Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit
Abstract
1. Introduction
2. Materials and Methods
2.1. Hospital Characteristics
2.2. Study Design
- Positive SARS-CoV-2 RT-PCR test;
- Severe form of COVID-19;
- ARDS;
- Required mechanical ventilation or other intensive care support;
- Admission between 1 March 2021, and 28 February 2022.
2.3. Data Collection
- Subgroup IA—COVID-19 with bacterial superinfection;
- Subgroup IB—COVID-19 with fungal superinfection;
- Subgroup IC—COVID-19 with fungal and bacterial superinfections.
2.4. Definitions
- Respiratory infection was defined, according to guidelines, as the growth of pathogenic microorganisms in bronchial aspirate or sputum in patients with clinical and radiological signs of infection. Bronchoalveolar lavage was not routinely used due to its limited application in our unit.
- BSI was identified by the isolation of bacteria or fungi in one or more blood cultures.
- Catheter-associated urinary tract infections (UTIs) occurred more than 48 h after urinary bladder catheterization. All patients in the study were catheterized [26].
- Clostridioides difficile infection (CDI) was defined as the presence of three or more unformed diarrheal stools within 24 h and positive tests for Clostridioides difficile toxins A and B [27].
2.5. Statistical Analysis
3. Results
3.1. Patient Data
3.2. The Prevalence of Superinfections in COVID-19 Patients
3.3. Classification of Infections and Their Incidence
3.4. The Prevalence of Germs Involved in Superinfections
3.4.1. Microorganisms Involved in HAP
3.4.2. Ventilator-Associated Pneumonia (VAP)
3.4.3. Prevalence of Pathogens Isolated in Urine
3.4.4. Prevalence of Pathogens Isolated in Blood
3.5. Global Analysis of Isolated Pathogens
3.6. Analysis of Antibiotic-Resistant Pathogens
3.7. Antibiotics Administered to Patients with COVID-19 Superinfections
3.8. Comorbidities
3.9. Mortality
4. Discussion
5. Limitations of This Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APACHE | Acute Physiology and Chronic Health Evaluation |
ARF | Acute respiratory failure |
ARDS | Acute respiratory distress syndrome |
BSI | Bloodstream infection |
CAUTI | Catheter-associated infection |
CDI | Clostridioides difficile infection |
CI | Confidence interval |
COPD | Chronic obstructive pulmonary disease |
COVID-19 | Coronavirus disease 2019 |
CPE | Carbapenemase-producing enterobacteria |
ECMO | Extracorporeal membrane oxygenation |
ESBL | Extended-spectrum beta-lactamase |
ETT | Endotracheal tube |
HAP | Hospital-acquired pneumonia |
ICU | Intensive care unit |
ICU-AI | Intensive care unit-associated infection |
IQR | Interquartile range |
IMV | Invasive mechanical ventilation |
MODS | Multiple organ dysfunction syndrome |
NIV | Noninvasive mechanical ventilation |
MCCH | Mures Clinical County Hospital |
MDR | Multidrug-resistant |
MRSA | Methicillin-resistant Staphylococcus aureus |
MLSBi | MRSA with inducible resistance to macrolides |
MSSA | Methicillin-susceptible Staphylococcus aureus |
OR | Odds ratio |
ROC | Receiver operating characteristic |
RT-PCR | Reverse transcription polymerase chain reaction |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
SD | Standard deviation |
SOFA | Sequential Organ Failure Assessment |
TS | Tracheostomy |
UTI | Urinary tract infection |
VAP | Ventilator-associated pneumonia |
VRE | Vancomycin-resistant enterococcus |
References
- World Health Organization. Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 24 May 2025).
- De Francesco, M.A.; Signorini, L.; Piva, S.; Pellizzeri, S.; Fumarola, B.; Corbellini, S.; Piccinelli, G.; Simonetti, F.; Carta, V.; Mangeri, L.; et al. Bacterial and Fungal Superinfections Are Detected at Higher Frequency in Critically Ill Patients Affected by SARS CoV-2 Infection than Negative Patients and Are Associated to a Worse Outcome. J. Med. Virol. 2023, 95, e28892. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Roman, A.; Boeriu, A.; Onișor, D.; Bandila, S.R.; Babă, D.F.; Cocuz, I.; Niculescu, R.; Costan, A.; Laszlo, S. Ștefan; et al. Long-Term Radiological Pulmonary Changes in Mechanically Ventilated Patients with Respiratory Failure Due to SARS-CoV-2 Infection. Biomedicines 2023, 11, 2637. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Huang, C.-Y.; Li, L.-F. Prolonged Mechanical Ventilation: Outcomes and Management. J. Clin. Med. 2022, 11, 2451. [Google Scholar] [CrossRef]
