Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = mechanical PTO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1488 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 (registering DOI) - 1 Aug 2025
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
27 pages, 14919 KiB  
Article
A Super-Twisting Sliding-Mode Control Strategy for a Heaving Point Absorber Wave Energy Converter
by Zhongfeng Li, Lixian Wang, Lidong Wang, Xiaoping Liu, Zhongyi Wang and Lei Liu
J. Mar. Sci. Eng. 2025, 13(7), 1214; https://doi.org/10.3390/jmse13071214 - 23 Jun 2025
Viewed by 280
Abstract
This paper proposes a super-twisting sliding-mode control (STSMC) strategy to enhance the efficiency and stability of a heaving point absorber wave energy converter (PAWEC) system equipped with a permanent magnet synchronous generator (PMSG). In particular, the STSMC is designed to address both generator-side [...] Read more.
This paper proposes a super-twisting sliding-mode control (STSMC) strategy to enhance the efficiency and stability of a heaving point absorber wave energy converter (PAWEC) system equipped with a permanent magnet synchronous generator (PMSG). In particular, the STSMC is designed to address both generator-side and grid-side control challenges by ensuring precise regulation under varying wave conditions. A dynamical model of the PAWEC is developed to describe system responses, while the power take-off (PTO) mechanism is tailored to maintain consistent generator speed and efficient energy conversion. Lyapunov stability theory is employed to verify the stability of the proposed controller. Simulation studies and tests on a small-scale experimental setup with a 500 W PAWEC model under regular and irregular waves demonstrate that STSMC improves generator speed regulation and power output by more than 30% compared to field-oriented control (FOC), nonlinear adaptive backstepping (NAB), and first-order sliding-mode control (FOSMC). The proposed approach also manages grid-side total harmonic distortion (THD) effectively, keeping it below 5%. These results indicate that STSMC can substantially improve the dynamic performance and energy efficiency of wave energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 5541 KiB  
Article
Innovative Double Dumbbell-Shaped Flux-Switching Linear Tube Generator for Ocean Wave Energy Conversion: Design, Simulation, and Experimental Validation
by Pooja Khatri, Zhenwei Liu, James Rudolph, Elie Al Shami and Xu Wang
Vibration 2025, 8(2), 32; https://doi.org/10.3390/vibration8020032 - 13 Jun 2025
Viewed by 469
Abstract
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical [...] Read more.
This study introduces a novel double dumbbell-shaped flux-switching linear tube generator (DDFSLG) for ocean wave energy conversion. The innovative architecture features a uniquely shaped stator and translator, distinguishing it from conventional linear generators. Unlike traditional systems, the DDFSLG is housed in a cylindrical buoy. The translator oscillates axially within the stator. This eliminates the need for motion rectification and reduces mechanical friction losses in the power take-off (PTO) system. These design advancements result in high power output and improved performance. The DDFSLG’s three-phase coil circuit is another key innovation, improving electrical performance and stability in irregular wave conditions. We conducted comprehensive experimental validation using an MTS-250 kN testing system, which demonstrated strong agreement between theoretical predictions and measured results. We compared star and delta coil connections to assess how circuit configuration affects power output and efficiency. Furthermore, hydrodynamic simulations using the JONSWAP spectrum and ANSYS AQWA software (Ansys 13.0) provide detailed insight into the system’s dynamic response under realistic oceanic conditions. Full article
Show Figures

