Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,442)

Search Parameters:
Keywords = mechanical damping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2280 KiB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Viewed by 211
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

27 pages, 1628 KiB  
Article
Reliability Evaluation and Optimization of System with Fractional-Order Damping and Negative Stiffness Device
by Mingzhi Lin, Wei Li, Dongmei Huang and Natasa Trisovic
Fractal Fract. 2025, 9(8), 504; https://doi.org/10.3390/fractalfract9080504 - 31 Jul 2025
Viewed by 182
Abstract
Research on reliability control for enhancing power systems under random loads holds significant and undeniable importance in maintaining system stability, performance, and safety. The primary challenge lies in determining the reliability index while optimizing system parameters. To effectively address this challenge, we developed [...] Read more.
Research on reliability control for enhancing power systems under random loads holds significant and undeniable importance in maintaining system stability, performance, and safety. The primary challenge lies in determining the reliability index while optimizing system parameters. To effectively address this challenge, we developed a novel intelligent algorithm and conducted an optimal reliability assessment for a Negative Stiffness Device (NSD) seismic isolation structure incorporating fractional-order damping. This algorithm combines the Gaussian Radial Basis Function Neural Network (GRBFNN) with the Particle Swarm Optimization (PSO) algorithm. It takes the reliability function with unknown parameters as the objective function, while using the Backward Kolmogorov (BK) equation, which governs the reliability function and is accompanied by boundary and initial conditions, as the constraint condition. During the operation of this algorithm, the neural network is employed to solve the BK equation, thereby deriving the fitness function in each iteration of the PSO algorithm. Then the PSO algorithm is utilized to obtain the optimal parameters. The unique advantage of this algorithm is its ability to simultaneously achieve the optimization of implicit objectives and the solution of time-dependent BK equations.To evaluate the performance of the proposed algorithm, this study compared it with the algorithm combines the GRBFNN with Genetic Algorithm (GA-GRBFNN)across multiple dimensions, including performance and operational efficiency. The effectiveness of the proposed algorithm has been validated through numerical comparisons and Monte Carlo simulations. The control strategy presented in this paper provides a solid theoretical foundation for improving the reliability performance of mechanical engineering systems and demonstrates significant potential for practical applications. Full article
Show Figures

Figure 1

21 pages, 14595 KiB  
Article
Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy
by Qitan Zheng, Zhongzheng Zhu, Junyi Yao, Qinyu Sun, Qunfu Fan, Hezhou Liu, Qiuxia Dong and Hua Li
Polymers 2025, 17(15), 2115; https://doi.org/10.3390/polym17152115 - 31 Jul 2025
Viewed by 238
Abstract
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping [...] Read more.
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping and mechanical properties at room temperature through monomer composition optimization. Hollow glass microspheres (HGMs) were introduced into the PU matrix to increase stiffness and reduce density, though this resulted in decreased tensile strength (Rm) and loss factor (tanδ). To further improve mechanical and damping properties, we applied a carbon coating to the surface of the HGMs to optimize the interface between the HGMs and the PU matrix, and systematically investigated the energy dissipation and load-bearing behavior of PU composites. The effect of enhanced interface damping of HGM@C/PU resulted in broadening of the effective damping temperature range (tanδ ≥ 0.3) and higher maximum loss factor (tanδmax) compared to HGM/PU at equivalent filler loading. The tensile and dynamic properties significantly improved due to optimized interfacial adhesion. In PU composites reinforced with 10 wt% HGM and HGM@C, a 46.8% improvement in Rm and 11.0% improvement in tanδmax occurred after carbon coating. According to acoustic testing, average transmission loss of HGM/PU and HGM@C/PU with the same filler content showed a difference of 0.3–0.5 dB in 500–6300 Hz, confirming that the hollow structure of the HGMs was preserved during carbon coating. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

21 pages, 4201 KiB  
Review
Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury
by Kenneth J. Dery, Richard Chiu, Aanchal Kasargod and Jerzy W. Kupiec-Weglinski
Antioxidants 2025, 14(8), 944; https://doi.org/10.3390/antiox14080944 (registering DOI) - 31 Jul 2025
Viewed by 280
Abstract
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS [...] Read more.
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS and immune signaling pathways are a hallmark of pathological liver conditions, such as hepatic ischemia–reperfusion injury (IRI). This is a major cause of liver transplant failure and is of increasing significance due to the increased use of marginally discarded livers for transplantation. This review outlines the major enzymatic and metabolic sources of ROS in hepatic IRI, including mitochondrial reverse electron transport, NADPH oxidases, cytochrome P450 enzymes, and endoplasmic reticulum stress. Hepatocyte injury activates redox feedback loops that initiate immune cascades through DAMP release, toll-like receptor signaling, and cytokine production. Emerging regulatory mechanisms, such as succinate accumulation and cytosolic calcium–CAMKII signaling, further shape oxidative dynamics. Pharmacological therapies and the use of antioxidant and immunomodulatory approaches, including nanoparticles and redox-sensitive therapeutics, are discussed as protective strategies. A deeper understanding of how redox and immune feedback loops interact is an exciting and active area of research that warrants further clinical investigation. Full article
Show Figures