- Lavrentieva, A.; Kaimakamis, E.; Voutsas, V.; Bitzani, M. An Observational Study on Factors Associated with ICU Mortality in COVID-19 Patients and Critical Review of the Literature. Sci. Rep. 2023, 13, 7804. [Google Scholar] [CrossRef] [PubMed]
- Kaçmaz, B.; Keske, Ş.; Sişman, U.; Ateş, S.T.; Güldan, M.; Beşli, Y.; Palaoğlu, E.; Çakar, N.; Ergönül, Ö. COVID-19 Associated Bacterial Infections in Intensive Care Unit: A Case Control Study. Sci. Rep. 2023, 13, 13345. [Google Scholar] [CrossRef]
- Novacescu, A.N.; Buzzi, B.; Bedreag, O.; Papurica, M.; Rogobete, A.F.; Sandesc, D.; Sorescu, T.; Baditoiu, L.; Musuroi, C.; Vlad, D.; et al. Bacterial and Fungal Superinfections in COVID-19 Patients Hospitalized in an Intensive Care Unit from Timișoara, Romania. Infect. Drug Resist. 2022, 15, 7001–7014. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary Infections in Patients Hospitalized with COVID-19: Incidence and Predictive Factors. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Sang, L.; Xi, Y.; Lin, Z.; Pan, Y.; Song, B.; Li, C.; Zheng, X.; Zhong, M.; Jiang, L.; Pan, C.; et al. Secondary Infection in Severe and Critical COVID-19 Patients in China: A Multicenter Retrospective Study. Ann. Palliat. Med. 2021, 10, 8557570–8558570. [Google Scholar] [CrossRef]
- Pickens, C.O.; Gao, C.A.; Cuttica, M.J.; Smith, S.B.; Pesce, L.L.; Grant, R.A.; Kang, M.; Morales-Nebreda, L.; Bavishi, A.A.; Arnold, J.M.; et al. Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated for COVID-19 Pneumonia. Am. J. Respir. Crit. Care Med. 2021, 204, 921–932. [Google Scholar] [CrossRef]
- Rafat, Z.; Ramandi, A.; Khaki, P.A.; Ansari, S.; Ghaderkhani, S.; Haidar, H.; Tajari, F.; Roostaei, D.; Ghazvini, R.D.; Hashemi, S.J.; et al. Fungal and Bacterial Co-Infections of the Respiratory Tract among Patients with COVID-19 Hospitalized in Intensive Care Units. Gene Rep. 2022, 27, 101588. [Google Scholar] [CrossRef]
- Pourajam, S.; Kalantari, E.; Talebzadeh, H.; Mellali, H.; Sami, R.; Soltaninejad, F.; Amra, B.; Sajadi, M.; Alenaseri, M.; Kalantari, F.; et al. Secondary Bacterial Infection and Clinical Characteristics in Patients with COVID-19 Admitted to Two Intensive Care Units of an Academic Hospital in Iran During the First Wave of the Pandemic. Front. Cell. Infect. Microbiol. 2022, 12, 784130. [Google Scholar] [CrossRef] [PubMed]
- Coenen, S.; de la Court, J.R.; Buis, D.T.P.; Meijboom, L.J.; Schade, R.P.; Visser, C.E.; van Hest, R.; Kuijvenhoven, M.; Prins, J.M.; Nijman, S.F.M.; et al. Low Frequency of Community-Acquired Bacterial Co-Infection in Patients Hospitalized for COVID-19 Based on Clinical, Radiological and Microbiological Criteria: A Retrospective Cohort Study. Antimicrob. Resist. Infect. Control 2021, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Mohammadnejad, E.; Manshadi, S.A.D.; Mohammadi, M.T.B.; Abdollai, A.; Seifi, A.; Salehi, M.R.; Gheshlagh, R.G. Prevalence of Nosocomial Infections in COVID-19 Patients Admitted to the Intensive Care Unit of Imam Khomeini Complex Hospital in Tehran. Iran. J. Microbiol. 2021, 13, 764–768. [Google Scholar] [CrossRef]
- Russell, C.D.; Fairfield, C.J.; Drake, T.M.; Turtle, L.; Seaton, R.A.; Wootton, D.G.; Sigfrid, L.; Harrison, E.M.; Docherty, A.B.; de Silva, T.I.; et al. Co-Infections, Secondary Infections, and Antimicrobial Use in Patients Hospitalised with COVID-19 during the First Pandemic Wave from the ISARIC WHO CCP-UK Study: A Multicentre, Prospective Cohort Study. Lancet Microbe 2021, 2, e354–e365. [Google Scholar] [CrossRef]