Figure 1

16 pages, 525 KiB  
Article
The Impacts of Power Take-Off Surviving Strategies on the Extreme Load Estimations of Wave Energy Converters
by Jian Tan, Yufeng Zhang, Avni Jain and George Lavidas
J. Mar. Sci. Eng. 2025, 13(5), 994; https://doi.org/10.3390/jmse13050994 - 21 May 2025
Viewed by 529
Abstract
The proper design of wave energy converters (WECs) is crucial for ensuring robustness in harsh wave climates without incurring the additional expense of unnecessary overdesign. The power take-off (PTO) mechanism, serving as a vital link between the moving body and the electric generator, [...] Read more.
The proper design of wave energy converters (WECs) is crucial for ensuring robustness in harsh wave climates without incurring the additional expense of unnecessary overdesign. The power take-off (PTO) mechanism, serving as a vital link between the moving body and the electric generator, is a key component in the design load analysis of WECs. However, the setting of PTO system parameters significantly impacts the dynamic behavior of the entire WEC system, leading to alterations in estimated loads. This work is dedicated to studying the influence of PTO control strategies on the identification of extreme loads of a heaving point absorber WEC. A nonlinear time-domain model is established to estimate the dynamic responses and loads of the WEC. Both PTO loads and end-stop loads under extreme conditions are examined, considering the wave climate of a realistic sea site. The results suggest that the PTO setting strategies significantly impact the extreme load exerted on both the PTO system and the end-stop system. Varying the PTO damping within a certain range could lead to a difference of 57% and 63% in short-term extreme loads for the PTO system and the end-stop system, respectively. Furthermore, the impacts of the PTO control strategy appear to be specific to each WEC component. The PTO parameters selected for reducing the extreme PTO loads might increase the extreme end-stop loads. A holistic examination is therefore recommended for estimating the extreme loads of WECs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2210 KiB  
Article
Life Cycle Assessment of an Oscillating Water Column-Type Wave Energy Converter
by Heshanka Singhapurage, Pabasari A. Koliyabandara and Gamunu Samarakoon
Energies 2025, 18(10), 2600; https://doi.org/10.3390/en18102600 (registering DOI) - 17 May 2025
Viewed by 624
Abstract
Among different kinds of renewable energy sources, ocean wave energy offers a promising source of low-carbon electricity. However, despite this potential, ocean wave energy systems can have notable environmental impacts, which remain underexplored. Environmental life cycle assessment (LCA) is a method that can [...] Read more.
Among different kinds of renewable energy sources, ocean wave energy offers a promising source of low-carbon electricity. However, despite this potential, ocean wave energy systems can have notable environmental impacts, which remain underexplored. Environmental life cycle assessment (LCA) is a method that can be used to evaluate the environmental impact of these systems. But few LCAs have been conducted for wave energy converters (WECs), and no prior studies specifically address onshore oscillating water column (OWC) devices, leaving a clear gap in this field. This research provides a cradle-to-gate LCA for an OWC device, using the 500 kW LIMPET OWC plant, located on the Isle of Islay in Scotland, as a case study. The assessment investigated the environmental impacts of the plant across 19 impact categories. OpenLCA 2.0 software was used for the analysis, with background data sourced from the Ecoinvent database version 3.8. The ReCiPe 2016 Midpoint (H) and Cumulative Energy Demand (CED) methods were used for the impact assessment. The results revealed a Global Warming Potential (GWP) of 56 kg CO2 eq/kWh and a carbon payback period of 0.14 years. The energy payback period is significantly higher at 196 years, largely due to the plant’s inefficient energy capture and recurring operational failures reported. These findings highlight that although ocean wave energy is a renewable energy source, WEC’s efficiency and reliability are key factors for sustainable electricity generation. Furthermore, the findings conclude the need for selecting eco-friendly construction materials in OWC construction, namely chamber construction, and the advancement of energy-harnessing mechanisms, such as in Power Take-off (PTO) systems, to improve energy efficiency and reliability. Moreover, the importance of material recycling at the end-of-life stage, which was not accounted for in this cradle-to-gate analysis yet, is underscored for offsetting a portion of the associated environmental impacts. This research contributes novel insights into sustainable construction practices for OWC devices, offering valuable guidance for future wave energy converter designs. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