Figure 1

20 pages, 834 KiB  
Article
Time-Fractional Evolution of Quantum Dense Coding Under Amplitude Damping Noise
by Chuanjin Zu, Baoxiong Xu, Hao He, Xiaolong Li and Xiangyang Yu
Fractal Fract. 2025, 9(8), 501; https://doi.org/10.3390/fractalfract9080501 - 30 Jul 2025
Viewed by 146
Abstract
In this paper, we investigate the memory effects introduced by the time-fractional Schrödinger equation proposed by Naber on quantum entanglement and quantum dense coding under amplitude damping noise. Two formulations are analyzed: one with fractional operations applied to the imaginary unit and one [...] Read more.
In this paper, we investigate the memory effects introduced by the time-fractional Schrödinger equation proposed by Naber on quantum entanglement and quantum dense coding under amplitude damping noise. Two formulations are analyzed: one with fractional operations applied to the imaginary unit and one without. Numerical results show that the formulation without fractional operations on the imaginary unit may be more suitable for describing non-Markovian (power-law) behavior in dissipative environments. This finding provides a more physically meaningful interpretation of the memory effects in time-fractional quantum dynamics and indirectly addresses fundamental concerns regarding the violation of unitarity and probability conservation in such frameworks. Our work offers a new perspective for the application of fractional quantum mechanics to realistic open quantum systems and shows promise in supporting the theoretical modeling of decoherence and information degradation. Full article
Show Figures

Figure 1

33 pages, 4686 KiB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 242
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

20 pages, 3716 KiB  
Article
Modeling and Validation of a Spring-Coupled Two-Pendulum System Under Large Free Nonlinear Oscillations
by Borislav Ganev, Marin B. Marinov, Ivan Kralov and Anastas Ivanov
Machines 2025, 13(8), 660; https://doi.org/10.3390/machines13080660 - 28 Jul 2025
Viewed by 216
Abstract
Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of [...] Read more.
Studying nonlinear oscillations in mechanical systems is fundamental to understanding complex dynamic behavior in engineering applications. While classical analytical methods remain valuable for systems with limited complexity, they become increasingly inadequate when nonlinearities are strong and geometrically induced, as in the case of large-amplitude oscillations. This paper presents a combined numerical and experimental investigation of a mechanical system composed of two coupled pendulums, exhibiting significant nonlinear behavior due to elastic deformation throughout their motion. A mathematical model of the system was developed using the MatLab/Simulink ver.6.1 environment, considering gravitational, inertial, and nonlinear elastic restoring forces. One of the major challenges in accurately modeling such systems is accurately representing damping, particularly in the absence of dedicated dampers. In this work, damping coefficients were experimentally identified through decrement measurements and incorporated into the simulation model to improve predictive accuracy. The simulation outputs, including angular displacements, velocities, accelerations, and phase trajectories over time, were validated against experimental results obtained via high-precision inertial sensors. The comparison shows a strong correlation between numerical and experimental data, with minimal relative errors in amplitude and frequency. This research represents the first stage of a broader study aimed at analyzing forced and parametrically excited oscillations. Beyond validating the model, the study contributes to the design of a robust experimental framework suitable for further exploration of nonlinear dynamics. The findings have practical implications for the development and control of mechanical systems subject to dynamic loads, with potential applications in automation, vibration analysis, and system diagnostics. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

16 pages, 4165 KiB  
Article
A Comprehensive Method with Verification for Characterizing the Visco-Hyperelastic Material Model of Polyurethane Foam of Passenger Car Seats
by Jianjiao Deng, Zunming Wang, Yi Qiu, Xu Zheng, Zuofeng Pan, Jingbao Zhao, Yuting Ma, Yabao Li and Chi Liu
Materials 2025, 18(15), 3526; https://doi.org/10.3390/ma18153526 - 28 Jul 2025
Viewed by 202
Abstract
Polyurethane foam is widely used as a primary filling material in car seats. While it provides good damping and energy absorption, the mechanical properties are complex but play a vital role in vibration attenuation and vehicle ride comfort. This study proposes a comprehensive [...] Read more.
Polyurethane foam is widely used as a primary filling material in car seats. While it provides good damping and energy absorption, the mechanical properties are complex but play a vital role in vibration attenuation and vehicle ride comfort. This study proposes a comprehensive experimental and analytical method to characterize the visco-hyperelastic properties of seat-grade polyurethane foam. Quasi-static and dynamic compression tests were conducted on foam blocks to obtain load–deflection curves and dynamic stiffness. A visco-hyperelastic material model was developed, where the hyperelastic response was derived via the hereditary integral and difference-stress method, and viscoelastic behavior was captured using a Prony series fitted to dynamic stiffness data. The model was validated using finite element simulations, showing good agreement with experimental results in both static and dynamic conditions. The proposed method enables accurate characterization of the visco-hyperelastic material properties of seat-grade polyurethane foam. Full article
Show Figures