- Paparoupa, M.; Aldemyati, R.; Roggenkamp, H.; Berinson, B.; Nörz, D.; Olearo, F.; Kluge, S.; Roedl, K.; de Heer, G.; Wichmann, D. The Prevalence of Early- and Late-Onset Bacterial, Viral, and Fungal Respiratory Superinfections in Invasively Ventilated COVID-19 Patients. J. Med. Virol. 2022, 94, 1920–1925. [Google Scholar] [CrossRef]
- Ramos, R.; de la Villa, S.; García-Ramos, S.; Padilla, B.; García-Olivares, P.; Piñero, P.; Garrido, A.; Hortal, J.; Muñoz, P.; Caamaño, E.; et al. COVID-19 Associated Infections in the ICU Setting: A Retrospective Analysis in a Tertiary-Care Hospital. Enferm. Infecc. Microbiol. Clin. 2023, 41, 278–283. [Google Scholar] [CrossRef]
- Peghin, M.; Vena, A.; Graziano, E.; Giacobbe, D.R.; Tascini, C.; Bassetti, M. Improving Management and Antimicrobial Stewardship for Bacterial and Fungal Infections in Hospitalized Patients with COVID-19. Ther. Adv. Infect. Dis. 2022, 9, 20499361221095732. [Google Scholar] [CrossRef] [PubMed]
- Dessie, Z.G.; Zewotir, T. Mortality-Related Risk Factors of COVID-19: A Systematic Review and Meta-Analysis of 42 Studies and 423,117 Patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef]
- Wallis, R.S.; O’Garra, A.; Sher, A.; Wack, A. Host-Directed Immunotherapy of Viral and Bacterial Infections: Past, Present and Future. Nat. Rev. Immunol. 2023, 23, 121–133. [Google Scholar] [CrossRef]
- Ceccarelli, M.; Marino, A.; Pulvirenti, S.; Coco, V.; Busà, B.; Nunnari, G.; Cacopardo, B.S. Bacterial and Fungal Co-Infections and Superinfections in a Cohort of COVID-19 Patients: Real-Life Data from an Italian Third Level Hospital. Infect. Dis. Rep. 2022, 14, 372–382. [Google Scholar] [CrossRef]
- Kurt, A.F.; Mete, B.; Urkmez, S.; Demirkiran, O.; Dumanli, G.Y.; Bozbay, S.; Dilken, O.; Karaali, R.; Balkan, I.I.; Saltoğlu, N.; et al. Incidence, Risk Factors, and Prognosis of Bloodstream Infections in COVID-19 Patients in Intensive Care: A Single-Center Observational Study. J. Intensive Care Med. 2022, 37, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.; et al. Microbial Co-Infections in COVID-19: Associated Microbiota and Underlying Mechanisms of Pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef] [PubMed]
- Brandi, N.; Ciccarese, F.; Balacchi, C.; Rimondi, M.R.; Modolon, C.; Sportoletti, C.; Capozzi, C.; Renzulli, M.; Paccapelo, A.; Castelli, A.; et al. Co-Infections and Superinfections in COVID-19 Critically Ill Patients Are Associated with CT Imaging Abnormalities and the Worst Outcomes. Diagnostics 2022, 12, 1617. [Google Scholar] [CrossRef]
- Stoian, M.; Andone, A.; Bândilă, S.R.; Onișor, D.; Laszlo, S.Ș.; Lupu, G.; Danielescu, A.; Baba, D.-F.; Văsieșiu, A.M.; Manea, A.; et al. Mechanical Ventilator-Associated Pneumonia in the COVID-19 Pandemic Era: A Critical Challenge in the Intensive Care Units. Antibiotics 2025, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. The Epidemiology of Urinary Tract Infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef]
- Debast, S.B.; Bauer, M.P.; Kuijper, E.J.; European Society of Clinical Microbiology and Infectious Diseases. European Society of Clinical Microbiology and Infectious Diseases European Society of Clinical Microbiology and Infectious Diseases: Update of the Treatment Guidance Document for Clostridium difficile Infection. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20 (Suppl. S2), 1–26. [Google Scholar] [CrossRef]
- Boeriu, A.; Roman, A.; Dobru, D.; Stoian, M.; Voidăzan, S.; Fofiu, C. The Impact of Clostridioides Difficile Infection in Hospitalized Patients: What Changed during the Pandemic? Diagnostics 2022, 12, 3196. [Google Scholar] [CrossRef]
- Murgia, F.; Fiamma, M.; Serra, S.; Marras, G.; Argiolas, R.; Mattana, C.; Mattu, M.G.; Garau, M.C.; Doneddu, S.; Olla, S.; et al. The Impact of the Secondary Infections in ICU Patients Affected by COVID-19 during Three Different Phases of the SARS-CoV-2 Pandemic. Clin. Exp. Med. 2023, 23, 1251–1263. [Google Scholar] [CrossRef]
- Conway Morris, A.; Kohler, K.; De Corte, T.; Ercole, A.; De Grooth, H.-J.; Elbers, P.W.G.; Povoa, P.; Morais, R.; Koulenti, D.; Jog, S.; et al. Co-Infection and ICU-Acquired Infection in COIVD-19 ICU Patients: A Secondary Analysis of the UNITE-COVID Data Set. Crit. Care 2022, 26, 236. [Google Scholar] [CrossRef]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial Infections Associated to COVID-19 in the Intensive Care Unit: Clinical Characteristics and Outcome. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2021, 40, 495–502. [Google Scholar] [CrossRef]
- Chen, Z.; Zhan, Q.; Huang, L.; Wang, C. Coinfection and Superinfection in ICU Critically Ill Patients with Severe COVID-19 Pneumonia and Influenza Pneumonia: Are the Pictures Different? Front. Public Health 2023, 11, 1195048. [Google Scholar] [CrossRef] [PubMed]
- Mankowski, R.T.; Anton, S.D.; Ghita, G.L.; Brumback, B.; Cox, M.C.; Mohr, A.M.; Leeuwenburgh, C.; Moldawer, L.L.; Efron, P.A.; Brakenridge, S.C.; et al. Older Sepsis Survivors Suffer Persistent Disability Burden and Poor Long-Term Survival. J. Am. Geriatr. Soc. 2020, 68, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Artero, A.; López-Cruz, I.; Alberola, J.; Eiros, J.M.; Resa, E.; Piles, L.; Madrazo, M. Influence of Sepsis on the Middle-Term Outcomes for Urinary Tract Infections in Elderly People. Microorganisms 2023, 11, 1959. [Google Scholar] [CrossRef] [PubMed]
- Ibarz, M.; Haas, L.E.M.; Ceccato, A.; Artigas, A. The Critically Ill Older Patient with Sepsis: A Narrative Review. Ann. Intensive Care 2024, 14, 6. [Google Scholar] [CrossRef]
- Goyani, P.; Christodoulou, R.; Vassiliou, E. Immunosenescence: Aging and Immune System Decline. Vaccines 2024, 12, 1314. [Google Scholar] [CrossRef]
- Patrascu, R.; Dumitru, C.S.; Laza, R.; Besliu, R.S.; Gug, M.; Zara, F.; Laitin, S.M.D. The Role of Age and Comorbidity Interactions in COVID-19 Mortality: Insights from Cardiac and Pulmonary Conditions. J. Clin. Med. 2024, 13, 7510. [Google Scholar] [CrossRef]
- McClelland, E.E.; Smith, J.M. Gender Specific Differences in the Immune Response to Infection. Arch. Immunol. Ther. Exp. 2011, 59, 203–213. [Google Scholar] [CrossRef]
- Dias, S.P.; Brouwer, M.C.; van de Beek, D. Sex and Gender Differences in Bacterial Infections. Infect. Immun. 2022, 90, e0028322. [Google Scholar] [CrossRef]
- Mehryar, H.R.; Yarahmadi, P.; Anzali, B.C. Mortality Predictive Value of APACHE II Scores in COVID-19 Patients in the Intensive Care Unit: A Cross-Sectional Study. Ann. Med. Surg. 2023, 85, 2464–2468. [Google Scholar] [CrossRef]
- Yoon, S.M.; Lee, J.; Lee, S.-M.; Lee, H.Y. Incidence and Clinical Outcomes of Bacterial Superinfections in Critically Ill Patients with COVID-19. Front. Med. 2023, 10, 1079721. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Amoozadeh, L.; Rezaei Motlagh, F.; Rahimi, M.; Maghsoudloo, M.; Jafarnejad, B.; Eslami, B.; Salehi, M.R.; Zendehdel, K. Mortality Predictive Value of APACHE II and SOFA Scores in COVID-19 Patients in the Intensive Care Unit. Can. Respir. J. 2022, 2022, 5129314. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Andone, A.; Boeriu, A.; Bândilă, S.R.; Dobru, D.; Laszlo, S.Ș.; Corău, D.; Arbănași, E.M.; Russu, E.; Stoian, A. COVID-19 and Clostridioides Difficile Coinfection Analysis in the Intensive Care Unit. Antibiotics 2024, 13, 367. [Google Scholar] [CrossRef] [PubMed]
- Schoettler, J.J.; Sandrio, S.; Boesing, C.; Bauer, L.; Miethke, T.; Thiel, M.; Krebs, J. Bacterial Co- or Superinfection in Patients Treated in Intensive Care Unit with COVID-19- and Influenza-Associated Pneumonia. Pathogens 2023, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients with COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef]
- Akrami, S.; Montazeri, E.A.; Saki, M.; Neisi, N.; Khedri, R.; Dini, S.A.; Motlagh, A.A.; Ahmadi, F. Bacterial Profiles and Their Antibiotic Resistance Background in Superinfections Caused by Multidrug-resistant Bacteria among COVID-19 ICU Patients from Southwest Iran. J. Med. Virol. 2023, 95, e28403. [Google Scholar] [CrossRef]