19 pages, 6302 KiB  
Article
Serine Hydroxymethyltransferase Modulates Midgut Physiology in Aedes aegypti Through miRNA Regulation: Insights from Small RNA Sequencing and Gene Expression Analysis
by Qian Pu, Yujiao Han, Zhuanzhuan Su, Houming Ren, Qingshan Ou, Symphony Kashyap and Shiping Liu
Biomolecules 2025, 15(5), 644; https://doi.org/10.3390/biom15050644 - 30 Apr 2025
Viewed by 506
Abstract
Aedes aegypti mosquitoes are critical vectors of arboviruses, responsible for transmitting pathogens that pose significant public health challenges. Serine hydroxymethyltransferase (SHMT), a key enzyme in one-carbon metabolism, plays a vital role in various biological processes, including DNA synthesis, energy metabolism, and cell proliferation. [...] Read more.
Aedes aegypti mosquitoes are critical vectors of arboviruses, responsible for transmitting pathogens that pose significant public health challenges. Serine hydroxymethyltransferase (SHMT), a key enzyme in one-carbon metabolism, plays a vital role in various biological processes, including DNA synthesis, energy metabolism, and cell proliferation. Although SHMT is expressed at low levels in the midgut of Aedes aegypti, its silencing has been shown to inhibit blood meal digestion. The precise mechanisms by which SHMT regulates midgut physiology in mosquitoes remain poorly understood. In this study, we employed small RNA sequencing and quantitative PCR to identify differentially expressed miRNAs (DEMs) following SHMT downregulation. We focused on a subset of DEMs—miR-2940-5p, miR-2940-3p, miR-2941, and miR-306-5p—to explore their potential biological functions. To further elucidate the molecular mechanisms underlying the miRNA response to SHMT downregulation, we analyzed the expression levels of key genes involved in the miRNA biogenesis pathway. Our results demonstrated that several critical enzymes, including Drosha, Dicer1, and AGO1, exhibited significant changes in expression upon SHMT silencing. This study provides new insights into the molecular mechanisms through which SHMT influences the biological functions and nutritional metabolism of the mosquito midgut. By linking SHMT activity to miRNA regulation, our findings highlight a potential pathway by which SHMT modulates midgut physiology, offering a foundation for future research into mosquito biology and vector control strategies. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

54 pages, 18421 KiB  
Review
Innovations in Wave Energy: A Case Study of TALOS-WEC’s Multi-Axis Technology
by Fatemeh Nasr Esfahani, Wanan Sheng, Xiandong Ma, Carrie M. Hall and George Aggidis
J. Mar. Sci. Eng. 2025, 13(2), 279; https://doi.org/10.3390/jmse13020279 - 31 Jan 2025
Viewed by 1550
Abstract
The technologically advanced learning ocean system—wave energy converter (TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solutions by leveraging the vast potential of wave energy. This project presents a pioneering approach to wave energy capture through its unique multi-axis and [...] Read more.
The technologically advanced learning ocean system—wave energy converter (TALOS-WEC) project addresses the urgent need for sustainable and efficient energy solutions by leveraging the vast potential of wave energy. This project presents a pioneering approach to wave energy capture through its unique multi-axis and omnidirectional point absorber design. Featuring a fully enclosed power take-off (PTO) system, the TALOS-WEC harnesses energy across six degrees of freedom (DoFs) using an innovative internal reaction mass (IRM) mechanism. This configuration enables efficient energy extraction from the relative motion between the IRM and the hull, aiming for energy conversion efficiencies ranging between 75–80% under optimal conditions, while ensuring enhanced durability in harsh marine environments. The system’s adaptability is reflected in its versatile geometric configurations, including triangular, octagonal, and circular designs, customised for diverse marine conditions. Developed at Lancaster University, UK, and supported by international collaborations, the TALOS-WEC project emphasises cutting-edge advancements in hydrodynamic modelling, geometric optimisation, and control systems. Computational methodologies leverage hybrid frequency-time domain models and advanced panel codes (WAMIT, HAMS, and NEMOH) to address non-linearities in the PTO system, ensuring precise simulations and optimal performance. Structured work packages (WPs) guide the project, addressing critical aspects such as energy capture optimisation, reliability enhancement, and cost-effectiveness through innovative monitoring and control strategies. This paper provides a comprehensive overview of the TALOS-WEC, detailing its conceptual design, development, and validation. Findings demonstrate TALOS’s potential to achieve scalable, efficient, and robust wave energy conversion, contributing to the broader advancement of renewable energy technologies. The results underscore the TALOS-WEC’s role as a cutting-edge solution for harnessing oceanic energy resources, offering perspectives into its commercial viability and future scalability. Full article
Show Figures

