Surface Modification of Medical-Grade Titanium and Polyvinyl Chloride with a Novel Catechol-Terminated Compound Containing Zwitterionic Sulfobetaine Functionality for Antibacterial Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZDS
2.3. Surface Modification of Different Substrates
2.3.1. Titanium (Ti) Substrate
2.3.2. Polyvinyl Chloride (PVC) Substrate
2.4. Characterization
2.5. Antibacterial Test
2.6. Cytotoxicity Assay
3. Results and Discussion
3.1. ZDS Synthesis
3.2. Surface Characterization
3.2.1. Surface Morphology
Surface Morphology of the Modified Titanium Substrates
Surface Morphology of the Modified Polyvinyl Chloride Substrates by the One-Layer Approach
Surface Morphology of the Modified Polyvinyl Chloride Substrates by the Layer-by-Layer Approach
3.2.2. Surface Contact Angle
Surface Contact Angle of the Modified Titanium Substrates
Surface Contact Angle of the Modified Polyvinyl Chloride Substrates by the One-Layer Approach
Surface Hydrophilicity of the Modified Polyvinyl Chloride Substrates by the Layer-by-Layer Approach
3.2.3. XPS Analysis
Surface Chemical Characteristics of the Modified Titanium Substrates
Surface Chemical Characteristics of the Modified Polyvinyl Chloride Substrates by the One-Layer Approach
Surface Chemical Characteristics of the Modified Polyvinyl Chloride Substrates by the Layer-by-Layer Approach
3.3. Antibacterial Assay
3.3.1. Antibacterial Assay for the Modified Titanium Substrates
3.3.2. Antibacterial Assay for the One-Layer Modified Polyvinyl Chloride Substrates
3.3.3. Antibacterial Assay for the Layer-by-Layer Modified Polyvinyl Chloride Substrates
3.4. Cytotoxicity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, K.; Wilson, M.; Parkin, I.P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 2009, 19, 3819–3831. [Google Scholar] [CrossRef]
- Lin, P.A.; Cheng, C.H.; Hsieh, K.T.; Lin, J.C. Effect of alkyl chain length and fluorine content on the surface characteristics and antibacterial activity of surfaces grafted with brushes containing quaternized ammonium and fluoro-containing monomers. Colloid. Surface B 2021, 202, 111674. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Zeng, X.Z.; Chiu, W.Y.; Lin, J.C. A Facile Surface Modification Scheme for Medical-Grade Titanium and Polypropylene Using a Novel Mussel-Inspired Biomimetic Polymer with Cationic Quaternary Ammonium Functionalities for Antibacterial Application. Polymers 2024, 16, 503. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Yu, Q.; Chen, H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv. Healthc. Mater. 2019, 8, e1801381. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Thian, E.S.; Wang, M.; Wang, Z.Y.; Ren, L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv. Sci. 2021, 8, 2100368. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, H.C.; Yu, H.; Yan, S.J.; Luan, S.F. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater. Sci. 2020, 8, 4095–4108. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Ward, R.J.; Hexemer, A.; Sohn, K.E.; Lee, K.L.; Angert, E.R.; Fischer, D.A.; Kramer, E.J.; Ober, C.K. Surfaces of fluorinated pyridinium block copolymers with enhanced antibacterial activity. Langmuir 2006, 22, 11255–11266. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Q.; Ma, Y.J.; Han, Q.X. Surface-oriented fluorinated pyridinium silicone with enhanced antibacterial activity on cotton via supercritical impregnation. Cellulose 2018, 25, 1499–1511. [Google Scholar] [CrossRef]
- Kanazawa, A.; Ikeda, T.; Endo, T. Polymeric Phosphonium Salts as a Novel Class of Cationic Biocides. 6. Antibacterial Activity of Fibers Surface-Treated with Phosphonium Salts Containing Trimethoxysilane Groups. J. Appl. Polym. Sci. 1994, 52, 641–647. [Google Scholar] [CrossRef]