- Boccabella, L.; Palma, E.G.; Abenavoli, L.; Scarlata, G.G.M.; Boni, M.; Ianiro, G.; Santori, P.; Tack, J.F.; Scarpellini, E. Post-Coronavirus Disease 2019 Pandemic Antimicrobial Resistance. Antibiotics 2024, 13, 233. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef]
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Urinary Tract Infections in Elderly Patients: A 10-Year Study on Their Epidemiology and Antibiotic Resistance Based on the WHO Access, Watch, Reserve (AWaRe) Classification. Antibiotics 2021, 10, 1098. [Google Scholar] [CrossRef]
- Dickson, K.; Zhou, J.; Lehmann, C. Lower Urinary Tract Inflammation and Infection: Key Microbiological and Immunological Aspects. J. Clin. Med. 2024, 13, 315. [Google Scholar] [CrossRef]
- Todorov, S.D.; Weeks, R.; Popov, I.; Franco, B.D.G.d.M.; Chikindas, M.L. In Vitro Anti-Candida albicans Mode of Action of Enterococcus mundtii and Enterococcus faecium. Microorganisms 2023, 11, 602. [Google Scholar] [CrossRef]
- Mantzarlis, K.; Deskata, K.; Papaspyrou, D.; Leontopoulou, V.; Tsolaki, V.; Zakynthinos, E.; Makris, D. Incidence and Risk Factors for Blood Stream Infection in Mechanically Ventilated COVID-19 Patients. Antibiotics 2022, 11, 1053. [Google Scholar] [CrossRef] [PubMed]
- Pozza, G.; Casalini, G.; Ciubotariu, C.L.; Giacomelli, A.; Galimberti, M.; Zacheo, M.; Rabbione, A.; Pieruzzi, M.; Oreni, L.; Galimberti, L.; et al. Bloodstream Infections in Intensive Care Unit during Four Consecutive SARS-CoV-2 Pandemic Waves. Antibiotics 2023, 12, 1448. [Google Scholar] [CrossRef]
- Giannitsioti, E.; Louka, C.; Mamali, V.; Kousouli, E.; Velentza, L.; Papadouli, V.; Loizos, G.; Mavroudis, P.; Kranidiotis, G.; Rekleiti, N.; et al. Bloodstream Infections in a COVID-19 Non-ICU Department: Microbial Epidemiology, Resistance Profiles and Comparative Analysis of Risk Factors and Patients’ Outcome. Microorganisms 2022, 10, 1314. [Google Scholar] [CrossRef]
- Munro, C.; Zilberberg, M.D.; Shorr, A.F. Bloodstream Infection in the Intensive Care Unit: Evolving Epidemiology and Microbiology. Antibiotics 2024, 13, 123. [Google Scholar] [CrossRef]
- Scendoni, R.; Bury, E.; Lima Arrais Ribeiro, I.; Cingolani, M.; Cameriere, R.; De Benedictis, A.; De Micco, F. Leading Pathogens Involved in Co-Infection and Super-Infection with COVID-19: Forensic Medicine Considerations after a Systematic Review and Meta-Analysis. Pathogens 2023, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Ramli, S.R.; Abdul Hadi, F.S.; Nor Amdan, N.A.; Kamaradin, I.H.; Zabari, N.; Maniam, S.; Sulaiman, N.S.; Ghazali, S.; Seman, Z.; Hashim, R.; et al. Secondary and Co-Infections in Hospitalized COVID-19 Patients: A Multicenter Cross-Sectional Study in Malaysia. Antibiotics 2023, 12, 1547. [Google Scholar] [CrossRef]
- Pintea-Simon, I.-A.; Bancu, L.; Mare, A.D.; Ciurea, C.N.; Toma, F.; Brukner, M.C.; Văsieșiu, A.-M.; Man, A. Secondary Bacterial Infections in Critically Ill COVID-19 Patients Admitted in the Intensive Care Unit of a Tertiary Hospital in Romania. J. Clin. Med. 2024, 13, 6201. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, R. Growing Group of Extended-Spectrum Beta-Lactamases: The CTX-M Enzymes. Antimicrob. Agents Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef]
- Bedenić, B.; Bratić, V.; Mihaljević, S.; Lukić, A.; Vidović, K.; Reiner, K.; Schöenthaler, S.; Barišić, I.; Zarfel, G.; Grisold, A. Multidrug-Resistant Bacteria in a COVID-19 Hospital in Zagreb. Pathogens 2023, 12, 117. [Google Scholar] [CrossRef]
- Vrancianu, C.O.; Cristian, R.-E.; Dobre, E.-G.; Zenoaga-Barbarosie, C.; Chirea, E.-T.; Crunteanu, I.; Dionisie, M.-V. The Impact of Acinetobacter baumannii Infections in COVID-19 Patients Admitted in Hospital Intensive Care Units. Biol. Life Sci. Forum 2023, 31, 1. [Google Scholar] [CrossRef]
- Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. [Google Scholar] [CrossRef] [PubMed]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef] [PubMed]