Figure 1

14 pages, 5845 KiB  
Article
Simulation Analysis of Energy Inputs Required by Agricultural Machines to Perform Field Operations
by Francesco Paciolla, Katarzyna Łyp-Wrońska, Tommaso Quartarella and Simone Pascuzzi
AgriEngineering 2025, 7(1), 7; https://doi.org/10.3390/agriengineering7010007 - 30 Dec 2024
Cited by 2 | Viewed by 1136
Abstract
The evaluation of direct energy inputs and the assessment of the carbon footprint of an agricultural tractor during the execution of an agricultural operation is a complex task. Methodological approaches such as field surveys and life cycle assessments can provide unreliable and non-repeatable [...] Read more.
The evaluation of direct energy inputs and the assessment of the carbon footprint of an agricultural tractor during the execution of an agricultural operation is a complex task. Methodological approaches such as field surveys and life cycle assessments can provide unreliable and non-repeatable results. This study exploits the use of numerical simulation to assess the fuel consumption of two agricultural tractors and their CO2 emissions during the execution of pesticide treatment and milling. The digital models of the Landini REX 4-120 GB and the Fendt 942 Vario were developed, starting from experimental data acquired during field tests in which the power required at the power take-off (PTO) by the respective operating machine was measured. Two custom working cycles, simulating the two agricultural operations, have been defined and simulated. The estimated fuel consumption was 7.8 L∙ha−1 and 23.2 L∙ha−1, respectively, for the Landini REX 4-120 GB during pesticide treatment and for the Fendt 942 Vario during milling. The corresponding direct energy inputs required for the two agricultural operations were equal to 300.3 MJ∙ha−1 and 893.2 MJ∙ha−1, respectively. The estimated carbon footprint was 26.5 kgCO2∙ha−1 and 68.4 kgCO2∙ha−1 for pesticide treatment and for milling, respectively. Moreover, considering the operational efficiency of the systems, an analysis of the available mechanical work supplied by the fuel was conducted. Full article
Show Figures

Figure 1

25 pages, 5625 KiB  
Review
Ocean Wave Energy Conversion: A Review
by Hafsa Bouhrim, Abdellatif El Marjani, Rajae Nechad and Imane Hajjout
J. Mar. Sci. Eng. 2024, 12(11), 1922; https://doi.org/10.3390/jmse12111922 - 28 Oct 2024
Cited by 9 | Viewed by 5654
Abstract
The globally increasing demand for energy has encouraged many countries to search for alternative renewable sources of energy. To this end, the use of energy from ocean waves is of great interest to coastal countries. Hence, an assessment of the available resources is [...] Read more.
The globally increasing demand for energy has encouraged many countries to search for alternative renewable sources of energy. To this end, the use of energy from ocean waves is of great interest to coastal countries. Hence, an assessment of the available resources is required to determine the appropriate locations where the higher amount of wave energy can be generated. The current paper presents a review of the resource characterizations for wave energy deployment. The paper gives, at first, a brief introduction and background to wave energy. Afterward, a detailed description of formulations and metrics used for resource characterization is introduced. Then, a classification of WECs (wave energy converters) according to their working principle, as well as PTO (power take off) mechanisms used for these WECs are introduced. Moreover, different sources for the long-term characterization of wave climate conditions are reviewed, including in situ measurements, satellite altimeters, and data reanalysis on one hand, and numerical simulations based on spectral wave models on the other hand. Finally, the review concludes by illustrating the economic feasibility of wave farms based on the use of the levelized cost of the energy index. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 10134 KiB  
Article
Optimization of Operating Parameters for Straw Returning Machine Based on Vibration Characteristic Analysis
by Yuanyuan Gao, Yongyue Hu, Yifei Yang, Kangyao Feng, Xing Han, Peiying Li, Yongyun Zhu and Qi Song
Agronomy 2024, 14(10), 2388; https://doi.org/10.3390/agronomy14102388 - 16 Oct 2024
Cited by 6 | Viewed by 1208
Abstract
For the mechanized technical mode of total wheat straw returning to field, there are problems such as large vibration during the operation of the straw returning machine that, in turn, affect the effect of stubble breaking. This study took the Tongtian 1-JHY-220 straw [...] Read more.
For the mechanized technical mode of total wheat straw returning to field, there are problems such as large vibration during the operation of the straw returning machine that, in turn, affect the effect of stubble breaking. This study took the Tongtian 1-JHY-220 straw returning machine as the research object to conduct field experiments, with wheat stubble height, forward velocity, and PTO speed as experimental parameters. And the vibration characteristics at different positions of the machine and the final stubble breaking rate were used as evaluation indicators. Combined with the orthogonal experiment and response surface analysis method, this article analyzes and discusses the influence of various parameters on vibration characteristics and operational effectiveness. The results show that PTO speed and wheat stubble height were the main factors affecting the vibration and operation quality of the straw returning machine. Low PTO speed and high stubble height can improve the stubble breaking rate of the straw returning machine and reduce its operation vibration. Furthermore, the multi-objective optimization results show that when the forward velocity in the range of 8.5–9 km/h, the PTO speed is 540 r/min, and the stubble height is in the range of 200–250 mm, the stubble breaking rate of the straw returning machine is greater than 86%. At this time, the total vibration of the straw returning machine and tractor rear axle is relatively small. This study can lay a foundation for further studying the impact of the vibration of the straw returning machine on the stubble breaking effect and provide a reference for the preparation of high-quality seedbed under conservation tillage. Full article
Show Figures

