Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,340)

Search Parameters:
Keywords = maximum strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4156 KiB  
Article
Numerical and Experimental Study on Deposition Mechanism of Laser-Assisted Plasma-Sprayed Y2O3 Coating
by Hui Zou, Xutao Zhao, Bin Fu, Huabao Yang and Chengda Sun
Coatings 2025, 15(8), 904; https://doi.org/10.3390/coatings15080904 (registering DOI) - 2 Aug 2025
Abstract
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, [...] Read more.
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, the temperature of coating particles under laser loading displays a gradient distribution, with the surface having the highest temperature. The particles deposit on the substrate to form uniform pits of a certain depth. Plastic deformation causes maximum stress to occur at the edges of the pits and maximum strain to occur on the sidewall of the pits. The deposition region had both compressive and tensile stresses, and laser loading greatly reduced the tensile stresses’ magnitude while having less of an impact on the particle strains. Laser assistance promotes further melting of particles, reduces coating thickness, lowers coating porosity to 3.94%, increases hardness to 488 MPa, reduces maximum pore size from 68 µm to 32 µm, and causes particle sputtering to gradually evolve from being disc-shaped to being finger-shaped, creating cavities at the coating edges. The comparison between the surface morphology and the cross-section pores of the experimentally prepared coating verified the rationality and viability of the simulation work. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