- Escadafal, C.; Incardona, S.; Fernandez-Carballo, B.L.; Dittrich, S. The Good and the Bad: Using C Reactive Protein to Distinguish Bacterial from Non-Bacterial Infection among Febrile Patients in Low-Resource Settings. BMJ Glob. Health 2020, 5, e002396. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Santana, S.; Mora-Quintero, M.-L.; Saavedra, P.; Montiel-González, R.; Sánchez-Ramírez, C.; Pérez-Acosta, G.; Martín-Velasco, M.; Rodríguez-Mata, C.; Lorenzo-García, J.-M.; Parrilla-Toribio, D.; et al. COVID-19 Secondary Infections in ICU Patients and Prevention Control Measures: A Preliminary Prospective Multicenter Study. Antibiotics 2022, 11, 1016. [Google Scholar] [CrossRef]
- Bogossian, E.G.; Taccone, F.S.; Izzi, A.; Yin, N.; Garufi, A.; Hublet, S.; Njimi, H.; Ego, A.; Gorham, J.; Byl, B.; et al. The Acquisition of Multidrug-Resistant Bacteria in Patients Admitted to COVID-19 Intensive Care Units: A Monocentric Retrospective Case Control Study. Microorganisms 2020, 8, 1821. [Google Scholar] [CrossRef]
- Omoush, S.A.; Alzyoud, J.A.M. The Prevalence and Impact of Coinfection and Superinfection on the Severity and Outcome of COVID-19 Infection: An Updated Literature Review. Pathogens 2022, 11, 445. [Google Scholar] [CrossRef]
- Hernández-García, M.; Solito, C.; Pavón Ortiz, A.; Arguedas Casamayor, N.; Melé-Casas, M.; Pons-Tomàs, G.; F. de Sevilla, M.; Pino, R.; Launes, C.; Guitart, C.; et al. Characteristics and Risk Factors Associated with SARS-CoV-2 Pneumonias in Hospitalized Pediatric Patients: A Pilot Study. Children 2023, 10, 1703. [Google Scholar] [CrossRef]
- Greco, R.; Panetta, V.; Della Rocca, M.T.; Durante, A.; Di Caprio, G.; Maggi, P. Profile of Co-Infection Prevalence and Antibiotics Use among COVID-19 Patients. Pathogens 2022, 11, 1250. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Schinas, G.; Bletsa, E.; Bristianou, M.; Lanaras, L.; Michailides, C.; Katsikas, T.; Barkas, F.; Liberopoulos, E.; Kotsis, V.; et al. COVID-19 Outcomes and Diabetes Mellitus: A Comprehensive Multicenter Prospective Cohort Study. Microorganisms 2023, 11, 1416. [Google Scholar] [CrossRef]
- Liu, J.; Dong, J.; Yu, Y.; Yang, X.; Shu, J.; Bao, H. Corticosteroids Showed More Efficacy in Treating Hospitalized Patients with COVID-19 than Standard Care but the Effect Is Minimal: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 847695. [Google Scholar] [CrossRef]
- Casalini, G.; Giacomelli, A.; Ridolfo, A.; Gervasoni, C.; Antinori, S. Invasive Fungal Infections Complicating COVID-19: A Narrative Review. J. Fungi 2021, 7, 921. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Parmar, K.; Patel, D.; Patel, S.; Sheth, D.; Beladiya, J.V. Effect of Corticosteroid Therapy on Mortality in COVID-19 Patients-A Systematic Review and Meta-Analysis. Rev. Med. Virol. 2022, 32, e2386. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Wang, W.; Hayek, S.S.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Association Between Early Treatment with Tocilizumab and Mortality Among Critically Ill Patients with COVID-19. JAMA Intern. Med. 2021, 181, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Søvik, S.; Barratt-Due, A.; Kåsine, T.; Olasveengen, T.; Strand, M.W.; Tveita, A.A.; Berdal, J.E.; Lehre, M.A.; Lorentsen, T.; Heggelund, L.; et al. Corticosteroids and Superinfections in COVID-19 Patients on Invasive Mechanical Ventilation. J. Infect. 2022, 85, 57–63. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Kollef, M.H.; Shorr, A.F.; Bassetti, M.; Timsit, J.-F.; Micek, S.T.; Michelson, A.P.; Garnacho-Montero, J. Timing of Antibiotic Therapy in the ICU. Crit. Care 2021, 25, 360. [Google Scholar] [CrossRef]
- Gavi, F.; Fiori, B.; Gandi, C.; Campetella, M.; Bientinesi, R.; Marino, F.; Fettucciari, D.; Rossi, F.; Moretto, S.; Murri, R.; et al. Prevalence and Antimicrobial Resistance Patterns of Hospital Acquired Infections through the COVID-19 Pandemic: Real-Word Data from a Tertiary Urological Centre. J. Clin. Med. 2023, 12, 7278. [Google Scholar] [CrossRef]
- Schinas, G.; Polyzou, E.; Spernovasilis, N.; Gogos, C.; Dimopoulos, G.; Akinosoglou, K. Preventing Multidrug-Resistant Bacterial Transmission in the Intensive Care Unit with a Comprehensive Approach: A Policymaking Manual. Antibiotics 2023, 12, 1255. [Google Scholar] [CrossRef]