Graphical abstract

20 pages, 14936 KiB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Viewed by 383
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

21 pages, 2210 KiB  
Article
Iterative Learning Control for Virtual Inertia: Improving Frequency Stability in Renewable Energy Microgrids
by Van Tan Nguyen, Thi Bich Thanh Truong, Quang Vu Truong, Hong Viet Phuong Nguyen and Minh Quan Duong
Sustainability 2025, 17(15), 6727; https://doi.org/10.3390/su17156727 - 24 Jul 2025
Viewed by 365
Abstract
The integration of renewable energy sources (RESs) into power systems, particularly in microgrids, is becoming a prominent trend aimed at reducing dependence on traditional energy sources. Replacing conventional synchronous generators with grid-connected RESs through power electronic converters has significantly reduced the inertia of [...] Read more.
The integration of renewable energy sources (RESs) into power systems, particularly in microgrids, is becoming a prominent trend aimed at reducing dependence on traditional energy sources. Replacing conventional synchronous generators with grid-connected RESs through power electronic converters has significantly reduced the inertia of microgrids. This reduction negatively impacts the dynamics and operational performance of microgrids when confronted with uncertainties, posing challenges to frequency and voltage stability, especially in a standalone operating mode. To address this issue, this research proposes enhancing microgrid stability through frequency control based on virtual inertia (VI). Additionally, the Iterative Learning Control (ILC) method is employed, leveraging iterative learning strategies to improve the quality of output response control. Accordingly, the ILC-VI control method is introduced, integrating the iterative learning mechanism into the virtual inertia controller to simultaneously enhance the system’s inertia and damping coefficient, thereby improving frequency stability under varying operating conditions. The effectiveness of the ILC-VI method is evaluated in comparison with the conventional VI (C-VI) control method through simulations conducted on the MATLAB/Simulink platform. Simulation results demonstrate that the ILC-VI method significantly reduces the frequency nadir, the rate of change of frequency (RoCoF), and steady-state error across iterations, while also enhancing the system’s robustness against substantial variations from renewable energy sources. Furthermore, this study analyzes the effects of varying virtual inertia values, shedding light on their role in influencing response quality and convergence speed. This research underscores the potential of the ILC-VI control method in providing effective support for low-inertia microgrids. Full article
Show Figures

Figure 1

15 pages, 1078 KiB  
Review
Immunological Insights into Photodynamic Therapy of Glioblastoma Multiforme
by Paweł Woźnicki, Dorota Bartusik-Aebisher, Agnieszka Przygórzewska and David Aebisher
Molecules 2025, 30(15), 3091; https://doi.org/10.3390/molecules30153091 - 24 Jul 2025
Viewed by 298
Abstract
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of [...] Read more.
The Gliomas account for 81% of all malignant central nervous system tumors and are classified by WHO into four grades of malignancy. Glioblastoma multiforme (GBM), the most common grade IV glioma, exhibits an extremely aggressive phenotype and a dismal five-year survival rate of only 6%, underscoring the urgent need for novel therapeutic approaches. Immunotherapy has emerged as a promising strategy, and photodynamic therapy (PDT) in particular has attracted attention for its dual cytotoxic and immunostimulatory effects. In GBM models, PDT induces immunogenic cell death characterized by the release of damage-associated molecular patterns (DAMPs), which promote antigen presentation and activate T cell responses. Additionally, PDT transiently increases blood–brain barrier permeability, facilitating immune cell infiltration into the tumor microenvironment, and enhances clearance of waste products via stimulation of meningeal lymphatic vessels. Importantly, PDT can reprogram or inactivate immunosuppressive tumor-associated macrophages, thereby counteracting the pro-tumoral microenvironment. Despite these encouraging findings, further preclinical and clinical studies are required to elucidate PDT’s underlying immunological mechanisms fully and to optimize treatment regimens that maximize its efficacy as part of integrated immunotherapeutic strategies against GBM. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 264
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