- Chien, H.W.; Chen, Y.Y.; Chen, Y.L.; Cheng, C.H.; Lin, J.C. Studies of PET nonwovens modified by novel antimicrobials configured with both halamine and dual quaternary ammonium with different alkyl chain length. Rsc Adv. 2019, 9, 7257–7265. [Google Scholar] [CrossRef] [PubMed]
- Fernández, I.C.S.; Van der Mei, H.C.; Metzger, S.; Grainger, D.W.; Engelsman, A.F.; Nejadnik, M.R.; Busscher, H.J. In vitro and in vivo comparisons of staphylococcal biofilm formation on a cross-linked poly (ethylene glycol)-based polymer coating. Acta Biomater. 2010, 6, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Kingshott, P.; Wei, J.; Bagge-Ravn, D.; Gadegaard, N.; Gram, L. Covalent attachment of poly (ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 2003, 19, 6912–6921. [Google Scholar] [CrossRef]
- Park, K.D.; Kim, Y.S.; Han, D.K.; Kim, Y.H.; Lee, E.H.B.; Suh, H.; Choi, K.S. Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 1998, 19, 851–859. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Qi, Y.; Zhou, Y.; Sun, X.; Zhang, Z. Microstructure and properties of poly (ethylene glycol)-segmented polyurethane antifouling coatings after immersion in seawater. Polymers 2021, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Egorov, S.A.; Hsu, H.-P.; Milchev, A.; Binder, K. Semiflexible polymer brushes and the brush-mushroom crossover. Soft Matter. 2015, 11, 2604–2616. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-W.; Ma, C.-Y.; Wu, H.-X.; Tan, L.; Xiao, J.-Y.; Zhuo, R.-X.; Liu, C.-J. Antiadhesive zwitterionic poly-(sulphobetaine methacrylate) brush coating functionalized with triclosan for high-efficiency antibacterial performance. Prog. Org. Coat. 2016, 97, 277–287. [Google Scholar] [CrossRef]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A survey of structure− property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Laschewsky, A. Structures and synthesis of zwitterionic polymers. Polymers 2014, 6, 1544–1601. [Google Scholar] [CrossRef]
- Shao, Q.; He, Y.; White, A.D.; Jiang, S. Difference in hydration between carboxybetaine and sulfobetaine. J. Phys. Chem. B 2010, 114, 16625–16631. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Jiang, S. Effect of carbon spacer length on zwitterionic carboxybetaines. J. Phys. Chem. B 2013, 117, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, S.F.; Chang, Y.; Jiang, S.Y. Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings. J. Phys. Chem. B 2006, 110, 10799–10804. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Shi, X.F.; Fukazawa, K.; Yamaoka, T.; Yao, G.; Wu, J.Y. Biomimetic-Engineered Silicone Hydrogel Contact Lens Materials. Acs Appl. Bio Mater. 2023, 6, 3600–3616. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.H.; Lin, J.C. Solvent and concentration effects on the surface characteristics and platelet compatibility of zwitterionic sulfobetaine-terminated self-assembled monolayers. Colloid. Surface B 2013, 101, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.H.; Wu, W.Z.; Yu, M.Z.; Wang, Z.; Yang, Z.Y.; Xing, X.D.; Chen, X.F.; Niu, L.N.; Yu, F.; Xiao, Y.H.; et al. Mussel-inspired polymer with catechol and cationic Lys functionalities for dentin wet bonding. Mater. Today Bio 2023, 18, 100506. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; González-Cabezas, C.; Kim, K.M.; Kim, K.N.; Kuroda, K. Catechol-Functionalized Synthetic Polymer as a Dental Adhesive to Contaminated Dentin Surface for a Composite Restoration. Biomacromolecules 2015, 16, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.P.; Messersmith, P.B.; Israelachvili, J.N.; Waite, J.H. Mussel-Inspired Adhesives and Coatings. Annu. Rev. Mater. Res. 2011, 41, 99–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.N.; Sun, Y.; Liu, G.Q.; Zhou, F.; Liu, W.M. Mussel-inspired adhesive friction-controlled lubricating coating for titanium alloy used in artificial joint replacement. Appl. Surf. Sci. 2023, 626, 157265. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, B.H.; Zhou, Y.S.; Zhou, F.; Liu, W.M.; Wang, Z.K. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev. 2020, 49, 3605–3637. [Google Scholar] [CrossRef] [PubMed]