n = 342 | With Superinfection (n = 161) | Without Superinfection (n = 181) | p Value |
---|---|---|---|
Age, median (IQR) | 72 (63.5–79) | 72 (60–79) | 0.273 |
Age ≥ 50 years, n (%) | 154 (95.7%) | 161 (88.9%) | 0.036 |
Gender, n (%) | 0.022 | ||
Male | 78 (48%) | 110 (60,7%) | |
Female | 83 (51.6%) | 71 (39.2%) | |
Rural n (%) | 80 (49.6%) | 79 (43.6%) | 0.263 |
APACHE II, mean ± SD | 22.3 ± 6.3 | 21.0 ± 6.5 | 0.237 |
SOFA, median (IQR) | 10 (8–11) | 10 (8–13) | 0.796 |
Ferritin at admission (ng/mL) | 1171 (670.7–2093.7) | 1117.5 (640.8–1992.7) | 0.049 |
C-reactive protein (mg/L) | 8.9 (3–19.5) | 7.7 (3.8–16) | 0.001 |
White blood cells (×109/L) | 11.4 (8–16.2) | 10.6 (8–14.32) | 0.409 |
≥10 days in the ICU, n (%) | 89 (55.3%) | 32 (17.7%) | <0.001 |
IMV, n (%) | 131 (81.4%) | 94 (51.9%) | <0.001 |
Corticosteroid treatment | 160 (99.4%) | 174 (96.1%) | 0.07 |
MODS, n (%) | 93 (57.8%) | 69 (38.1%) | <0.001 |
Tocilizumab treatment, n (%) | 20 (12.4%) | 25 (13.8%) | 0.750 |
Anakinra treatment, n (%) | 35 (21.7%) | 29 (16.0%) | 0.211 |
Death, n (%) | 141 (87.6%) | 123 (68.0%) | <0.001 |
Arterial hypertension, n (%) | 127 (78.9%) | 126 (69.6%) | 0.051 |
Diabetes mellitus, n (%) | 38 (23.6%) | 59 (32.6%) | 0.065 |
Obesity, n (%) | 54 (33.5%) | 75 (41.4%) | 0.1639 |
Chronic heart failure, n (%) | 28 (17.4%) | 33 (18.2%) | 0.839 |
COPD, n (%) | 31 (19.3%) | 40 (22.1%) | 0.517 |
Chronic kidney disease, n (%) | 20 (12.4%) | 31 (17.1%) | 0.223 |
Chronic liver disease, n (%) | 9 (5.6%) | 12 (6.6%) | 0.861 |
Immunosuppressive status, n (%) | 23 (14.3%) | 25 (13.8%) | 0.900 |
COVID 19 Bacterial Superinfection (A) (n = 80) | COVID 19 Fungal Superinfections (B) (n = 24) | COVID 19 Fungal + Bacterial Superinfection (C) (n = 57) | p | Significant Pairwise (Bonferroni) | |
---|---|---|---|---|---|
Age, median (IQR) | 73.5 (64–79) | 70 (59.25–78) | 73 (64–79) | 0.235 | – |
Gender, n (%) | |||||
Male | 46 (57.5%) | 8 (33.3%) | 24 (42.1%) | 0.057 | – |
Rural, n (%) | 41 (51.25%) | 11 (45.8%) | 28 (49.1%) | 0.892 | – |
APACHE II, median (IQR) | 21 (17–27) | 26 (19–30) | 22.5 (17.75–25) | 0.427 | – |
SOFA, median (IQR) | 10 (8–11) | 13 (9–15) | 10 (8–11.5) | 0.190 | – |
ICU days, median (IQR) | 9 (6–13.75) | 10 (5.25–14.25) | 12 (7.5–19) | 0.016 | A vs. C (p = 0.018) |
Mechanical ventilation hours, median (IQR) | 188.5 (109.5–311.2) | 182 (82–264) | 266 (150–455.5) | 0.011 | B vs. C (p = 0.04) A vs. C (p = 0.03) |
Ferritin at admission (ng/mL), median (IQR) | 1361.1 (812.92–2473.32) | 815.6 (621.7–2086) | 953 (562.7–1688.9) | 0.020 | A vs. C (p = 0.035) |
CRP at admission (mg/L), median (IQR) | 8.9 (4.9–19.7) | 7.9 (5.5–18.6) | 9.7 (3.7–13.4) | 0.354 | – |
Death, n (%) | 11 (13.7%) | 3 (12.5%) | 6 (10.5%) | 0.853 | – |
Corticosteroids, n (%) | 80 (100%) | 23 (95.8%) | 57 (100%) | 0.057 | – |
Agent Pathogen | Absolute Frequency | Relative Frequency |
---|---|---|
Candida nonalbicans | 7 | 23.3% |
Acinetobacter | 7 | 23.3% |
Baumannii | 1 | |
baumannii MDR | 4 | |
junii MDR | 2 | |
Candida albicans | 4 | 13.3% |
Klebsiella | 3 | 10% |
oxytoca ESBL | 1 | |
Pneumoniae | 1 | |
pneumoniae ESBL | 1 | |
MRSA/MLSBi | 2 | 6.6% |
Pseudomonas aeruginosa | 2 | 6.6% |
Achromobacter denitrificans | 1 | 3.3% |
Aspergillus spp. | 1 | 3.3% |
Corynebacterium striatum | 1 | 3.3% |
Stenotrophomonas maltophilia | 1 | 3.3% |
Streptococcus pneumoniae | 1 | 3.3% |
Total | 30 |
Agent Pathogen | Absolute Frequency | Relative Frequency |
---|---|---|
Acinetobacter | 28 | 33.7% |
Baumannii | 2 | |
Baumannii MDR | 18 | |
Junii MDR | 8 | |
Pseudomonas | 14 | 16.8% |
Aeruginosa | 6 | |
Aeruginosa MDR | 8 | |
Candida albicans | 11 | 13.2% |
Candida nonalbicans | 11 | 13.2% |
Aspergillus spp. | 4 | 4.8% |
Klebsiella pneumoniae | 4 | 4.8% |
CPE | 2 | |
ESBL | 1 | |
MDR | 1 | |
Stenotrophomonas maltophilia | 3 | 3.6% |
Corynebacterium striatum | 2 | 2.4% |
Providencia stuartii | 2 | 2.4% |