23 pages, 3817 KiB  
Article
Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
by Chuandong Liu, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong and Bin Li
Agronomy 2025, 15(8), 1872; https://doi.org/10.3390/agronomy15081872 (registering DOI) - 1 Aug 2025
Abstract
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed [...] Read more.
In this study, we aimed to address the lack of systematic research on key collision dynamics parameters (elastic restitution coefficient) in the full mechanization of rapeseed operations, which hinders the development of precision agriculture. In this present work, the restitution coefficient of rapeseed was systematically investigated, and a predictive model (R2 = 0.959) was also established by using Box–Behnken design response surface methodology (BBD-RSM). The results show that the collision restitution coefficient varies in the range of 0.539–0.649, with the key influencing factors ranked as follows: moisture content (Mc) > material layer thickness (L) > drop height (H). The EDEM simulation methodology was adopted to validate the experimental results, and the results show that there is a minimal relative error (−1% < δ < 1%) between the measured and simulated rebound heights, indicating that the established model shows a reliable prediction performance. Moreover, by comprehensively analyzing stress, strain, and energy during the collision process between rapeseed and Q235 steel, it can be concluded that the process can be divided into five stages—free fall, collision compression, collision recovery, rebound oscillation, and rebound stabilization. The maximum stress (1.19 × 10−2 MPa) and strain (6.43 × 10−6 mm) were observed at the beginning of the collision recovery stage, which can provide some theoretical and practical basis for optimizing and designing rapeseed machines, thus achieving the goals of precise control, harvest loss reduction, and increased yields. Full article
(This article belongs to the Section Precision and Digital Agriculture)
14 pages, 2428 KiB  
Article
Fracture Behavior of Steel-Fiber-Reinforced High-Strength Self-Compacting Concrete: A Digital Image Correlation Analysis
by Maoliang Zhang, Junpeng Chen, Junxia Liu, Huiling Yin, Yan Ma and Fei Yang
Materials 2025, 18(15), 3631; https://doi.org/10.3390/ma18153631 (registering DOI) - 1 Aug 2025
Abstract
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, [...] Read more.
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, the fracture process of steel-fiber-reinforced HSSCC was analyzed to elucidate the reinforcing and fracture-resisting mechanisms of steel fibers. The results indicate that the compressive strength and flexural strength of HSSCC cured for 28 days exhibited an initial decrease and then an enhancement as the volume fraction (Vf) of steel fibers increased, whereas the flexural-to-compressive ratio linearly increased. All of them reached their maximum of 110.5 MPa, 11.8 MPa, and 1/9 at 1.2 vol% steel fibers, respectively. Steel fibers significantly improved the peak load (FP), peak opening displacement (CMODP), fracture toughness (KIC), and fracture energy (GF) of HSSCC. Compared with HSSCC without steel fibers (HSSCC-0), the FP, KIC, CMODP, and GF of HSSCC with 1.2 vol% (HSSCC-1.2) increased by 23.5%, 45.4%, 11.1 times, and 20.1 times, respectively. The horizontal displacement and horizontal strain of steel-fiber-reinforced HSSCC both increased significantly with an increasing Vf. HSSCC-0 experienced unstable fracture without the occurrence of a fracture process zone during the whole fracture damage, whereas the fracture process zone formed at the notched beam tip of HSSCC-1.2 at its initial loading stage and further extended upward in the beams of high-strength self-compacting concrete with a 0.6% volume fraction of steel fibers and HSSCC-1.2 as the load approaches and reaches the peak. Full article
16 pages, 1365 KiB  
Article
Immobilization of Cd Through Biosorption by Bacillus altitudinis C10-4 and Remediation of Cd-Contaminated Soil
by Tianyu Gao, Chenlu Zhang, Xueqiang Hu, Tianqi Wang, Zhitang Lyu and Lei Sun
Microorganisms 2025, 13(8), 1798; https://doi.org/10.3390/microorganisms13081798 - 1 Aug 2025
Abstract
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the [...] Read more.
In this study, a highly cadmium (II)-resistant bacterium strain, C10-4, identified as Bacillus altitudinis, was isolated from a sediment sample collected from Baiyangdian Lake, China. The minimum inhibitory concentration (MIC) of Cd(II) for strain C10-4 was 1600 mg/L. Factors such as the contact time, pH, Cd(II) concentration, and biomass dosage affected the adsorption of Cd(II) by strain C10-4. The adsorption process fit well to the Langmuir adsorption isotherm model and the pseudo-second-order kinetics model, based on the Cd(II) adsorption data obtained from the cells of strain C10-4. This suggests that Cd(II) is adsorbed by strain C10-4 cells via a single-layer homogeneous chemical adsorption process. According to the Langmuir model, the maximum biosorption capacity was 3.31 mg/g for fresh-strain C10-4 biomass. Cd(II) was shown to adhere to the bacterial cell wall through SEM-EDS analysis. FTIR spectroscopy further indicated that the main functional sites for the binding of Cd(II) ions on the cell surface of strain C10-4 were functional groups such as N-H, -OH, -CH-, C=O, C-O, P=O, sulfate, and phosphate. After the inoculation of strain C10-4 into Cd(II)-contaminated soils, there was a significant reduction (p < 0.01) in the exchangeable fraction of Cd and an increase (p < 0.01) in the sum of the reducible, oxidizable, and residual fractions of Cd. The results show that Bacillus altitudinis C10-4 has good potential for use in the remediation of Cd(II)-contaminated soils. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 5622 KiB  
Article
Molecular Dynamics Simulations on the Deformation Behaviors and Mechanical Properties of the γ/γ′ Superalloy with Different Phase Volume Fractions
by Xinmao Qin, Wanjun Yan, Yilong Liang and Fei Li
Crystals 2025, 15(8), 706; https://doi.org/10.3390/cryst15080706 (registering DOI) - 31 Jul 2025
Abstract
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, [...] Read more.
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, high-strain-rate service environments. Our investigation revealed that the tensile behavior of the superalloy depends critically on the Vγ. When the Vγ increased from 13.5 to 67%, the system’s tensile strength exhibited a non-monotonic response, peaking at Vγ = 40.3% before progressively decreasing. Conversely, the maximum uniform plastic strain decreased linearly and significantly when Vγ increased. These results establish an atomistically informed framework that elucidates the composition–microstructure–property relationships in γ(Ni)/γ(Ni3Al) superalloys, specifically addressing how Vγ governs variations in deformation mechanisms and mechanical performance. Furthermore, this work provides quantitative design paradigm for optimizing γ(Ni3Al) precipitate architecture and compositional tuning in the Ni-based γ(Ni)/γ(Ni3Al) superalloy. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