- Texidó, R.; Cabanach, P.; Kaplan, R.; García-Bonillo, C.; Pérez, D.; Zhang, S.; Borrós, S.; Pena-Francesch, A. Bacteriophobic Zwitterionic/Dopamine Coatings for Medical Elastomers. Adv. Mater. Interfaces 2022, 9, 2201152. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; van Koeverden, M.P.; Such, G.K.; Cui, J.W.; Caruso, F. One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science 2013, 341, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Della Vecchia, N.F.; Avolio, R.; Alfè, M.; Errico, M.E.; Napolitano, A.; d’Ischia, M. Building-Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin-Type Platform Tunable Through a Quinone Control Point. Adv. Funct. Mater. 2013, 23, 1331–1340. [Google Scholar] [CrossRef]
- Feinberg, H.; Hanks, T.W. Polydopamine: A bioinspired adhesive and surface modification platform. Polym. Int. 2022, 71, 578–582. [Google Scholar] [CrossRef]
- Liebscher, J. Chemistry of Polydopamine—Scope, Variation, and Limitation. Eur. J. Org. Chem. 2019, 2019, 4976–4994. [Google Scholar] [CrossRef]
- Ding, Y.; Floren, M.; Tan, W. Mussel-inspired polydopamine for bio-surface functionalization. Biosurface Biotribology 2016, 2, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, M.Q.; Chen, T.T.; Zhang, H.; Hu, D.F.; Wu, B.H.; Ji, J.; Xu, Z.K. Dopamine-Triggered One-Step Polymerization and Codeposition of Acrylate Monomers for Functional Coatings. ACS Appl. Mater. Interfaces 2017, 9, 34356–34366. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Wu, Y.F.; Lan, F.X.; Xie, G.Y.; Zhang, M.C.; Ma, C.P.; Jia, J.B. Improvement of permeability and antifouling performance of PVDF membranes via dopamine-assisted deposition of zwitterionic copolymer. Colloid. Surface A 2023, 656, 130505. [Google Scholar] [CrossRef]
- Qiao, Y.S.; Li, Y.; Zhang, Q.; Wang, Q.; Gao, J.; Wang, L. Dopamine-Mediated Zwitterionic Polyelectrolyte-Coated Polypropylene Hernia Mesh with Synergistic Anti-inflammation Effects. Langmuir 2020, 36, 5251–5261. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-Y.; Huang, C.-J. Functionalization of polydopamine via the aza-michael reaction for antimicrobial interfaces. Langmuir 2016, 32, 5019–5028. [Google Scholar] [CrossRef] [PubMed]
- Asha, A.B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir 2018, 35, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Yeon, D.K.; Ko, S.; Jeong, S.; Hong, S.P.; Kang, S.M.; Cho, W.K. Oxidation-Mediated, Zwitterionic Polydopamine Coatings for Marine Antifouling Applications. Langmuir 2019, 35, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ou, Y.; Lei, W.X.; Wan, L.S.; Ji, J.; Xu, Z.K. CuSO4/H2O2-Induced Rapid Deposition of Polydopamine Coatings with High Uniformity and Enhanced Stability. Angew. Chem. Int. Edit. 2016, 55, 3054–3057. [Google Scholar] [CrossRef] [PubMed]
- Ball, V. Polydopamine Nanomaterials: Recent Advances in Synthesis Methods and Applications. Front. Bioeng. Biotech. 2018, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Insin, N.; Lee, J.; Han, H.S.; Cordero, J.M.; Liu, W.H.; Bawendi, M.G. Compact Zwitterion-Coated Iron Oxide Nanoparticles for Biological Applications. Nano Lett. 2012, 12, 22–25. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. The International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 10993-12:2021; Biological Evaluation of Medical Devices. Part 12: Sample Preparation and Reference Materials. The International Organization for Standardization: Geneva, Switzerland, 2021.
- Ferretti, A.M.; Usseglio, S.; Mondini, S.; Drago, C.; La Mattina, R.; Chini, B.; Verderio, C.; Leonzino, M.; Cagnoli, C.; Joshi, P.; et al. Towards bio-compatible magnetic nanoparticles: Immune-related effects, in-vitro internalization, and in-vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J. Colloid. Interf. Sci. 2021, 582, 678–700. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, H.S.; Han, X.; Nowinski, A.K.; Ella-Menye, J.R.; Wimbish, C.; Marek, P.; Senecal, K.; Jiang, S.Y. One-Step Dip Coating of Zwitterionic Sulfobetaine Polymers on Hydrophobic and Hydrophilic Surfaces. ACS Appl. Mater. Interfaces 2014, 6, 6664–6671. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Yang, S.J.; Du, Y.; Yang, H.C.; Xu, Z.K. Co-deposition Kinetics of Polydopamine/Polyethyleneimine Coatings: Effects of Solution Composition and Substrate Surface. Langmuir 2018, 34, 13123–13131. [Google Scholar] [CrossRef] [PubMed]
- Kanta, A.; Sedev, R.; Ralston, J. Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania. Langmuir 2005, 21, 2400–2407. [Google Scholar] [CrossRef] [PubMed]
- Marie, H.; Barrere, A.; Schoentstein, F.; Chavanne, M.-H.; Grosgogeat, B.; Mora, L. PEM anchorage on titanium using catechol grafting. PLoS ONE 2012, 7, e50326. [Google Scholar] [CrossRef] [PubMed]
- Hemmatpour, H.; De Luca, O.; Crestani, D.; Stuart, M.C.A.; Lasorsa, A.; van der Wel, P.C.A.; Loos, K.; Giousis, T.; Haddadi-Asl, V.; Rudolf, P. New insights in polydopamine formation via surface adsorption. Nat. Commun. 2023, 14, 664. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.D.; Ren, J.; Kong, Y.; Ji, Z.J.; Guo, S.J.; Li, J.F. Recent Advances in Dopamine-Based Membrane Surface Modification and Its Membrane Distillation Applications. Membranes 2024, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xiang, L.; Zhang, J.W.; Liu, C.; Wang, Z.K.; Zeng, H.B.; Xu, Z.K. Revisiting the adhesion mechanism of mussel-inspired chemistry. Chem. Sci. 2022, 13, 1698–1705. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.Z.; Yang, H.C.; Xu, Z.K. Dopamine-assisted co-deposition: An emerging and promising strategy for surface modification. Adv. Colloid Interface Sci. 2018, 256, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Qie, R.T.; Moghaddam, S.Z.; Thormann, E. Dopamine-Assisted Layer-by-Layer Deposition Providing Coatings with Controlled Thickness, Roughness, and Functional Properties. Acs Omega 2023, 8, 2965–2972. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qian, H.; Wang, J.; Ju, P.; Lou, Y.; Li, G.; Zhang, D. Mechanically durable antibacterial nanocoatings based on zwitterionic copolymers containing dopamine segments. J. Mater. Sci. Technol. 2021, 89, 233–241. [Google Scholar] [CrossRef]
- Chang, C.-C.; Nogan, J.; Yang, Z.-P.; Kort-Kamp, W.J.; Ross, W.; Luk, T.S.; Dalvit, D.A.; Azad, A.K.; Chen, H.-T. Highly plasmonic titanium nitride by room-temperature sputtering. Sci. Rep. 2019, 9, 15287. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Tu, R.; Goto, T. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD. Mater. Res. Bull. 2013, 48, 2766–2770. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Sim, U.; Kim, J.K. Biopolymer-inspired N-doped nanocarbon using carbonized polydopamine: A high-performance electrocatalyst for hydrogen-evolution reaction. Polymers 2020, 12, 912. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Zhang, Q.; Lin, L.; He, X.; Wang, L. A Self-Healable and Recyclable Zwitterionic Polyurethane Based on Dynamic Ionic Interactions. Polymers 2023, 15, 1270. [Google Scholar] [CrossRef] [PubMed]
- El Mel, A.-A.; Gautron, E.; Choi, C.; Angleraud, B.; Granier, A.; Tessier, P. Titanium carbide/carbon composite nanofibers prepared by a plasma process. Nanotechnology 2010, 21, 435603. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Gorthy, R.; Mardon, I.; Tang, D.; Goode, C. Low voltage environmentally friendly plasma electrolytic oxidation process for titanium alloys. Sci. Rep. 2022, 12, 6037. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, J.; Wang, J.; Zeng, H. Anti-biofouling materials and surfaces based on mussel-inspired chemistry. Mater. Adv. 2021, 2, 2216–2230. [Google Scholar] [CrossRef]
- Shao, Q.; Mi, L.; Han, X.; Bai, T.; Liu, S.; Li, Y.; Jiang, S. Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. J. Phys. Chem. B 2014, 118, 6956–6962. [Google Scholar] [CrossRef] [PubMed]
- Zaccarian, F.; Baker, M.B.; Webber, M.J. Biomedical uses of sulfobetaine-based zwitterionic materials. Org. Mater. 2020, 2, 342–357. [Google Scholar] [CrossRef]
- Toh, W.S.; Yap, A.; Lim, S.Y. In Vitro Biocompatibility of Contemporary Bulk-fill Composites. Oper. Dent. 2015, 40, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Demirel, G.; Gür, G.; Demirsoy, F.F.; Altuntaş, E.G.; Yener-Ilce, B.; Kiliçarslan, M.A. Cytotoxic effects of contemporary bulk-fill dental composites: A real-time cell analysis. Dent. Mater. J. 2020, 39, 101–110. [Google Scholar] [CrossRef] [PubMed]
Bare Ti | Piranha-Treated Ti |
ZDSxDA-Ti | Ti was modified with a coating solution of ZDS and DA at a weight ratio of ZDS/DA = 2:x for 24 h. |
ZDS(NaIO4)-Ti | Ti was modified with a coating solution of ZDS and 20 mM NaIO4 for 2 h. |
ZDSxDA(2-step)-Ti | The ZDSxDA-Ti sample was immersed in 50 mM of the NaIO4 solution for 0.5 h. |
ZDSxDANaCl(2-step)-Ti | Ti was first modified with a coating solution containing ZDS and DA at a weight ratio of ZDS/DA = 2:x and 10 mM NaCl for 24 h. The modified sample was immersed in 50 mM of the NaIO4 solution for 0.5 h. |
Bare PVC | PVC Underwent Washing/Cleaning Steps Only |
ZDSxDA-PVC | PVC was modified with a coating solution of ZDS and DA at a weight ratio of ZDS/DA = 2:x for 24 h. |
ZDS(NaIO4)-PVC | PVC was modified with a coating solution of ZDS and 20 mM NaIO4 for 2 h. |
ZDSxDA(2-step)-PVC | The ZDSxDA-PVC sample was immersed in 50 mM of the NaIO4 solution for 0.5 h. |
ZDSxDANaCl(2-step)-PVC | PVC was first modified with a coating solution containing ZDS and DA at a weight ratio of ZDS/DA = 2:x and 10 mM NaCl for 24 h. The modified sample was immersed in 50 mM of the NaIO4 solution for 0.5 h. |
ZDSxDAPEINaCl-PVC | PVC was modified with a coating solution containing ZDS and DA at a weight ratio of ZDS/DA = 2:x, 1 mg/mL PEI, and 10 mM NaCl for 24 h. |
ZDSxDAPEINaCl50-PVC | PVC was modified with a coating solution containing ZDS and DA at a weight ratio of ZDS/DA = 2:x, 1 mg/mL PEI, and 10 mM NaCl for 24 h. The Tris buffer was adjusted to 50 mM instead of 10 mM as the other coating solutions. |
Bare PVC | PVC Underwent Washing/Cleaning Steps Only | |
First layer | DA-PVC | PVC was modified with a 2 mg/mL of the DA solution for 24 h |
DAPEI-PVC | PVC was modified with a coating solution containing 2 mg/mL DA and 1 mg/mL PEI for 24 h. | |
DAPEI50@-PVC | The PVC was modified similarly to the DAPEI-PVC, except the Tris buffer was adjusted to 50 mM instead of 10 mM. | |
Second layer | ZDS-DA-PVC | The DA-PVC was further immersed in 5 mg/mL of the ZDS solution for 24 h. |
ZDS50@-DA-PVC | The sample was modified similarly to the ZDS-DA-PVC, except the Tris buffer was adjusted to 50 mM instead of 10 mM. | |
ZDSPEI-DA-PVC | The DA-PVC was further immersed in a coating solution containing 5 mg/mL ZDS and 2.5 mg/mL PEI for 24 h. | |
ZDSPEI50@-DA-PVC | The sample was modified similarly to the ZDSPEI-DA-PVC, except the Tris buffer was adjusted to 50 mM instead of 10 mM. | |
ZDS-DAPEI-PVC | The DAPEI-PVC was immersed in 5 mg/mL of the ZDS solution for 24 h. | |
ZDS50@-DAPEI50@ -PVC | The DAPEI50-PVC was immersed in 5 mg/mL of the ZDS solution with 50 mM of the Tris buffer for 24 h. |
Sample | C1s | N1s | O1s | S2p | Ti2p | N+ |
---|---|---|---|---|---|---|
Bare Ti | 36.2% | 3.7% | 41.9% | 0.0% | 18.1% | 0.0% |
ZDS-Ti | 38.5% | 2.6% | 41.0% | 1.1% | 16.8% | 1.0% |
ZDS1DA-Ti | 71.5% | 8.0% | 20.1% | 0.5% | 0.0% | 0.6% |
ZDS2DA-Ti | 74.5% | 8.0% | 17.0% | 0.5% | 0.0% | 0.6% |
ZDS4DA-Ti | 73.7% | 7.5% | 18.4% | 0.4% | 0.0% | 0.5% |
ZDS(2-STEP)-Ti | 37.9% | 2.8% | 41.7% | 0.9% | 16.7% | 1.0% |
ZDS(NaIO4)-Ti | 36.2% | 2.0% | 43.7% | 0.0% | 18.1% | 0.0% |
ZDS1DA(2-STEP)-Ti | 69.0% | 7.8% | 22.3% | 0.8% | 0.0% | 0.7% |
ZDS2DA(2-STEP)-Ti | 68.5% | 7.7% | 23.1% | 0.6% | 0.0% | 0.6% |
ZDS4DA(2-STEP)-Ti | 68.0% | 8.0% | 23.4% | 0.6% | 0.0% | 0.7% |
ZDSNaCl(2-STEP)-Ti | 38.5% | 2.3% | 41.5% | 0.8% | 16.9% | 0.9% |
ZDS1DANaCl(2-STEP)-Ti | 68.5% | 7.4% | 23.5% | 0.7% | 0.0% | 0.6% |
Sample | C1s | N1s | O1s | S2p | Cl2p | N+ |
---|---|---|---|---|---|---|
Bare PVC | 70.2% | 0.0% | 4.3% | 0.5% | 25.1% | 0.0% |
ZDS-PVC | 69.2% | 1.7% | 10.7% | 0.4% | 17.9% | 0.3% |
ZDS1DA-PVC | 68.1% | 7.2% | 22.3% | 0.8% | 1.6% | 0.9% |
ZDS2DA-PVC | 68.4% | 8.1% | 21.0% | 0.9% | 1.6% | 0.9% |
ZDS4DA-PVC | 69.6% | 8.2% | 19.5% | 0.8% | 1.9% | 0.8% |
ZDS(2-STEP)-PVC | 68.0% | 2.5% | 13.5% | 0.9% | 15.1% | 0.8% |
ZDS(NaIO4)-PVC | 69.3% | 2.2% | 9.8% | 0.7% | 18.1% | 0.7% |
ZDS1DA(2-STEP)-PVC | 68.2% | 7.5% | 22.0% | 0.9% | 1.5% | 0.8% |
ZDS2DA(2-STEP)-PVC | 67.3% | 8.4% | 22.2% | 0.9% | 1.3% | 1.0% |
ZDS4DA(2-STEP)-PVC | 67.0% | 8.6% | 22.6% | 0.8% | 1.0% | 0.9% |
ZDSNaCl(2-STEP)-PVC | 68.1% | 1.8% | 11.3% | 0.6% | 18.3% | 0.7% |
ZDS1DANaCl(2-STEP)-PVC | 67.9% | 7.6% | 22.2% | 0.8% | 1.5% | 0.7% |
ZDSPEINaCl-PVC | 70.1% | 3.2% | 10.2% | 0.7% | 15.7% | 0.7% |
ZDS1DAPEINaCl-PVC | 65.5% | 15.2% | 15.4% | 0.6% | 3.3% | 0.7% |
ZDSPEINaCl50-PVC | 66.6% | 4.0% | 11.6% | 0.8% | 17.0% | 0.7% |
ZDS1DAPEINaCl50-PVC | 65.7% | 14.8% | 15.7% | 0.7% | 3.1% | 0.8% |
Sample | C1s | N1s | O1s | S2p | Cl2p | N+ |
---|---|---|---|---|---|---|
Bare PVC | 70.2% | 0.0% | 4.3% | 0.5% | 25.1% | 0.0% |
DA-PVC | 69.8% | 8.1% | 20.4% | 0.0% | 1.7% | 0.0% |
DAPEI-PVC | 66.1% | 15.3% | 14.4% | 0.0% | 4.2% | 0.0% |
DAPEI50-PVC | 66.2% | 15.3% | 16.1% | 0.0% | 2.3% | 0.0% |
ZDS-DA-PVC | 69.7% | 7.5% | 20.1% | 0.6% | 2.2% | 0.7% |
ZDS50-DA-PVC | 67.3% | 7.8% | 22.2% | 0.6% | 2.1% | 0.7% |
ZDSPEI-DA-PVC | 66.4% | 13.2% | 16.0% | 0.5% | 3.9% | 0.7% |
ZDSPEI50-DA-PVC | 67.2% | 12.2% | 17.7% | 0.6% | 2.2% | 0.7% |
ZDS-DAPEI-PVC | 65.8% | 12.0% | 17.3% | 0.7% | 4.3% | 0.6% |
ZDS50-DAPEI50-PVC | 67.4% | 11.6% | 17.8% | 0.5% | 2.6% | 0.5% |
Sample | Bacterial Reduction (%) |
---|---|
Bare Ti | 0 |
ZDS-Ti | 54.7 ± 0.9 |
ZDS(2-STEP)-Ti | 64.0 ± 7.4 |
ZDS1DA-Ti | 49.4 ± 6.3 |
ZDS1DA(2-STEP)-Ti | 52.0 ± 3.2 |
ZDSNaCl(2-STEP)-Ti | 84.2 ± 4.9 |
ZDS1DANaCl(2-STEP)-Ti | 73.5 ± 5.4 |
Sample | Bacterial Reduction (%) |
---|---|
Bare PVC | 0 |
ZDS(2-step)-PVC | 58.8 ± 1.5 |
ZDS1DA-PVC | 40.3 ± 2.0 |
ZDS1DA(2-step)-PVC | 36.6 ± 1.5 |
ZDSNaCl(2-STEP)-PVC | 71.7 ± 2.1 |
ZDS1DANaCl(2-STEP)-PVC | 57.0 ± 4.6 |
ZDSPEINaCl-PVC | 66.4 ± 2.0 |
ZDSPEINaCl50-PVC | 71.8 ± 2.0 |
ZDS1DAPEINaCl-PVC | 71.2 ± 0.3 |
ZDS1DAPEINaCl50-PVC | 81.7 ± 6.5 |
Sample | Bacterial Reduction (%) |
---|---|
Bare PVC | 0 |
DA-PVC | −24.0 ± 3.7 |
DAPEI-PVC | −15.8 ± 3.9 |
DAPEI50-PVC | −32.0 ± 5.5 |
ZDS-DA-PVC | 63.8 ± 1.9 |
ZDS50-DA-PVC | 52.8 ± 6.1 |
ZDSPEI-DA-PVC | 71.0 ± 1.0 |
ZDSPEI50-DA-PVC | 66.6 ± 1.5 |
ZDS-DAPEI-PVC | 63.8 ± 1.0 |
ZDS50-DAPEI50-PVC | 62.5 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, N.-C.; Hsu, F.-M.; Cheng, C.-H.; Lin, J.-C. Surface Modification of Medical-Grade Titanium and Polyvinyl Chloride with a Novel Catechol-Terminated Compound Containing Zwitterionic Sulfobetaine Functionality for Antibacterial Application. Polymers 2025, 17, 2006. https://doi.org/10.3390/polym17152006
Fan N-C, Hsu F-M, Cheng C-H, Lin J-C. Surface Modification of Medical-Grade Titanium and Polyvinyl Chloride with a Novel Catechol-Terminated Compound Containing Zwitterionic Sulfobetaine Functionality for Antibacterial Application. Polymers. 2025; 17(15):2006. https://doi.org/10.3390/polym17152006
Chicago/Turabian StyleFan, Nai-Chia, Fang-Min Hsu, Chi-Hui Cheng, and Jui-Che Lin. 2025. "Surface Modification of Medical-Grade Titanium and Polyvinyl Chloride with a Novel Catechol-Terminated Compound Containing Zwitterionic Sulfobetaine Functionality for Antibacterial Application" Polymers 17, no. 15: 2006. https://doi.org/10.3390/polym17152006
APA StyleFan, N.-C., Hsu, F.-M., Cheng, C.-H., & Lin, J.-C. (2025). Surface Modification of Medical-Grade Titanium and Polyvinyl Chloride with a Novel Catechol-Terminated Compound Containing Zwitterionic Sulfobetaine Functionality for Antibacterial Application. Polymers, 17(15), 2006. https://doi.org/10.3390/polym17152006