Figure 1

20 pages, 6723 KiB  
Article
Design and Experiment of an Inter-Row Weeding Machine Applied in Soybean and Corn Strip Compound Planting (SCSCP)
by Zihao Tang, Xiaobo Xi, Baofeng Zhang, Yangjie Shi, Yajuan Wang and Ruihong Zhang
Agronomy 2024, 14(9), 2136; https://doi.org/10.3390/agronomy14092136 - 19 Sep 2024
Viewed by 1602
Abstract
To address the lack of specialized machinery for the mechanical weeding of SCSCP in the Huang Huai Hai region, this study designs a mechanized inter-row weeding machine for SCSCP. The machine features a reciprocating weeding shovel and an adaptive contouring mechanism for cultivation [...] Read more.
To address the lack of specialized machinery for the mechanical weeding of SCSCP in the Huang Huai Hai region, this study designs a mechanized inter-row weeding machine for SCSCP. The machine features a reciprocating weeding shovel and an adaptive contouring mechanism for cultivation and soil loosening. This paper details the machine’s principles by analyzing the geometric relationship and mechanical model between the corresponding profiling quantities, which determine the relevant parameters for adaptive contouring to ensure stable operation on undulating ground. Furthermore, by optimizing the design of the weeding shovel’s reciprocating motion mechanism, combining EDEM simulation with the weeding shovel–soil interaction, it has been determined that, at various PTO shaft speeds, the optimal weeding efficacy is achieved with a blade-type weeding shovel structure when operating at a forward speed of 3.5 km/h. Field experiments were conducted with different PTO shaft speeds and weeding depths, using weeding and seedling injury rates as performance indicators. The results showed that, based on the optimal speed, the PTO shaft speed is 760 r/min, the operating depth is 3–5 cm, and the average row weeding rate is 90.4%. The average soybean and corn seedling injury rate is 3.4% and 4.2%, meeting the technical requirements for mechanical weeding. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 5498 KiB  
Article
A Putative Effector Pst-18220, from Puccinia striiformis f. sp. tritici, Participates in Rust Pathogenicity and Plant Defense Suppression
by Mengfan Tian, Zhen Zhang, Xiaorui Bi, Yan Xue, Jiahui Zhou, Bo Yuan, Zhaozhong Feng, Lianwei Li and Junjuan Wang
Biomolecules 2024, 14(9), 1092; https://doi.org/10.3390/biom14091092 - 31 Aug 2024
Cited by 2 | Viewed by 1268
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), stands out as one of the most devastating epidemics impacting wheat production worldwide. Resistant wheat varieties had swiftly been overcome due to the emergence of new virulent Pst strains. Effectors secreted [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), stands out as one of the most devastating epidemics impacting wheat production worldwide. Resistant wheat varieties had swiftly been overcome due to the emergence of new virulent Pst strains. Effectors secreted by Pst interfere with plant immunity, and verification of their biological function is extremely important for controlling wheat stripe rust. In this study, we identified an effector, Pst-18220, from Puccinia striiformis f. sp. tritici (Pst), which was induced during the early infection stage of Pst. Silencing the expression of Pst-18220 through virus-mediated host-induced gene silencing (HIGS) resulted in a decreased number of rust pustules. In Nicotiana benthamiana, it significantly suppressed cell death induced by Pseudomonas syringae pv. tomato (Pto) DC3000. In Arabidopsis, plants with stable overexpression of Pst-18220 showed increased susceptibility to Pto DC3000, accompanied by a decrease in the expression level of pattern-triggered immunity (PTI)/effector-triggered immunity (ETI)-related genes, namely, AtPCRK1, AtPCRK2, and AtBIK1. These results emphasize the significant role of the Pst candidate effector, Pst-18220, in rust pathogenicity and the suppression of plant defense mechanisms. This broadens our understanding of effectors without any known motif. Full article
Show Figures