20 pages, 5656 KiB  
Article
A Quantitative Analysis Framework for Investigating the Impact of Variable Interactions on the Dynamic Characteristics of Complex Nonlinear Systems
by Yiming Tang, Chongru Liu and Chenbo Su
Electronics 2025, 14(14), 2902; https://doi.org/10.3390/electronics14142902 - 20 Jul 2025
Viewed by 209
Abstract
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a [...] Read more.
The proliferation of power electronics in renewable-integrated grids exacerbates the challenges of nonlinearity and multivariable coupling. While the modal series method (MSM) offers theoretical foundations, it fails to provide tools to systematically quantify dynamic interactions in these complex systems. This study proposes a unified nonlinear modal analysis framework integrating second-order analytical solutions with novel nonlinear indices. Validated across diverse systems (DC microgrids and grid-connected PV), the framework yields significant findings: (1) second-order solutions outperform linearization in capturing critical oscillation/damping distortions under realistic disturbances, essential for fault analysis; (2) nonlinear effects induce modal dominance inversion and generate governing composite modes; (3) key interaction mechanisms are quantified, revealing distinct voltage regulation pathways in DC microgrids and multi-path dynamics driving DC voltage fluctuations. This approach provides a systematic foundation for dynamic characteristic assessment and directly informs control design for power electronics-dominated grids. Full article
Show Figures

Figure 1

15 pages, 4528 KiB  
Article
Changes in the Structure and Mechanical Properties of the SAV-1 Alloy and Structural Fe-Cr-Ni Steels After Long-Term Service as Core Materials in Nuclear Reactors
by Alexey Dikov, Sergey Kislitsin, Boris Ivanov, Ruslan Kiryanov and Egor Maksimkin
Materials 2025, 18(14), 3391; https://doi.org/10.3390/ma18143391 - 19 Jul 2025
Viewed by 267
Abstract
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service [...] Read more.
This article presents the results of studies of the degradation of the structure and mechanical properties of the core materials BN-350 fast neutron and research WWR-K reactors required to justify the service life extension of early-generation power and research reactors. Extending the service life of nuclear reactors is a modern problem, since most operating reactors are early-generation reactors that have exhausted their design lifespan. The possibility of extending the service life is largely determined by the condition of the structural materials of the nuclear facility, i.e., their residual resources must ensure safe operation of the reactor. For the SAV-1 alloy, the structural material of the WWR-K reactor, studies were conducted on witness samples which were in the active zone during its operation for 56 years. It was found that yield strength and tensile strength of the irradiated SAV-1 alloy decreased by 24–48%, and relative elongation decreased by ~2% compared to the unirradiated alloy. Inside the grains and along their boundaries, there were particles of secondary phases enriched with silicon, which is typical for aged aluminum alloys. For irradiated structural steels of power reactors, studied at 350–450 C, hardening and a damping nature of creep were revealed, caused by dispersion hardening and the Hall–Petch effect. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

25 pages, 5545 KiB  
Article
Finite Element Analysis of the Mechanical Performance of an Innovative Beam-Column Joint Incorporating V-Shaped Steel as a Replaceable Energy-Dissipating Component
by Lin Zhang, Yiru Hou and Yi Wang
Buildings 2025, 15(14), 2513; https://doi.org/10.3390/buildings15142513 - 17 Jul 2025
Viewed by 225
Abstract
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent [...] Read more.
Ductile structures have demonstrated the ability to withstand increased seismic intensity levels. Additionally, these structures can be restored to their operational state promptly following the replacement of damaged components post-earthquake. This capability has been a subject of considerable interest and focus in recent years. The study presented in this paper introduces an innovative beam-column connection that incorporates V-shaped steel as the replaceable energy-dissipating component. It delineates the structural configuration and design principles of this joint. Furthermore, the paper conducts a detailed analysis of the joint’s failure mode, stress distribution, and strain patterns using ABAQUS 2022 finite element software, thereby elucidating the failure mechanisms, load transfer pathways, and energy dissipation characteristics of the joint. In addition, the study investigates the impact of critical design parameters, including the strength, thickness, and weakening dimensions of the dog-bone energy-dissipating section, as well as the strength and thickness of the V-shaped plate, on the seismic behavior of the beam-column joint. The outcomes demonstrate that the incorporation of V-shaped steel with a configurable replaceable energy-dissipating component into the traditional dog-bone replaceable joint significantly improves the out-of-plane stability. Concurrently, the V-shaped steel undergoes a process of gradual flattening under load, which allows for a larger degree of deformation. In conclusion, the innovative joint design exhibits superior ductility and load-bearing capacity when contrasted with the conventional replaceable dog-bone energy-dissipating section joint. The joint’s equivalent viscous damping coefficient, ranging between 0.252 and 0.331, demonstrates its robust energy dissipation properties. The parametric analysis results indicate that the LY160 and Q235 steel grades are recommended for the dog-bone connector and V-shaped steel connector, respectively. The optimal thickness ranges are 6–10 mm for the dog-bone connector and 2–4 mm for the V-shaped steel connector, while the weakened dimension should preferably be selected within 15–20 mm. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop