, crystallographic variant selection, and the resulting mechanical performance in a medium-carbon steel. Compared with conventional heating, rapid heating markedly refines the prior austenite grain (PAG) and martensitic substructures, reducing [...] Read more.
This study elucidates the influence of rapid heating (300 °C/s) on martensitic transformation pathways, crystallographic variant selection, and the resulting mechanical performance in a medium-carbon steel. Compared with conventional heating, rapid heating markedly refines the prior austenite grain (PAG) and martensitic substructures, reducing the mean PAG size from 16.08 μm to 5.06 μm and the martensitic block size from 4.24 μm to 2.41 μm. The accelerated austenitizing and quenching promote a higher density of high-angle grain boundaries (HAGBs) and favor variant selection dominated by the closely packed (CP) group. Σ3 twin boundaries are also found to assist variant nucleation and contribute to microstructural complexity. Despite a marginal decrease in tensile strength, rapid-heated steels exhibit significantly enhanced ductility and a 28.3% increase in the product of strength and elongation (PSE) compared to their conventionally treated counterparts. These findings demonstrate that rapid heating not only enables effective refinement of martensitic substructures but also offers a powerful means of controlling variant evolution, thereby achieving a superior strength–ductility synergy in martensitic steels. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 9208 KB  
Article
Effect of Intermediate Annealing Before Cold Rolling on Microstructure and Mechanical Properties of Medium Manganese Steel and Mechanism of Phase Transformation Plasticity
by Shun Yao, Kuo Cao, Di Wang, Junming Chen and Aimin Zhao
Metals 2025, 15(5), 500; https://doi.org/10.3390/met15050500 - 30 Apr 2025
Cited by 2 | Viewed by 1015
Abstract
To address the issue of cracking in cold-rolled medium manganese steel caused by the formation of a large amount of martensite after hot rolling, intermediate annealing was conducted prior to cold rolling. The research results indicate that after 1 h of intermediate annealing [...] Read more.
To address the issue of cracking in cold-rolled medium manganese steel caused by the formation of a large amount of martensite after hot rolling, intermediate annealing was conducted prior to cold rolling. The research results indicate that after 1 h of intermediate annealing at a temperature of 700 °C, some martensite is replaced by ferrite and residual austenite, leading to a reduction in rolling stress. The dissolution of cementite leads to an increase in the solubility of the alloying elements in austenite. This increases the volume fraction and carbon content of austenite. Following cold rolling and final heat treatment, the Mn content is higher in both martensite and residual austenite, while it is relatively lower in ferrite. Elevated C and Mn content enhances the stability of the austenite. The elongation of the sample with intermediate annealing increased from 17% to 27%, and the yield strength slightly decreased. During the tensile process, ferrite provides plasticity during the early stage of deformation. As strain increases, martensite begins to deform, making a significant contribution to the material’s strength. The TRIP effect of austenite contributes most of the plasticity, especially the stable thin-film residual austenite. When the residual austenite is exhausted, the incompatibility between ferrite and martensite leads to crack propagation and eventual fracture. Full article
Show Figures

Figure 1

14 pages, 5879 KB  
Article
Effect of Post-Weld Heat Treatment Cooling Strategies on Microstructure and Mechanical Properties of 0.3 C-Cr-Mo-V Steel Weld Joints Using GTAW Process
by Syed Quadir Moinuddin, Mohammad Faseeulla Khan, Khaled Alnamasi, Skander Jribi, K. Radhakrishnan, Syed Shaul Hameed, V. Muralidharan and Muralimohan Cheepu
Metals 2025, 15(5), 496; https://doi.org/10.3390/met15050496 - 29 Apr 2025
Viewed by 1508
Abstract
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as [...] Read more.
A total of 0.3%C-Cr-Mo-V steel, a high-strength alloy steel widely used in rocket motor housings, suspension systems in high-performance vehicles, etc., is noted due to its high strength-to-weight ratio. However, its high carbon equivalent (CE > 1%) makes it challenging to weld, as it is prone to brittle martensitic formation, which increases the risk of cracking and embrittlement. The present paper focuses on enhancing the microstructure and mechanical properties of 0.3% C-Cr-Mo-V steel by gas tungsten arc welded (GTAW) joints, utilizing post-weld heat treatment and cooling strategies (PWHTCS). A systematic experimental approach was employed to ensure a defect-free weld through dye penetrant testing (DPT) and X-ray radiography techniques. Subsequently, test specimens were extracted from the welded sections and subjected to PWHT protocols, including hardening, tempering, and rapid quenching using air and oil cooling (AC and OC, respectively) mediums. Results show that OC has enhanced tensile strength and hardness while simultaneously maintaining and improving ductility, ensuring a well-balanced combination of strength and toughness. Fractography analysis revealed ductile fracture in AC samples, whereas OC weldments exhibited a mixed ductile–brittle fracture mode. Thus, the findings demonstrate the critical role of PWHTCS, with OC, as an effective method for achieving enhanced mechanical performance and microstructural stability in high-integrity applications. Full article
(This article belongs to the Special Issue Welding and Joining of Advanced High-Strength Steels (2nd Edition))
Show Figures

Figure 1

18 pages, 11000 KB  
Article
A Novel Low-Cost Fibrous Tempered-Martensite/Ferrite Low-Alloy Dual-Phase Steel Exhibiting Balanced High Strength and Ductility
by Xianguang Zhang, Yiwu Pei, Haoran Han, Shouli Feng and Yongjie Zhang
Materials 2025, 18(6), 1292; https://doi.org/10.3390/ma18061292 - 14 Mar 2025
Cited by 1 | Viewed by 1084
Abstract
Low-cost and low-alloy dual-phase (DP) steel with a tensile strength (TS) above 1000 MPa and high ductility is in great demand in the automobile industry. An approach to using a medium-carbon and fibrous DP structure for developing such new DP steel has been [...] Read more.
Low-cost and low-alloy dual-phase (DP) steel with a tensile strength (TS) above 1000 MPa and high ductility is in great demand in the automobile industry. An approach to using a medium-carbon and fibrous DP structure for developing such new DP steel has been proposed. The microstructure and mechanical performance of fibrous DP steel obtained via partial reversion from martensite in Fe-C-Mn-Si low-alloy steel have been investigated. The TS of the as-quenched DP steel is above 1300 MPa, while the total elongation is less than 6%. The total elongation was increased to above 13%, with an acceptable loss in TS by performing additional tempering. The fibrous tempered-martensite/ferrite DP steel exhibits an excellent balance of strength and ductility, surpassing the current low-alloy DP steels with the same strength grade. Plate-like or quasi-spherical fine carbides were precipitated, and the relatively high-density dislocations were maintained due to the delay of lath recovery by the enrichment of Mn and C in martensite (austenite before quenching), contributing to the tempering softening resistance. In addition, nanotwins and a very small amount of retained austenite were present due to the martensite chemistry. High-density dislocations, fine carbide precipitation, and partially twinned structures strengthened the tempered martensite while maintaining relatively high ductility. Quantitative strengthening models and calculations were not included in the present work, which is an interesting topic and will be studied in the future. Full article
Show Figures

Figure 1

11 pages, 2233 KB  
Article
Knowledge Discovery in Predicting Martensite Start Temperature of Medium-Carbon Steels by Artificial Neural Networks
by Xiao-Song Wang, Anoop Kumar Maurya, Muhammad Ishtiaq, Sung-Gyu Kang and Nagireddy Gari Subba Reddy
Algorithms 2025, 18(2), 116; https://doi.org/10.3390/a18020116 - 19 Feb 2025
Cited by 4 | Viewed by 2791
Abstract
Martensite start (Ms) temperature is a critical parameter in the production of parts and structural steels and plays a vital role in heat treatment processes to achieve desired properties. However, it is often challenging to estimate accurately through experience alone. This study introduces [...] Read more.
Martensite start (Ms) temperature is a critical parameter in the production of parts and structural steels and plays a vital role in heat treatment processes to achieve desired properties. However, it is often challenging to estimate accurately through experience alone. This study introduces a model that predicts the Ms temperature of medium-carbon steels based on their chemical compositions using the artificial neural network (ANN) method and compares the results with those from previous empirical formulae. The results indicate that the ANN model surpasses conventional methods in predicting the Ms temperature of medium-carbon steel, achieving an average absolute error of −0.93 degrees and −0.097% in mean percentage error. Furthermore, this research provides an accurate method or tool with which to present the quantitative effect of alloying elements on the Ms temperature of medium-carbon steels. This approach is straightforward, visually interpretable, and highly accurate, making it valuable for materials design and prediction of material properties. Full article
(This article belongs to the Special Issue AI and Computational Methods in Engineering and Science)
Show Figures

Figure 1

14 pages, 4570 KB  
Article
Investigation on Laser Weldability of a 2.1 GPa-Grade Hot Stamping Steel with Medium Carbon Content
by Jiming Huang, Xuekun Shang, Liejun Li and Zhiyuan Liang
Metals 2025, 15(2), 198; https://doi.org/10.3390/met15020198 - 13 Feb 2025
Viewed by 1230
Abstract
This investigation aimed at evaluating the weldability of a 2.1 GPa-grade hot stamping steel (HSS) containing 0.40 wt.% carbon using laser butt welding. It is shown that the subject HSS can be properly joined by laser welding without welding defects, such as voids [...] Read more.
This investigation aimed at evaluating the weldability of a 2.1 GPa-grade hot stamping steel (HSS) containing 0.40 wt.% carbon using laser butt welding. It is shown that the subject HSS can be properly joined by laser welding without welding defects, such as voids and micro-cracks. The mechanical properties of joints before and after hot stamping were examined using cross-weld uniaxial tension and Vickers hardness, while microstructure was systematically characterized using optical microscopy and electron backscatter diffraction. The experimental results demonstrate that fresh martensite was formed in the weld nugget after welding, leading to a hardness much higher than that of the base metal. Nevertheless, such cross-weld microstructural heterogeneity was erased after hot stamping and low-temperature baking heat treatments, resulting in a uniform microstructure of lath martensite across the weld. As a result, the joint after hot stamping and baking exhibited an ultimate tensile strength of 2140 MPa and a total elongation of 12.03%, with the fracture occurring in the base metal. Such excellent mechanical properties of the joint demonstrate the great weldability of the present 2.1 GPa-grade HSS during laser welding. Full article
Show Figures

Figure 1

13 pages, 13417 KB  
Article
Microstructures and Mechanical Properties of SUS 630 Stainless Steel: Effects of Age Hardening in a Tin Bath and Atmospheric Environments
by Kuan-Jen Chen and Fu-Sung Chuang
Materials 2025, 18(3), 574; https://doi.org/10.3390/ma18030574 - 27 Jan 2025
Viewed by 2027
Abstract
This study investigates the solution-aging treatment of precipitation-hardening SUS 630 stainless steel, alongside an analysis of the carbon emissions generated by the energy consumed during aging treatments. By employing atmospheric and liquid tin as aging media, the research comprehensively explores the effects of [...] Read more.
This study investigates the solution-aging treatment of precipitation-hardening SUS 630 stainless steel, alongside an analysis of the carbon emissions generated by the energy consumed during aging treatments. By employing atmospheric and liquid tin as aging media, the research comprehensively explores the effects of aging treatments on the characteristics of 630 stainless steel. The maximum hardness value for the 630 stainless steel was observed after atmospheric aging at 500 °C for 1 h. The given 630 stainless steel obtained its maximum hardness value after atmospheric aging at 500 °C for 1 h, indicating that the formation of secondary precipitates strengthens the steel’s performance. By leveraging the intrinsic characteristics of liquid tin, using it as an aging medium (Sn bath aging) significantly improves the efficiency of the aging process, achieving mechanical properties comparable to those of atmosphere-aged steel. The 630 stainless steel aged in a Sn bath exhibited a refined martensitic matrix with substantial precipitate formation, contributing to superior impact toughness and dynamic fatigue resistance. With an equivalent mass and performance, Sn bath aging notably reduced the duration of the treatment compared to atmospheric aging, leading to substantial energy savings and reduced carbon emissions. The Sn bath treatment, recognized in metallurgical science and heat treatment for its excellent thermal conductivity and recyclability, shows potential to enhance process efficiency and enable low carbon emissions in the heat treatment industry. By highlighting the differences between aging methods, this study provides solutions for optimizing heat treatment processes and thereby achieving industrial advancement and sustainability goals. Full article
Show Figures

Figure 1

17 pages, 7644 KB  
Article
Kinetics of Austenite Formation in a Medium-Carbon, Low-Alloy Steel with an Initial Martensite Microstructure: Influence of Prior Austenite Grain Size
by Navneeth Rajakrishnan, Morteza Sadeghifar, Pinaki Bhattacharjee, Henri Champliaud and Mohammad Jahazi
J. Manuf. Mater. Process. 2025, 9(1), 10; https://doi.org/10.3390/jmmp9010010 - 2 Jan 2025
Cited by 2 | Viewed by 2428
Abstract
The impact of prior austenite grain size (PAGS) on the kinetics of austenite formation with an initial martensite microstructure was investigated in a medium-carbon, low-alloy steel. Two distinct PAGS of 117 and 330 μm, representing the range of grain sizes encountered in industries, [...] Read more.
The impact of prior austenite grain size (PAGS) on the kinetics of austenite formation with an initial martensite microstructure was investigated in a medium-carbon, low-alloy steel. Two distinct PAGS of 117 and 330 μm, representing the range of grain sizes encountered in industries, were considered. In this analysis, high-resolution dilatometry was used to study the formation of austenite during continuous heating experiments. The analysis of the dilatometry results revealed that grain refinement accelerated the rate of austenite formation without impacting its austenite formation temperature. Intermittent quenching tests were conducted to elucidate the nucleation and growth mechanisms of austenite formation using a combination of optical, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The differences in austenite formation kinetics as a function of prior austenite grain size were quantified and modeled in the framework of diffusion-controlled nucleation and growth theories using the genetic algorithm optimization. Full article
Show Figures

Figure 1

11 pages, 8239 KB  
Article
Effect of Si Content on Microstructure and Properties of Low-Carbon Medium-Manganese Steel after Intercritical Heat Treatment
by Zihan Hu and Hanguang Fu
Metals 2024, 14(6), 675; https://doi.org/10.3390/met14060675 - 6 Jun 2024
Cited by 8 | Viewed by 2698
Abstract
The microstructure and mechanical properties of three kinds of low-carbon medium-manganese steels with different Si contents under an intercritical heat treatment process were studied. The results show that the microstructure of the test forged steel is mainly composed of ferrite and pearlite. After [...] Read more.
The microstructure and mechanical properties of three kinds of low-carbon medium-manganese steels with different Si contents under an intercritical heat treatment process were studied. The results show that the microstructure of the test forged steel is mainly composed of ferrite and pearlite. After 900 °C complete austenitizing quenching + 720 °C intercritical quenching, the microstructure of the test steel is mainly composed of ferrite and martensite. With the increase in Si content, the microstructure becomes finer and more uniform. The microstructure of the test steel after 900 °C complete austenitizing quenching + 720 °C intercritical quenching + 680 °C intercritical tempering is dominated by ferrite and tempered martensite, with a small amount of retained austenite and cementite. As the Si content increases, the boundaries between ferrite and tempered martensite become more clear. The tensile strength and hardness of the test steel increase with the increase in Si content, while the elongation first increases and then decreases; the comprehensive performance of the test steel is the best when the Si content is 0.685 wt. %, with a tensile strength of 726 MPa, a yield ratio of only 0.65, the highest elongation of 30.5%, and the highest strong plastic product of 22,143 MPa.%. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

14 pages, 10274 KB  
Article
Influence of Nickel on Microstructure and Mechanical Properties in Medium-Carbon Spring Steel
by Qian Yu, Yuliang Zhao and Feiyu Zhao
Materials 2024, 17(10), 2423; https://doi.org/10.3390/ma17102423 - 17 May 2024
Cited by 6 | Viewed by 2459
Abstract
The effects of adding nickel on the phase transition temperature, microstructure, and mechanical properties of medium-carbon spring steel have been investigated. The results show that adding nickel reduces the martensite start (Ms) temperature, improves hardenability, and refines the sub-microstructure of [...] Read more.
The effects of adding nickel on the phase transition temperature, microstructure, and mechanical properties of medium-carbon spring steel have been investigated. The results show that adding nickel reduces the martensite start (Ms) temperature, improves hardenability, and refines the sub-microstructure of the martensite, thereby improving yield stress. The yield strength of martensitic steel increases by approximately 100 MPa due to a synergistic combination of grain refinement strengthening and dislocation strengthening, with an increase in the nickel content from 0 wt.% to 1 wt.%. The cryogenic impact toughness of martensitic steel also improved with a higher nickel content due to packet and block refinement and an increase in the proportion of high-angle grain boundaries (HAGBs). Full article
(This article belongs to the Special Issue Enhancing In-Use Properties of Advanced Steels)
Show Figures

Figure 1

Back to TopTop