17 pages, 3817 KiB  
Article
The Distribution Characteristics of Frost Heaving Forces on Tunnels in Cold Regions Based on Thermo-Mechanical Coupling
by Yujia Sun, Lei Peng and Qionglin Li
Appl. Sci. 2025, 15(15), 8537; https://doi.org/10.3390/app15158537 (registering DOI) - 31 Jul 2025
Abstract
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall [...] Read more.
To address the freezing damage to tunnel lining caused by frost heaving of the surrounding rock in water-rich tunnels in cold regions, a numerical thermo-mechanical coupling model for tunnel-surrounding rock that considers the anisotropy of frost heave deformation was established by examining overall frost heaves in a freeze–thaw cycle. Using a COMSOL Multiphysics 6.0 platform and the sequential coupling method, the temperature field evolution of tunnel-surrounding rock, freezing cycle development, and distribution characteristics of the frost heaving force of a tunnel lining under different minimum temperatures, numbers of negative temperature days, frost heave ratios, and anisotropy coefficients of frost heave deformation were systematically simulated. The results revealed that the response of the temperature field of tunnel-surrounding rock to the external temperature varies spatially with time lags, the shallow surface temperatures and the area around the lining fluctuate with the climate, and the temperature of the deep surrounding rock is dominated by the geothermal gradient. The extent of the freezing cycle and the frost heaving force increase significantly when lowering the minimum temperature. The maximum frost heaving force usually occurs in the region of the side wall and the spring line, and tensile stress is prone to be generated at the spring line; the influence of slight fluctuations in the minimum temperature or the short shift in the coldest day on the frost heaving force is limited. A substantial increase in frost heaving force is observed with higher frost heave ratios; for example, an increase from 0.25% to 2.0% results in a 116% rise at the sidewall. Although the increase in the anisotropy coefficient of frost heave deformation does not change the overall distribution pattern of frost heaving force, it can exacerbate the directional concentration of frost heave strain, which can increase the frost heaving force at the periphery of the top arch of the lining. This study revealed the distribution pattern and key influencing factors of the freezing cycle and frost heaving force for tunnels, providing a theoretical basis and data reference for the frost resistance design of tunnels in cold regions. Full article
Show Figures

Figure 1

30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 241
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

16 pages, 4172 KiB  
Article
Vapor Phase Application of Thymus vulgaris Essential Oil to Control the Biodeteriogenic Fungus Alternaria alternata
by Francesca Bosco, Chiara Mollea and Davide Fissore
Appl. Sci. 2025, 15(15), 8420; https://doi.org/10.3390/app15158420 - 29 Jul 2025
Viewed by 198
Abstract
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and [...] Read more.
In the present work, the antimicrobial efficacy of Thymus vulgaris essential oil (EO) was investigated on Alternaria alternata strain BNR; a paper biodeteriogen was used as a model for a contaminated library. The influence of EO volume and diffusion modality, treatment duration, and inoculum age was evaluated in the vapor phase. In Petri dish screening, the influence of different EO volumes (5, 7.5, and 10 μL) on the microbial growth lag phase was investigated, and the growth inhibition period was established. The most effective treatment (10 μL EO) was then scaled up in a glass airtight container of 2650 cm3; a cold diffusion method was applied in order to quickly reach the maximum concentration of active compounds in the vapor phase. These tests demonstrated that EO efficacy is affected by the inoculum age and the contact time, and that the treatment should be performed as early as is feasible. A mycostatic effect was confirmed to be proportional to the utilized EO volume and independent from the treatment method. The information obtained in the present work will be applied to the set-up of an EO treatment in a library characterized by different levels of air contamination. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

14 pages, 1634 KiB  
Article
Zinc Ions Inactivate Influenza Virus Hemagglutinin and Prevent Receptor Binding
by Ahn Young Jeong, Vikram Gopal and Aartjan J. W. te Velthuis
Biomedicines 2025, 13(8), 1843; https://doi.org/10.3390/biomedicines13081843 - 29 Jul 2025
Viewed by 225
Abstract
Background: Influenza A viruses (IAV) cause seasonal flu and occasional pandemics. In addition, the potential for the emergence of new strains presents unknown challenges for public health. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread [...] Read more.
Background: Influenza A viruses (IAV) cause seasonal flu and occasional pandemics. In addition, the potential for the emergence of new strains presents unknown challenges for public health. Face masks and other personal protective equipment (PPE) can act as barriers that prevent the spread of these viruses. Metal ions embedded into PPE have been demonstrated to inactivate respiratory viruses, but the underlying mechanism of inactivation and potential for resistance is presently not well understood. Methods: In this study, we used hemagglutination assays to quantify the effect of zinc ions on IAV sialic acid receptor binding. We varied the zinc concentration, incubation time, incubation temperature, and passaged IAV in the presence of zinc ions to investigate if resistance to zinc ions could evolve. Results: We found that zinc ions impact the ability of IAV particles to hemagglutinate and observed inhibition within 1 min of exposure. Maximum inhibition was achieved within 1 h and sustained for at least 24 h in a concentration-dependent manner. Inhibition was also temperature-dependent, and optimal above room temperature. Serial passaging of IAV in the presence of zinc ions did not result in resistance. Conclusions: e conclude that zinc ions prevent IAV hemagglutination in a concentration and temperature-dependent manner for at least 24 h. Overall, these findings are in line with previous observations indicating that zinc-embedded materials can inactivate the IAV hemagglutinin and SARS-CoV-2 spike proteins, and they support work toward developing robust, passive, self-cleaning antiviral barriers in PPE. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