CPE | 1 | |
MDR/CPE | 1 | |
Enterobacter cloacae MDR | 1 | 1.2% |
MRSA/MLSBi | 1 | 1.2% |
MSSA | 1 | 1.2% |
Streptococcus pneumoniae | 1 | 1.2% |
Total | 83 |
Pathogen | Absolute Frequency | Relative Frequency |
---|---|---|
Candida albicans | 24 | 32% |
Enterococcus | 22 | 29.3% |
Faecalis | 19 | |
faecium VRE (Van A) | 3 | |
Candida nonalbicans | 16 | 21.3% |
Acinetobacter | 5 | 6.6% |
baumannii MDR | 2 | |
junii MDR | 3 | |
Klebsiella | 4 | 5.3% |
Pneumoniae | 1 | |
pneumoniae CPE | 3 | |
Escherichia coli | 1 | 1.3% |
Providencia stuartii MDR/CPE | 1 | 1.3% |
Pseudomonas aeruginosa MDR | 1 | 1.3% |
Enterobacter cloacae CPE | 1 | 1.3% |
Total | 75 |
Pathogen | Absolute Frequency | Relative Frequency |
---|---|---|
Acinetobacter | 17 | 32.0% |
Baumannii | 1 | |
Baumannii MDR | 10 | |
Junii MDR | 6 | |
Enterococcus | 16 | 30.1% |
Faecalis | 14 | |
Faecium VRE (Van A) | 2 | |
Staphylococcus | 6 | 11.3% |
MRS | 4 | |
MRSA, MLSBi | 1 | |
MSSA | 1 | |
Klebsiella pneumoniae CPE | 4 | 7.5% |
Pseudomonas aeruginosa MDR | 3 | 5.6% |
Providencia stuartii MDR/CPE | 2 | 3.7% |
Corynebacterium striatum | 1 | 1.8% |
Escherichia coli | 1 | 1.8% |
Enterobacter cloacae | 1 | 1.8% |
Candida albicans | 1 | 1.8% |
Candida nonalbicans | 1 | 1.8% |
Total | 53 |
Pathogen | Absolute Frequency | Relative Frequency |
---|---|---|
Acinetobacter spp. | 58 | 26.4% |
Enterococcus faecium | 39 | 17.8% |
Clostridium difficile | 37 | 16.8% |
Pseudomonas aeruginosa/ Stutzeri | 29 | 13.2% |
Klebsiella pneumoniae/oxytoca | 20 | 9.1% |
Coagulase-negative Staphylococcus | 6 | 2.7% |
Staphylococcus aureus | 5 | 2.2% |
Providencia stuartii | 5 | 2.2% |
Corynebacterium striatum/urealyticum | 4 | 1.8% |
Enterobacter cloacae | 4 | 1.8% |
Stenotrophomonas maltophilia | 4 | 1.8% |
Escherichia coli | 3 | 1.3% |
Streptococcus pneumoniae | 2 | 0.9% |
Achromobacter denitrificans | 1 | 0.4% |
Proteus mirabilis/vulgaris | 1 | 0.4% |
Serratia marcescens | 1 | 0.4% |
Candida albicans | 46 | 47.9% |
Candida non-albicans | 42 | 43.7% |
Aspergillus spp. | 7 | 7.2% |
Trichosporon asahii | 1 | 1.0% |
Pathogen/Resistance Type | Absolute Frequency | Relative Frequency |
---|---|---|
Acinetobacter baumannii MDR | 34 | 30.0% |
Acinetobacter junii MDR | 20 | 17.7% |
Klebsiella pneumoniae | 17 | 15.0% |
CPE | 12 | |
ESBL | 4 | |
MDR | 1 | |
Pseudomonas aeruginosa MDR | 17 | 15.0% |
Enterococcus faecium | 7 | 6.1% |
VRE (Van A) | 6 | |
Van A | 1 | |
Providencia stuartii | 5 | 4.4% |
MDR/CPE | 4 | |
CPE | 1 | |
Coagulase-negative Staphylococcus | 5 | 4.4% |
MRS | 4 | |
MRSA/MLSBi | 1 | |
Staphylococcus aureus | 4 | 3.5% |
MRSA, MLSBI | 3 | |
MRSA | 1 | |
Enterobacter cloacae | 2 | 1.7% |
CPE | 1 | |
MDR | 1 | |
Klebsiella oxytoca ESBL | 2 | 1.7% |
Resistant bacteria prevalence | 131 | 51.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoian, M.; Azamfirei, L.; Andone, A.; Văsieșiu, A.-M.; Stîngaciu, A.; Huțanu, A.; Bândilă, S.R.; Dobru, D.; Manea, A.; Stoian, A. Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit. Biomedicines 2025, 13, 1333. https://doi.org/10.3390/biomedicines13061333
Stoian M, Azamfirei L, Andone A, Văsieșiu A-M, Stîngaciu A, Huțanu A, Bândilă SR, Dobru D, Manea A, Stoian A. Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit. Biomedicines. 2025; 13(6):1333. https://doi.org/10.3390/biomedicines13061333
Chicago/Turabian StyleStoian, Mircea, Leonard Azamfirei, Adina Andone, Anca-Meda Văsieșiu, Andrei Stîngaciu, Adina Huțanu, Sergio Rareș Bândilă, Daniela Dobru, Andrei Manea, and Adina Stoian. 2025. "Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit" Biomedicines 13, no. 6: 1333. https://doi.org/10.3390/biomedicines13061333
APA StyleStoian, M., Azamfirei, L., Andone, A., Văsieșiu, A.-M., Stîngaciu, A., Huțanu, A., Bândilă, S. R., Dobru, D., Manea, A., & Stoian, A. (2025). Incidence and Risk Factors of Secondary Infections in Critically Ill SARS-CoV-2 Patients: A Retrospective Study in an Intensive Care Unit. Biomedicines, 13(6), 1333. https://doi.org/10.3390/biomedicines13061333