Figure 1

20 pages, 5949 KiB  
Article
Numerical Method for Optimizing Soil Distribution Using DEM Simulation and Empirical Validation by Chemical Properties
by Seokho Kang, Yonggik Kim, Hyunggyu Park, JinHo Son, Yujin Han, YeongSu Kim, Seungmin Woo, Seunggwi Kwon, Youngyoon Jang and Yushin Ha
Agriculture 2024, 14(8), 1399; https://doi.org/10.3390/agriculture14081399 - 19 Aug 2024
Cited by 1 | Viewed by 1732
Abstract
Manure distribution in soil creates a ground environment that is conducive to crop cultivation. However, the lumping and concentration of manure in the field can occur, hindering the fertilization of the soil for plant growth, and the randomization of nutrients under different soil [...] Read more.
Manure distribution in soil creates a ground environment that is conducive to crop cultivation. However, the lumping and concentration of manure in the field can occur, hindering the fertilization of the soil for plant growth, and the randomization of nutrients under different soil depths accelerates it. To overcome the challenges associated with agricultural testing, such as high cost, inclement weather, and other constraints, computational analysis is often used. In this study, rotary operations are performed using the discrete element method (DEM) to ensure the uniform distribution of manure and four soil layers. DEM analysis was conducted with three experimental factors, and simulation sets were designed using the Box-Behnken central combination method. The DEM results were evaluated using the uniformity index (UI), and the field test of the rotary operation was performed with the set showing the most uniform distribution among the results. Due to undistinguishable particles in reality, the uniformity was validated by a comparison of the chemical characteristics of the L1 and L5 in terms of before and after the rotary operation. The DEM parameter of the soil was determined by performing field measurements at different soil depths (0–20 cm), and this parameter was calibrated by conducting a penetration test. The Box–Behnken central combination method was implemented using the following factors: tillage depth (X1), PTO revolution speed (X2), and forward machine velocity (X3). These factors were obtained using the UI regression model and the response surface method. In the results, it was indicated that the UI was affected by the factors in the following order: X1 > X2 > X3. The optimized factor values were X1 = 25 cm, X2 = 800 RPM, and X3 = 1.8 km/h, leading to a UI of 6.07, which was consistent with the analysis results. The operating parameters were maintained throughout the field test, and the acquired data were input into the measurement system. The lowest UI value of 6.07 had the strongest effect on decreasing the disparity between L1 and L5, especially in terms of pH, organic matter, P, Ca, and Mg. In summary, the results indicated that soil distribution can be controlled by adjusting mechanical parameters to ensure uniform chemical characteristics across various soil depths. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 8329 KiB  
Article
Research on Fourier Coefficient-Based Energy Capture for Direct-Drive Wave Energy Generation System Based on Position Sensorless Disturbance Suppression
by Shiquan Wu, Lei Huang, Jianlong Yang, Jiyu Zhang, Haitao Liu, Shixiang Wang and Zihao Mou
J. Mar. Sci. Eng. 2024, 12(8), 1358; https://doi.org/10.3390/jmse12081358 - 9 Aug 2024
Viewed by 860
Abstract
In order to improve the energy capture efficiency of direct-drive wave power generation (DDWEG) systems and enhance the robustness of the reference power tracking control, a Fourier coefficient-based energy capture (FCBEC) and a position sensorless disturbance suppression (PSDS) control strategy are proposed. For [...] Read more.
In order to improve the energy capture efficiency of direct-drive wave power generation (DDWEG) systems and enhance the robustness of the reference power tracking control, a Fourier coefficient-based energy capture (FCBEC) and a position sensorless disturbance suppression (PSDS) control strategy are proposed. For energy capture, FCBEC is proposed to construct the objective function by maximizing the average power over a period of time and expanding the variables in the Fourier basis when the maximum power is captured, which is used as the basis for obtaining the reference trajectory. To address the limitations of the mechanical encoder, the position sensorless technique, based on a sliding mode observer (SMO), is used in the power tracking control, and the position information is obtained through an inverse tangent function. The perturbation caused by the inverse electromotive force error in the system is theoretically analyzed. A full-order terminal sliding mode approach is employed to design a current controller that suppresses the perturbation and ensures accurate tracking of the reference current. Simulation results show that the ocean-wave energy capture strategy proposed in this paper can make the energy captured by the PTO reach the optimal value under the impedance matching condition, and that the response speed and robustness of the full-order terminal sliding mode are better than the traditional PI control. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

17 pages, 3959 KiB  
Article
A Dual-Function Design of an Oscillating Water Column Integrated with a Slotted Breakwater: A Wave Flume Study
by Clint C. M. Reyes, Mayah Walker, Zhenhua Huang and Patrick Cross
Energies 2024, 17(15), 3848; https://doi.org/10.3390/en17153848 - 5 Aug 2024
Cited by 3 | Viewed by 1403
Abstract
Wave energy conversion holds promise for renewable energy, but challenges like high initial costs hinder commercialization. Integrating wave-energy converters (WECs) into shore-protection structures creates dual-function structures for both electricity generation and coastal protection. Oscillating water columns (OWCs) have been well studied in the [...] Read more.
Wave energy conversion holds promise for renewable energy, but challenges like high initial costs hinder commercialization. Integrating wave-energy converters (WECs) into shore-protection structures creates dual-function structures for both electricity generation and coastal protection. Oscillating water columns (OWCs) have been well studied in the past with their simple generation mechanism and their out-of-water power take-off (PTO) system, which can minimize bio-fouling effects and maintenance costs compared to other submerged WECs. In addition, a slotted barrier allows for better circulation behind the breakwater while dissipating incoming wave energy through viscous damping. This study examines the performance of a new design which combines an OWC with a slotted breakwater. Small-scale (1:49) laboratory tests were performed with a piston-type wave generator. The performance is evaluated in terms of wave transmission, wave energy extraction, and wave loading under various wave conditions while focusing on the effects of the porosity of the slotted barrier and tide level changes. Results show that under larger waves, a decreasing wave transmission, increasing power extraction from the OWC, and energy dissipation from the slotted barrier are observed. On the other hand, under increasing wavelengths, wave transmission is observed to be constant; this is important for harbor design, which means that the breakwater is effective under a wider range of wavelengths. Porosity allows for more transmission while inducing less horizontal force on the structure. Full article
(This article belongs to the Topic Energy from Sea Waves)
Show Figures

Figure 1

Back to TopTop