25 pages, 9707 KiB  
Article
Mesoscale Mechanical Analysis of Concrete Based on a 3D Random Aggregate Model
by Shuaishuai Wei, Huan Zhang, Ding Wang, Xuchun Wang and Mengdi Cao
Coatings 2025, 15(8), 883; https://doi.org/10.3390/coatings15080883 - 29 Jul 2025
Viewed by 225
Abstract
The shape, size, and interfacial transition zone (ITZ) of aggregates significantly impact the nonlinear mechanical behavior of concrete. This study investigates concrete’s mechanical response and damage mechanisms by developing a three-dimensional, three-phase mesoscale model comprising coarse aggregates, mortar, and ITZ to explore the [...] Read more.
The shape, size, and interfacial transition zone (ITZ) of aggregates significantly impact the nonlinear mechanical behavior of concrete. This study investigates concrete’s mechanical response and damage mechanisms by developing a three-dimensional, three-phase mesoscale model comprising coarse aggregates, mortar, and ITZ to explore the compressive performance of concrete. A method for simulating the random distribution of aggregates based on three-dimensional grid partitioning is proposed, where the value of each grid point represents the maximum aggregate radius that can be accommodated if the point serves as the aggregate center. Aggregates are generated by randomly selecting grid points that meet specific conditions, avoiding overlapping distributions and significantly improving computational efficiency as the generation progresses. This model effectively enhances the precision and efficiency of aggregate distribution and provides a reliable tool for studying the random distribution characteristics of aggregates in concrete. Additionally, an efficient discrete element model (DEM) was established based on this mesoscale model to simulate the compressive behavior of concrete, including failure modes and stress–strain curves. The effects of aggregate shape and maximum aggregate size on the uniaxial compressive failure behavior of concrete specimens were investigated. Aggregate shape has a particular influence on the compressive strength of concrete, and the compressive strength decreases with an increase in maximum aggregate size. Combined with existing experimental results, the proposed mesoscale model demonstrates high reliability in analyzing the compressive performance of concrete, providing valuable insights for further research on the mechanical properties of concrete. Full article
(This article belongs to the Special Issue Advances in Pavement Materials and Civil Engineering)
Show Figures

Figure 1

18 pages, 4813 KiB  
Article
Dynamic Recrystallization Model of High-Temperature Deformation and Finite Element Analysis of Microstructure Evolution of 14Cr1Mo Pressure Vessel Steel
by Baoning Yu, Bo Zhang, Ruxing Shi, Feng Mao, Shizhong Wei and Duhang Yang
Materials 2025, 18(15), 3531; https://doi.org/10.3390/ma18153531 - 28 Jul 2025
Viewed by 247
Abstract
Due to the frequent occurrence of coarse-grained structures in large hydrogenation tube sheets, their hydrogen resistance and corrosion resistance deteriorate, significantly shortening their service life. Therefore, microstructure evolution must be strictly controlled during the forging process. High-temperature compression tests were simulated using a [...] Read more.
Due to the frequent occurrence of coarse-grained structures in large hydrogenation tube sheets, their hydrogen resistance and corrosion resistance deteriorate, significantly shortening their service life. Therefore, microstructure evolution must be strictly controlled during the forging process. High-temperature compression tests were simulated using a Gleeble-1500D thermal simulator to investigate the hot deformation behavior of 14Cr1Mo pressure vessel steel under deformation conditions of 1050–1250 °C and strain rates of 0.01–1 s−1. Based on the experimental data, the flow stress curve of 14Cr1Mo steel was obtained, and its thermal deformation behavior was analyzed. Furthermore, the dynamic recrystallization (DRX) kinetic model and grain size model of 14Cr1Mo steel were established. These models were then integrated into the finite element software Forge® to validate the accuracy of the DRX models. The results showed excellent agreement between the simulated and experimentally measured grain sizes, with a maximum deviation of less than 8%, confirming the high accuracy of the dynamic recrystallization models. These models provide a theoretical basis for finite element simulation and microstructure control in the manufacturing of super-large pressure vessel tube sheet forgings. Full article
Show Figures

