Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (551)

Search Parameters:
Keywords = medical device infections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3014 KiB  
Article
Biocide Tolerance, Biofilm Formation, and Efflux Pump Activity in Clinical Isolates of Trichosporon asahii
by Yasmim Passos Lima, Jamile de Paiva Macedo, Alessandra Barbosa Ferreira Machado, Cláudio Galuppo Diniz, Vania Lucia da Silva and Vanessa Cordeiro Dias
Infect. Dis. Rep. 2025, 17(4), 97; https://doi.org/10.3390/idr17040097 (registering DOI) - 6 Aug 2025
Abstract
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well [...] Read more.
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well as biofilm formation and efflux pump activity in isolates of Trichosporon asahii. Methods: Clinical isolates of T. asahii collected between 2020 and 2023 from both hospitalized and non-hospitalized individuals, of both sexes, regardless of age, were tested for tolerance to sodium hypochlorite, hydrogen peroxide, benzalkonium chloride, and ethyl alcohol. Efflux pump activity was also assessed using ethidium bromide, and biofilm formation was measured with the Safranin test. Clinical parameters such as outcomes, source, and length of hospitalization were analyzed through electronic medical records. Results: A total of 37 clinical isolates of T. asahii were identified. Thirty-three (83.8%) isolates were from hospitalized individuals, with 81.82% collected in ICUs, an average hospital stay of 35 days, and a mortality rate of 51.6%. The tested strains displayed the largest mean inhibition zone for 2% sodium hypochlorite, indicating lower tolerance. A high level of efflux pump expression was detected among clinical isolates. Biofilm formation was detected in 25/67.5% of the isolates. Conclusions: These findings highlight the clinical relevance of T. asahii, particularly in critically ill individuals, and underscore the pathogen’s ability to tolerate biocides, express efflux pumps, and form biofilms, all of which may contribute to its persistence and pathogenicity in hospital environments. Enhanced surveillance and effective microbial control measures are essential to mitigate the risks associated with T. asahii infections. Full article
(This article belongs to the Section Fungal Infections)
Show Figures

Figure 1

33 pages, 4268 KiB  
Review
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches
by Alessandro Calogero Scalia and Ziba Najmi
Antibiotics 2025, 14(8), 802; https://doi.org/10.3390/antibiotics14080802 - 6 Aug 2025
Abstract
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms [...] Read more.
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms contribute to water contamination, pipeline corrosion, and biofouling. Clinically, biofilm-associated infections are responsible for approximately 80% of all microbial infections, including endocarditis, osteomyelitis, cystic fibrosis, and chronic sinusitis. A particularly critical concern is their colonization of medical devices, where biofilms can lead to chronic infections, implant failure, and increased mortality. Implantable devices, such as orthopedic implants, cardiac pacemakers, cochlear implants, urinary catheters, and hernia meshes, are highly susceptible to microbial attachment and biofilm development. These infections are often recalcitrant to conventional antibiotics and frequently necessitate surgical revision. In the United States, over 500,000 biofilm-related implant infections occur annually, with prosthetic joint infections alone projected to incur revision surgery costs exceeding USD 500 million per year—a figure expected to rise to USD 1.62 billion by 2030. To address these challenges, surface modification of medical devices has emerged as a promising strategy to prevent bacterial adhesion and biofilm formation. This review focuses on recent advances in chemical surface functionalization using non-antibiotic agents, such as enzymes, chelating agents, quorum sensing quenching factors, biosurfactants, oxidizing compounds and nanoparticles, designed to enhance antifouling and mature biofilm eradication properties. These approaches aim not only to prevent device-associated infections but also to reduce dependence on antibiotics and mitigate the development of antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial and Antibiofilm Properties of Biomaterial)
Show Figures

Graphical abstract

10 pages, 882 KiB  
Article
Leadless Pacemaker Implantation During Extraction in Patients with Active Infection: A Comprehensive Analysis of Safety, Patient Benefits and Costs
by Aviv Solomon, Maor Tzuberi, Anat Berkovitch, Eran Hoch, Roy Beinart and Eyal Nof
J. Clin. Med. 2025, 14(15), 5450; https://doi.org/10.3390/jcm14155450 - 2 Aug 2025
Viewed by 196
Abstract
Background: Cardiac implantable electronic device (CIED) infections necessitate extraction and subsequent pacing interventions. Conventional methods after removing the infected CIED system involve temporary or semi-permanent pacing followed by delayed permanent pacemaker (PPM) implantation. Leadless pacemakers (LPs) may offer an alternative, allowing immediate PPM [...] Read more.
Background: Cardiac implantable electronic device (CIED) infections necessitate extraction and subsequent pacing interventions. Conventional methods after removing the infected CIED system involve temporary or semi-permanent pacing followed by delayed permanent pacemaker (PPM) implantation. Leadless pacemakers (LPs) may offer an alternative, allowing immediate PPM implantation without increasing infection risks. Our objective is to evaluate the safety and cost-effectiveness of LP implantation during the same procedure of CIED extraction, compared to conventional two-stage approaches. Methods: Pacemaker-dependent patients with systemic or pocket infection undergoing device extraction and LP implantation during the same procedure at Sheba Medical Center, Israel, were compared to a historical group of patients undergoing a semi-permanent (SP) pacemaker implantation during the procedure, followed by a permanent pacemaker implantation. Results: The cohort included 87 patients, 45 undergoing LP implantation and 42 SP implantation during the extraction procedure. The LP group demonstrated shorter intensive care unit stay (1 ± 3 days vs. 7 ± 12 days, p < 0.001) and overall hospital days (11 ± 24 days vs. 17 ± 17 days, p < 0.001). Rates of infection relapse and one-year mortality were comparable between groups. Economic analysis revealed comparable total costs, despite the higher initial expense of LPs. Conclusions: LP implantation during CIED extraction offers significant clinical and logistical advantages, including reduced hospital stays and streamlined treatment, with comparable safety and cost-effectiveness to conventional approaches. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

10 pages, 1883 KiB  
Article
In Vitro Biofilm Formation Kinetics of Pseudomonas aeruginosa and Escherichia coli on Medical-Grade Polyether Ether Ketone (PEEK) and Polyamide 12 (PA12) Polymers
by Susana Carbajal-Ocaña, Kristeel Ximena Franco-Gómez, Valeria Atehortúa-Benítez, Daniela Mendoza-Lozano, Luis Vicente Prado-Cervantes, Luis J. Melgoza-Ramírez, Miguel Delgado-Rodríguez, Mariana E. Elizondo-García and Jorge Membrillo-Hernández
Hygiene 2025, 5(3), 32; https://doi.org/10.3390/hygiene5030032 - 1 Aug 2025
Viewed by 192
Abstract
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on [...] Read more.
Biofilms, structured communities of microorganisms encased in an extracellular matrix, are a major cause of persistent infections, particularly when formed on medical devices. This study investigated the kinetics of biofilm formation by Escherichia coli and Pseudomonas aeruginosa, two clinically significant pathogens, on two medical-grade polymers: polyether ether ketone (PEEK) and polyamide 12 (PA12). Using a modified crystal violet staining method and spectrophotometric quantification, we evaluated biofilm development over time on polymer granules and catheter segments composed of these materials. Results revealed that PEEK surfaces supported significantly more biofilm formation than PA12, with peak accumulation observed at 24 h for both pathogens. Conversely, PA12 demonstrated reduced bacterial adhesion and lower biofilm biomass, suggesting surface characteristics less conducive to microbial colonization. Additionally, the study validated a reproducible protocol for assessing biofilm formation, providing a foundation for evaluating anti-biofilm strategies. While the assays were performed under static in vitro conditions, the findings highlight the importance of material selection and early prevention strategies in the design of infection-resistant medical devices. This work contributes to the understanding of how surface properties affect microbial adhesion and underscores the critical need for innovative surface modifications or coatings to mitigate biofilm-related healthcare risks. Full article
(This article belongs to the Section Hygiene in Healthcare Facilities)
Show Figures

Figure 1

28 pages, 5572 KiB  
Article
Surface Modification of Medical-Grade Titanium and Polyvinyl Chloride with a Novel Catechol-Terminated Compound Containing Zwitterionic Sulfobetaine Functionality for Antibacterial Application
by Nai-Chia Fan, Fang-Min Hsu, Chi-Hui Cheng and Jui-Che Lin
Polymers 2025, 17(15), 2006; https://doi.org/10.3390/polym17152006 - 22 Jul 2025
Viewed by 323
Abstract
Healthcare-associated infection, mainly through medical device-associated infection, remains a critical issue in hospital care. Bacterial adhesion, proliferation, and biofilm formation on the device surface have been considered the foremost cause of medical device-associated infection. Different means have been explored to reduce microbial attachment [...] Read more.
Healthcare-associated infection, mainly through medical device-associated infection, remains a critical issue in hospital care. Bacterial adhesion, proliferation, and biofilm formation on the device surface have been considered the foremost cause of medical device-associated infection. Different means have been explored to reduce microbial attachment and proliferation, including forming a bactericidal or microbial adhesion-resistant surface layer. Fear of limited bactericidal capability if the dead microbes remained adhered to the surface has withheld the widespread use of a bactericidal surface in medical devices if it was intended for long-term use. By contrast, constructing a microbial adhesion-resistant or antifouling surface, such as a surface with zwitterionic functionality, would be more feasible for devices intended to be used for the long term. Nevertheless, a sophisticated multi-step chemical reaction process would be needed. Instead, a simple immersion method that utilized a novel mussel-inspired catechol compound with zwitterionic sulfobetaine functionality, ZDS, was explored in this investigation for the surface modification of substrates with distinctively different surface characteristics, including titanium and polyvinyl chloride. Dopamine, NaIO4 oxidants, and chemicals that could affect ionic interactions (NaCl and polyethyleneimine) were added to the ZDS-containing immersion solution to compare their effects on modifying titanium and PVC substrates. Furthermore, a layer-by-layer immersion method, in which the substrate was first immersed in the no-ZDS-added dopamine-containing solution, followed by the ZDS-containing solution, was also attempted on the PVC substrate. By properly selecting the immersion solution formulation and additional NaIO4 oxidation modification, the antibacterial capability of ZDS-modified substrates can be optimized without causing cytotoxicity. The maximum antibacterial percentages against S. aureus were 84.2% and 81.7% for the modified titanium and PVC substrate, respectively, and both modified surfaces did not show any cytotoxicity. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 3886 KiB  
Article
Amikacin Coated 3D-Printed Metal Devices for Prevention of Postsurgical Infections (PSIs)
by Chu Zhang, Ishwor Poudel, Nur Mita, Xuejia Kang, Manjusha Annaji, Seungjong Lee, Peter Panizzi, Nima Shamsaei, Oladiran Fasina, R. Jayachandra Babu and Robert D. Arnold
Pharmaceutics 2025, 17(7), 911; https://doi.org/10.3390/pharmaceutics17070911 - 14 Jul 2025
Viewed by 380
Abstract
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated [...] Read more.
Background/Objectives: Personalized 3D-printed (3DP) metallic implants delivery systems are being explored to repair bone fractures, allowing the customization of medical implants that respond to individual patient needs, making it potentially more effective and of greater quality than mass-produced devices. However, challenges associated with postsurgical infections caused by bacterial adhesion remain a clinical issue. To address this, local antibiotic therapies are receiving extensive attention to minimize the risk of implant-related infections. This study investigated the use of amikacin (AMK), a broad-spectrum aminoglycoside antibiotic, incorporated onto 3D-printed 316L stainless steel implants using biodegradable polymer coatings of chitosan and poly lactic-co-glycolic acid (PLGA). Methods: This research examined different approaches to coat 3DP implants with amikacin. Various polymer-based coatings were studied to determine the optimal formulation based on the characteristics and release profile. The optimal formulation was performed on the antibacterial activity studies. Results: AMK-chitosan with PLGA coating implants controlled the rate of drug release for up to one month. The 3DP drug-loaded substrates demonstrated effective, concentration-dependent antibacterial activity against common infective pathogens. AMK-loaded substrates showed antimicrobial effectiveness for one week and inhibited bacteria significantly compared to the uncoated controls. Conclusions: This study demonstrated that 3DP metal surfaces coated with amikacin can provide customizable drug release profiles while effectively inhibiting bacterial growth. These findings highlight the potential of combining 3D printing with localized delivery strategies to prevent implant-associated infections and advance the development of personalized therapies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

12 pages, 795 KiB  
Article
Microbial Multidrug-Resistant Organism (MDRO) Mapping of Intensive Care Unit Infections
by Ahmed Yassin, Ragaey Ahmad Eid, Mohammad Farouk Mohammad, Marwa O. Elgendy, Zeinab Mohammed, Mohamed E. A. Abdelrahim, Ahmed M. Abdel Hamied, Reem Binsuwaidan, Asmaa Saleh, Mona Hussein and Eman Hamdy Mohamed
Medicina 2025, 61(7), 1220; https://doi.org/10.3390/medicina61071220 - 4 Jul 2025
Viewed by 393
Abstract
Background and Objectives: This study aims to identify risk factors associated with MDRO infections and assess their impact on patient outcomes in Egyptian ICUs. Materials and Methods: The widespread overuse of antimicrobials has led to antibiotic multidrug resistance, posing significant challenges in [...] Read more.
Background and Objectives: This study aims to identify risk factors associated with MDRO infections and assess their impact on patient outcomes in Egyptian ICUs. Materials and Methods: The widespread overuse of antimicrobials has led to antibiotic multidrug resistance, posing significant challenges in intensive care units (ICUs) and leading to increased morbidity, mortality, and healthcare costs. A prospective observational study was conducted over 12 months, including 113 adult patients admitted to the ICU with confirmed bacterial infections. Comprehensive medical assessments and routine investigations were performed, including multisource cultures based on clinical suspicion. Patient histories, underlying conditions, and disease progression were documented. Patients were classified into two groups: those infected with MDROs and those without MDRO infections. Results: Significant differences were observed between patients with and without MDRO infections regarding temperature, pH, PaO2, HCO3, serum creatinine levels, high-dose inotropes, and inotrope dependence (p-values: 0.01, 0.028, 0.036, 0.008, <0.001, 0.013, 0.029, 0.039, <0.001, and 0.003, respectively). Additionally, cerebrovascular stroke and renal failure were significantly more frequent in MDRO-infected patients (p-values: 0.048 and 0.007, respectively). MDROs accounted for 42% of infections. The most commonly detected MDRO was Klebsiella spp. (52%). Patients with MDRO infections showed significantly higher mortality (42.6%), increased incidence of ARDS, invasive ventilation, and longer ventilation durations. Independent risk factors included prior antibiotic use (OR: 3.2; 95% CI: 1.5–6.8) and invasive device presence (OR: 2.7; 95% CI: 1.2–5.9). Conclusions: Cerebrovascular stroke and renal failure appear to be risk factors for MDRO infections. MDRO infections in ICUs are associated with poor clinical outcomes and increased complications. Improved antimicrobial stewardship and targeted prevention strategies are urgently required. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

8 pages, 607 KiB  
Proceeding Paper
Advancements in Nanotechnology for Orthopedic Applications: A Comprehensive Overview of Nanomaterials in Bone Tissue Engineering and Implant Innovation
by Newton Neogi, Kristi Priya Choudhury, Sabbir Hossain and Ibrahim Hossain
Med. Sci. Forum 2025, 32(1), 4; https://doi.org/10.3390/msf2025032004 - 26 Jun 2025
Viewed by 502
Abstract
Orthopedic implant technology has historically seen difficulties in attaining long-term stability and biological integration, leading to complications such as implant loosening, wear debris production, and heightened infection risk. Nanotechnology provides a revolutionary method for addressing these constraints through the introduction of materials characterized [...] Read more.
Orthopedic implant technology has historically seen difficulties in attaining long-term stability and biological integration, leading to complications such as implant loosening, wear debris production, and heightened infection risk. Nanotechnology provides a revolutionary method for addressing these constraints through the introduction of materials characterized by exceptional biocompatibility, durability, and integration potential. Nanomaterials (NMs), characterized by distinctive surface topographies and elevated surface area-to-volume ratios, facilitate improved osseointegration and provide regulated medication release, thereby creating a localized therapeutic milieu surrounding the implant site. To overcome the long-standing constraints of conventional implants, such as poor osseointegration, low mechanical fixation, immunological rejection, and implant-related infections, nanotechnology is causing a revolution in the field of orthopedic research. NMs are ideally suited for orthopedic applications due to their exceptional features, including increased tribology, wear resistance, prolonged drug administration, and excellent tissue regeneration. Because of their nanoscale size, they can imitate the hierarchical structure of real bone, which in turn encourages the proliferation of cells, lowers the risk of infection, and helps with the mending of bone fractures. This article will investigate the wide-ranging possibilities of nanostructured ceramics, polymers, metals, and carbon materials in bone tissue engineering, diagnostics, and the treatment of implant-related infections, bone malignancies, and bone healing. In addition, this paper will provide a basic overview of the most recent discoveries in nanotechnology driving the future of translational orthopedic research. It will also highlight safety evaluations and regulatory requirements for orthopedic devices. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Clinical Reports)
Show Figures

Figure 1

14 pages, 1085 KiB  
Article
Validation of Rapid Point-of-Care Diagnostic Tests for Sexually Transmitted Infection Self-Testing Among Adolescent Girls and Young Women
by Krishnaveni Reddy, Jiaying Hao, Nompumelelo Sigcu, Merusha Govindasami, Nomasonto Matswake, Busisiwe Jiane, Reolebogile Kgoa, Lindsay Kew, Nkosiphile Ndlovu, Reginah Stuurman, Hlengiwe Mposula, Jennifer Ellen Balkus, Renee Heffron and Thesla Palanee-Phillips
Diagnostics 2025, 15(13), 1604; https://doi.org/10.3390/diagnostics15131604 - 25 Jun 2025
Viewed by 798
Abstract
Background/Objectives: High rates of sexually transmitted infections (STIs) increase HIV transmission risk among adolescent girls and young women (AGYW) in South Africa. AGYW prefer discreet self-testing options for HIV and pregnancy; however, other STI self-testing options are currently unavailable in this region. [...] Read more.
Background/Objectives: High rates of sexually transmitted infections (STIs) increase HIV transmission risk among adolescent girls and young women (AGYW) in South Africa. AGYW prefer discreet self-testing options for HIV and pregnancy; however, other STI self-testing options are currently unavailable in this region. Methods: Seven Chlamydia trachomatis (CT), Neisseria gonorrhea (NG) and Trichomonas vaginalis (TV) assays were validated for AGYW self-test use (using self-collected vaginal samples) in a cross-sectional study (PROVE). Paired GeneXpert® NG/CT (Cepheid®, Sunnyvale, CA, USA) and OSOM® Trichomonas test (Sekisui Diagnostics, Burlington, MA, USA) results from nurse-collected samples served as reference results to calculate sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV). One test, the polymerase chain reaction (PCR)-based Visby Medical™ Sexual Health Test device (Visby Medical™, San Jose, CA, USA), was validated for accuracy of positive test results using self-collected samples and home-based testing in a longitudinal follow-up study enrolling AGYW aged 16–18 years. Paired GeneXpert® NG/CT and TV results from nurse-collected vaginal samples served as reference tests. Results: In PROVE, 146 AGYW contributed 558 paired samples. The Visby Medical™ Sexual Health Test exhibited moderate to high sensitivity (66.7–100%), specificity (80–100%), NPV (66.7–100%), and PPV (66.7–100%) for NG, CT, and TV. The remaining tests’ performances were markedly lower. In the longitudinal study, 28 AGYW contributed 84 paired samples, and the Visby Medical™ Sexual Health Test demonstrated 100% accuracy of positive results for CT, NG, and TV. Conclusions: The Visby Medical™ Sexual Health Test demonstrated high reliability as a potential option for AGYW to discreetly self-test for multiple STIs concurrently. Testing of its acceptability, utility, and feasibility in a larger sample of AGYW is in progress. Full article
Show Figures

Graphical abstract

25 pages, 1428 KiB  
Article
Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit
by Mircea Stoian, Leonard Azamfirei, Adina Andone, Anca-Meda Văsieșiu, Andrei Stîngaciu, Adina Huțanu, Sergio Rareș Bândilă, Daniela Dobru, Andrei Manea and Adina Stoian
Biomedicines 2025, 13(6), 1333; https://doi.org/10.3390/biomedicines13061333 - 29 May 2025
Viewed by 659
Abstract
Background/Objectives: The clinical forms of coronavirus disease 2019 (COVID-19) vary widely in severity, ranging from asymptomatic or moderate cases to severe pneumonia that can lead to acute respiratory failure, acute respiratory distress syndrome, multiple organ dysfunction syndrome, and death. Our main objective [...] Read more.
Background/Objectives: The clinical forms of coronavirus disease 2019 (COVID-19) vary widely in severity, ranging from asymptomatic or moderate cases to severe pneumonia that can lead to acute respiratory failure, acute respiratory distress syndrome, multiple organ dysfunction syndrome, and death. Our main objective was to determine the prevalence of bacterial and fungal secondary infections in an intensive care unit (ICU). Secondary objectives included analyzing the impact of these infections on mortality and medical resource utilization, as well as assessing antimicrobial resistance in this context. Methods: We conducted a retrospective cohort study that included critically ill severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients treated in an ICU and analyzed the prevalence of co-infections and superinfections. Results: A multivariate analysis of mortality found that the presence of superinfections increased the odds of death by more than 15-fold, while the Sequential Organ Failure Assessment (SOFA) score and C-reactive protein (adjusted for confounders) increased the odds of mortality by 51% and 13%, respectively. The antibiotic resistance profile of microorganisms indicated a high prevalence of resistant strains. Carbapenems, glycopeptides, and oxazolidinones were the most frequently used classes of antibiotics. Among patients, 27.9% received a single antibiotic, 47.5% received two from different classes, and 24.4% were treated with three or more. Conclusions: The incidence and spectrum of bacterial and fungal superinfections are higher in critically ill ICU patients, leading to worse outcomes in COVID-19 cases. Multidrug-resistant pathogens present significant challenges for ICU and public health settings. Early screening, accurate diagnosis, and minimal use of invasive devices are essential to reduce risks and improve patient outcomes. Full article
Show Figures

Figure 1

11 pages, 3669 KiB  
Article
Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation
by Clément Dezanet, Diana Dragoe, Arnaud Fouchet, Jérôme Lecourt, Christelle Harnois, Jacques Rouden, Jérôme Baudoux and Bénédicte Lepoittevin
Materials 2025, 18(10), 2279; https://doi.org/10.3390/ma18102279 - 14 May 2025
Viewed by 478
Abstract
Colonization of surfaces by bacteria followed by biofilm formation is a cause of wound infections associated with the use of medical devices as stents, catheters, implants, etc. For prevention of such infections, the preparation of surfaces with antifouling, anti-adhesive and antibacterial properties is [...] Read more.
Colonization of surfaces by bacteria followed by biofilm formation is a cause of wound infections associated with the use of medical devices as stents, catheters, implants, etc. For prevention of such infections, the preparation of surfaces with antifouling, anti-adhesive and antibacterial properties is of great interest. In this context, four zwitterionic (styrenic or methacrylic) monomers bearing a pyridinium, imidazolium or ammonium cationic group linked to a sulfonate anionic group were chosen and polymerized on ceramic for implant technology. Zwitterionic polymers were successfully grafted onto zirconia pellets through surface-initiated radical polymerization with blue-light photoactivation (“grafting from”). Wettability measurements showed the formation of hydrophilic surfaces with water contact angles in the range of 35–40°. Detailed X-ray photoelectron spectroscopy analysis revealed a surface where the zirconia pellets exhibited zwitterionic polymer brushes with high coverage. The core-level spectra of C1s, N1s and S2p were separated into many components, allowing their attribution to the different atoms in the monomer unit and confirming that zwitterionic polymers were successfully grafted from zirconia surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

9 pages, 763 KiB  
Article
Epidemiological Profile and Antibiotic Resistance in Urinary Tract Infections Among Elderly Women
by Francisco José Barbas Rodrigues, Patrícia Coelho, Sónia Mateus, João Metello and Miguel Castelo-Branco
Women 2025, 5(2), 16; https://doi.org/10.3390/women5020016 - 14 May 2025
Viewed by 473
Abstract
Urinary tract infections (UTIs) are among the most prevalent infectious diseases in older women, especially those over 65 years of age. Physiological changes related to aging, comorbidities, and frequent use of medical devices such as urinary catheters increase susceptibility. Increasing antimicrobial resistance further [...] Read more.
Urinary tract infections (UTIs) are among the most prevalent infectious diseases in older women, especially those over 65 years of age. Physiological changes related to aging, comorbidities, and frequent use of medical devices such as urinary catheters increase susceptibility. Increasing antimicrobial resistance further complicates treatment strategies. This study aims to describe the epidemiological profile of UTI in women over 65 years of age, focusing on the characterization of etiological agents, observed antimicrobial resistance patterns, and commonly reported risk factors. We conducted a retrospective analysis of microbiological and clinical data from elderly women diagnosed with UTIs. Bacterial isolates were identified and antimicrobial susceptibility profiles were evaluated over a specified period. A statistical analysis was performed to determine the prevalence of different pathogens and antibiotic resistance trends. Escherichia coli was the predominant uropathogen, consistent across different clinical scenarios and patient conditions. The four most common bacterial strains—E. coli, Klebsiella pneumoniae, Proteus mirabilis, and Enterococcus faecalis—aligned with global epidemiological data. In Escherichia coli a significant increase in resistance to nitrofurantoin was observed, possibly indicating excessive empirical use, while resistance to other antibiotics, such as amoxicillin/clavulanic acid and ertapenem, remained stable or decreased. Institutional antibiotic stewardship programs likely contributed to this trend. The study highlights E. coli as the main etiological agent in elderly women with UTIs. The observed resistance patterns emphasize the need for localized antimicrobial surveillance and personalized therapeutic approaches. Continuous microbiological monitoring and rational use of antibiotics are crucial to optimize treatment outcomes and control the development of resistance. Full article
Show Figures

Figure 1

12 pages, 738 KiB  
Article
Comprehensive Diagnosis of Viral Hepatitis in Spain: Bases for Implementation
by Joaquin Cabezas, Antonio Aguilera, Federico García, Raquel Domínguez-Hernández, Araceli Casado-Gómez, Nataly Espinoza-Cámac, Miguel Ángel Casado and Javier Crespo
Viruses 2025, 17(5), 667; https://doi.org/10.3390/v17050667 - 3 May 2025
Viewed by 562
Abstract
In 2022, scientific societies agreed on a document with recommendations for a comprehensive diagnosis of viral hepatitis (B, C, and D). The aim was to evaluate the situation in Spain regarding the comprehensive diagnosis of viral hepatitis in a single blood draw before [...] Read more.
In 2022, scientific societies agreed on a document with recommendations for a comprehensive diagnosis of viral hepatitis (B, C, and D). The aim was to evaluate the situation in Spain regarding the comprehensive diagnosis of viral hepatitis in a single blood draw before it is recommended. A panel of experts prepared a structured survey directed at hospitals (public or private with teaching accreditation) with ≥200 beds (sent 20 October 2022, closed 1 December 2022). The response rate was 61% (79/129; 52 hospitals with >500 beds). Among the participating hospitals, all could perform tests for HBsAg, anti-HCV, and HIV serology; 94% could perform PCR testing for HCV, 63% could test for anti-HDV, and 28% could test for HDV-RNA (67% [53/79] outsourced this testing). Point-of-care (POC) testing availability was low (24%), with 84% of these tests being supervised by the reference microbiological laboratory and the results being registered in the patients’ medical history. Ninety percent of the centers carried out the diagnosis in a single step (99% HCV, 70% HBV, 48% HDV, and 44% HBV-HDV). In addition, 77% used some communication strategy when an active infection was encountered (100% HCV, 49% HBV, and 31% HDV). Only 20% had an automated system for scheduling a specialist physician appointment. Most hospitals had the means for a comprehensive diagnosis of viral hepatitis in a single sample, but <50% could test for HBV/HDV. Alerts for continuity of care were available for HCV, but not HBV or HDV. POC device implementation is important for decentralized testing. Full article
(This article belongs to the Special Issue Advancing Hepatitis Elimination: HBV, HDV, and HCV)
Show Figures

Figure 1

12 pages, 260 KiB  
Article
Device-Associated Infections in Adult Intensive Care Units: A Prospective Surveillance Study
by Alkmena Kafazi, Eleni Apostolopoulou, Eymorfia Andreou, Alexandra Gavala, Evagelos Stefanidis, Fwteini Antwniadou, Christos Stylianou, Theodoros Katsoulas and Pavlos Myrianthefs
Acta Microbiol. Hell. 2025, 70(2), 15; https://doi.org/10.3390/amh70020015 - 27 Apr 2025
Viewed by 1792
Abstract
Device-associated infections (DAIs) are a significant public health concern because of their attributable mortality, along with the extra length of stay and cost. This two- year prospective surveillance study aimed to assess the incidence of DAIs and their clinical impact on four Greek [...] Read more.
Device-associated infections (DAIs) are a significant public health concern because of their attributable mortality, along with the extra length of stay and cost. This two- year prospective surveillance study aimed to assess the incidence of DAIs and their clinical impact on four Greek adult medical-surgical Intensive Care Units (ICUs). Centers for Disease Control and Prevention (CDC) definitions were used to diagnose DAIs. Of the 500 patients hospitalized for 12,624 days, 254 (50.8%) experienced 346 episodes of DAIs. The incidence of DAIs was 27.4 episodes per 1000 bed-days. The incidence of ventilator-associated events (VAEs), central line-associated bloodstream infections (CLABSIs), and catheter-associated urinary tract infections (CAUTIs) was 20.5 episodes per 1000 ventilator-days, 8.6 episodes per 1000 central line-days, and 2.5 episodes per 1000 catheter-days, respectively. The most common pathogens isolated were Acinetobacter baumannii (35.7%) and Klebsiella pneumoniae (29.9%). All gram-negative pathogens were carbapenem-resistant. The ICU’s mortality was 44.9% for patients with DAIs and 24.8% for patients without a DAI (attributable mortality 20.1%, p < 0.001), while the mean ICU length of stay was 34.5 days for patients with DAIs and 15.6 days for patients without a DAI (attributable length of stay 18.9 days, p < 0.001). The high incidence of multidrug-resistant pathogens and the attributable length of stay and mortality of DAIs emphasize the need to establish an organized antimicrobial surveillance program and implement a care bundle for DAI prevention in ICUs with personnel educational training, monitoring, and feedback. Full article
34 pages, 11868 KiB  
Article
Tailoring Al-Doped ZnO Nanoparticles via Scalable High-Energy Ball Milling–Solid-State Reaction: Structural, Optical, and Dielectric Insights for Light-Activated Antimicrobial Defense Against Medical Device Pathogens
by Zurayfah Al-Shammari, Imen Massoudi, Amani Rached, Ibtisam Ababutain, Azzah Alghamdi, Reem Aldakheel, Kamal Amin, Essam Kotb and Amor Ben Ali
Crystals 2025, 15(5), 397; https://doi.org/10.3390/cryst15050397 - 24 Apr 2025
Viewed by 909
Abstract
This study reports the synthesis of aluminum-doped ZnO nanoparticles (Al-ZnO NPs) via a top-down mechanochemical solid-state reaction (SSR) approach using high-energy ball milling (HEBM) as a rapid, controllable, and efficient method. Al-ZnO samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), [...] Read more.
This study reports the synthesis of aluminum-doped ZnO nanoparticles (Al-ZnO NPs) via a top-down mechanochemical solid-state reaction (SSR) approach using high-energy ball milling (HEBM) as a rapid, controllable, and efficient method. Al-ZnO samples were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and UV-Vis diffuse reflectance spectroscopy. Significantly, the band gap decreased by 0.215 eV when transitioning from pure ZnO to 9 wt.% Al-doped ZnO (Al-ZnO9). TEM analysis showed that after 4 h of milling at 1000 rpm, the particle size was reduced to 59 nm, exhibiting a spherical morphology crucial for enhanced bioactivity. The antimicrobial properties of the Al-ZnO NPs were evaluated using the well diffusion method against various pathogenic microorganisms, with a particular focus on Staph. aureus ATCC 29213 and Staph. epidermidis ATCC 12228, given their clinical significance as common pathogens in infections related to medical implants and prosthetics. Al-ZnO9 demonstrated superior antibacterial performance, producing inhibition zones of 13 mm and 15 mm against Staph. aureus and Staph. epidermidis, respectively. Moreover, exposure to visible light further amplified the antimicrobial activity. This research underscores the potential for the scalable production of Al-ZnO NPs, presenting a promising solution for addressing infections linked to implanted medical devices. Full article
Show Figures

Figure 1

Back to TopTop