Figure 1

15 pages, 4209 KiB  
Article
Finite Element Analysis on Stress Development in Alveolar Bone During Insertion of a Novel Dental Implant Design
by Ning Zhang, Matthias Karl and Frank Wendler
Appl. Sci. 2025, 15(15), 8366; https://doi.org/10.3390/app15158366 - 28 Jul 2025
Viewed by 158
Abstract
A novel macrodesign for a dental implant characterized by a non-monotonic variation in core diameter and thread shape has been described to produce lower stress levels during insertion as compared to conventional tapered implants. Two finite element models resembling the lower left molar [...] Read more.
A novel macrodesign for a dental implant characterized by a non-monotonic variation in core diameter and thread shape has been described to produce lower stress levels during insertion as compared to conventional tapered implants. Two finite element models resembling the lower left molar region with preformed osteotomies were created based on a cone beam computed tomography (CBCT) scan. Insertion of both the novel and the conventional, tapered implant type were simulated using Standard for the Exchange of Product model data (STEP) files of both implant types. Von Mises equivalent stress, strain development, and amount of redistributed bone were recorded. The conventional implant demonstrated a continuous increase in strain values and reaction moment throughout the insertion process, with a brief decrease observed during the final stages. Stress levels in the cortical bone gradually increased, followed by a reduction when the implant was finally positioned subcrestally. The novel implant achieved the maximum magnitude of reaction moment and cortical bone strain values when the implant’s maximum core diameter passed the cortical bone layer at around 60% of the insertion process. Following a notable decrease, both the reaction moment and stress started to rise again as the implant penetrated further. The novel implant removed more bones in the trabecular region while the conventional implant predominantly interacted with cortical bone. Overall, the novel design seems to be less traumatic to alveolar bone during the insertion process and hence may lead to reduced levels of initial peri-implant bone loss. Full article
(This article belongs to the Special Issue Dental Implants and Restorations: Challenges and Prospects)
Show Figures

Figure 1

19 pages, 4126 KiB  
Article
Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
by Lei Cao, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang and Rong Zhan
Buildings 2025, 15(15), 2652; https://doi.org/10.3390/buildings15152652 - 27 Jul 2025
Viewed by 314
Abstract
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC [...] Read more.
This study aims to clarify the longitudinal flexural cracking characteristics in hogging moment regions and propose a practical calculation method for the cracking load and ultimate bearing capacity for a steel–GFRP strips–UHPC composite deck structure. The longitudinal flexural behavior of two steel–GFRP strips–UHPC composite beams in the hogging moment region is determined through a three-point loading test method. Their failure modes and mechanisms, crack propagation and distribution characteristics are analyzed considering the influence of the reinforcement ratio. The variation of the law of mid-span displacement, maximum crack width, strains and interface slip with load are discussed. Calculation methods for the cracking load and ultimate bearing capacity of steel–GFRP strips–UHPC composite beams are proposed. The results show that with the increase of the reinforcement ratio, the cracking load and ultimate bending capacity are improved by 11.1% and 6.0%, respectively. However, the development of cracks is inhibited, as the crack width, average crack spacing and strain of the reinforcement bars are reduced as the reinforcement ratio increases. The maximum crack width changes linearly with the load as it is less than 0.2 mm. The theoretical cracking load and ultimate bearing capacity of the composite beams considering the tensile contribution of UHPC achieve good agreement with the experimental values. Full article
Show Figures

Figure 1

20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 152
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
ZnO/PVDF Nanogenerators with Hemisphere-Patterned PDMS for Enhanced Piezoelectric Performance
by Kibum Song and Keun-Young Shin
Polymers 2025, 17(15), 2041; https://doi.org/10.3390/polym17152041 - 26 Jul 2025
Viewed by 358
Abstract
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of [...] Read more.
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of ZnO-dispersed PVDF nanofibers. Varying the ZnO concentration from 0.6 to 1.4 wt% allowed us to evaluate its effect on structural, dielectric, and piezoelectric properties. The nanogenerator containing 0.8 wt% ZnO exhibited the thinnest fibers (371 nm), the highest β-phase fraction (85.6%), and the highest dielectric constant (35.8). As a result, it achieved the maximum output voltage of 7.30 V, with excellent signal consistency under an applied pressure of 5 N. Comparisons with pristine PVDF- and ZnO/PVDF-only devices demonstrated the synergistic effect of ZnO loading and patterned PDMS on the enhancement of piezoelectric output. The hemisphere-patterned PDMS substrate improved the mechanical strain distribution, interfacial contact, and charge collection efficiency. These results highlight the potential of ZnO/PVDF/PDMS hybrid nanogenerators for use in wearable electronics and self-powered sensor systems. Full article
(This article belongs to the Special Issue Recent Advances in Applied Polymers in Renewable Energy)
Show Figures

Graphical abstract

Back to TopTop