Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (210)

Search Parameters:
Keywords = materials studio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 244
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Figure 1

24 pages, 56885 KiB  
Article
Bio-Crafting Architecture: Experiences of Growing Mycelium in Minimal Surface Molds
by Anca-Simona Horvath, Alina Elena Voinea and Radu Adrian Arieșan
Sustainability 2025, 17(15), 6835; https://doi.org/10.3390/su17156835 - 28 Jul 2025
Viewed by 371
Abstract
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the [...] Read more.
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the one hand, this study investigated mycelium growth in 3D-printed minimal surface shapes using a wood-based filament, and on the other hand, it examined how both designers and the general public experience interacting with mycelium. Using a material-driven design research method, a workshop with architecture students was conducted where various triply periodic minimal surfaces were designed and 3D printed. These shapes were used as molds and impregnated with mycelium, and the growth of mycelium was analyzed visually and photographically. Data on the experiences of the 30 workshop participants of working with mycelium was collected through a survey and analyzed qualitatively. After exhibiting results of the workshop in a public-facing exhibition, semi-structured interviews with members of the general public about their perceptions of mycelium were conducted. Three-dimensionally printed minimal surfaces with wood-based filaments can function as structural cores for mycelium-based composites, and the density of the minimal surface appears to influence mycelium growth, which binds to wood-based filaments. Students exhibited stronger feelings for living materials compared to non-living ones, displaying both biophilia and, to a lesser extent, biophobia. Introducing hands-on workshops with living and experimental materials in design studio settings can help future generations of designers develop sensibilities for, and a critical approach towards, the impact of their design decisions on the environment and sustainability. The study also contributes empirical data on how members of the general public perceive mycelium as a material for design. Full article
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Viewed by 415
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

16 pages, 2799 KiB  
Article
Electromagnetic Wave-Absorption Properties of FDM-Printed Acrylonitrile–Styrene–Acrylate/Multi-Walled Carbon Nanotube Composite Structures
by Aobo Zhou and Yan Wang
Polymers 2025, 17(15), 2010; https://doi.org/10.3390/polym17152010 - 23 Jul 2025
Viewed by 256
Abstract
The growing need for lightweight, customizable electromagnetic wave absorbers with weather resistance in aerospace and electromagnetic compatibility applications motivates this study, which addresses the limitations of conventional materials in simultaneously achieving structural efficiency, broadband absorption, and environmental durability. We propose a fused deposition [...] Read more.
The growing need for lightweight, customizable electromagnetic wave absorbers with weather resistance in aerospace and electromagnetic compatibility applications motivates this study, which addresses the limitations of conventional materials in simultaneously achieving structural efficiency, broadband absorption, and environmental durability. We propose a fused deposition modeling (FDM)-based approach for fabricating lightweight wave-absorbing structures using acrylonitrile-styrene-acrylate (ASA)/multi-walled carbon nanotube (MWCNT) composites. Results demonstrate that CST Studio Suite simulations reveal a minimum reflection loss of −18.16 dB and an effective absorption bandwidth (RL < −10 dB) of 3.75 GHz for the 2 mm-thick composite plate when the MWCNT content is 2%. Through FDM fabrication and structural optimization, significant performance enhancements are achieved: The gradient honeycomb design with larger dimensions achieved an effective absorption bandwidth of 6.56 GHz and a minimum reflection loss of −32.60 dB. Meanwhile, the stacked stake structure exhibited a broader effective absorption bandwidth of 10.58 GHz, with its lowest reflection loss reaching −22.82 dB. This research provides innovative approaches for developing and manufacturing tailored lightweight electromagnetic wave-absorbing structures, which could be valuable for aerospace stealth technology and electromagnetic compatibility solutions. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 2624 KiB  
Article
The Modeling of Electromagnetic Behavior in the High-Frequency Range of Al2O3 and TiO2 Thermoplastic Composites in Support of Developing New Substrates for Flexible Electronics
by Radu F. Damian, Cristina Pachiu, Alexandra Mocanu, Alexandru Trandabat and Romeo Cristian Ciobanu
Crystals 2025, 15(7), 637; https://doi.org/10.3390/cryst15070637 - 10 Jul 2025
Viewed by 279
Abstract
The paper describes the simulation of energy absorption in polymer micro-composites that include dielectric inserts (commercial Al2O3 and TiO2 particles, with three particle sizes of 1, 5 and 25 µm, respectively). The investigated frequency spectrum, mainly from 0.001 to [...] Read more.
The paper describes the simulation of energy absorption in polymer micro-composites that include dielectric inserts (commercial Al2O3 and TiO2 particles, with three particle sizes of 1, 5 and 25 µm, respectively). The investigated frequency spectrum, mainly from 0.001 to 100 GHz, is designed for various uses as substrates in electronic technologies. The electromagnetic simulation software chosen was CST Studio Suite, which evaluates the power loss at different frequencies, playing a crucial role in creating the ideal structure of these substrates. The effective limits of the electromagnetic simulation are specified. It is shown that a considerable increase in absorption occurs, by a factor of 12 to 120, depending on the dielectric material used for the inserts and the mass ratio applied in the insertion technique. Dielectrics with high permittivity provide higher absorption, but also create a nonuniform field distribution within the material, resulting in a high peak-to-average absorption ratio. In scenarios where this behavior is intolerable, the technology must be carefully tuned to improve the consistency of the insertions in the substrate material. The final outcomes of the simulations indicated that for creating new substrates for flexible electronics, polyethylene composites with TiO2 insertions are suggested, particularly at lower concentrations of up to 7% and with a larger radius, such as 25 μm, which could offer significant economic advantages considering that the current concept advises the use of costly particles ranging from nanoscale particles to those 1 μm in size and a composition exceeding 10%. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

24 pages, 3766 KiB  
Article
Comprehensive Evaluation of Sliding and Overturning Failure in Mechanically Stabilized Earth (MSE) Retaining Walls Considering the Effect of Hydrostatic Pressure
by Arash K. Pour, Amir Shirkhani and Ehsan Noroozinejad Farsangi
GeoHazards 2025, 6(3), 35; https://doi.org/10.3390/geohazards6030035 - 10 Jul 2025
Viewed by 311
Abstract
Mechanically stabilized earth (MSE) retaining walls have become a favored substitute for traditional poured concrete walls due to their affordability, minimal site preparation needs, and practical construction advantages. However, using backfill material with too many small particles and poor drainage qualities may cause [...] Read more.
Mechanically stabilized earth (MSE) retaining walls have become a favored substitute for traditional poured concrete walls due to their affordability, minimal site preparation needs, and practical construction advantages. However, using backfill material with too many small particles and poor drainage qualities may cause the wall to rotate and shift a lot or collapse completely, especially when water pressure is present. This study examines an MSE wall considering different variables, such as water pressure, the type of soil materials in the backfill materials, external load, and the type of analysis. To this aim, both PLAXIS V20 and SLOPE/W (GeoStudio 2019 Suite) software were employed, and after the verification, further investigations were carried out. These numerical analyses aligned with the real-world failure reported by previous researchers, departments, and companies. The findings suggest that the elevated presence of fine particles likely contributed to the wall’s excessive shift. Also, hydrostatic pressure behind a wall, especially in the rainy season, plays a crucial role in the factor of safety reduction by 45% and wall failure, which leads us to consider it an appropriate factor of safety for the MSE wall. Full article
Show Figures

Figure 1

17 pages, 6759 KiB  
Article
From Context to Studio Experience: A Paradigm Shift in Architectural Representation and Material Exploration
by Selin Ozturk Demirkiran
Buildings 2025, 15(12), 2107; https://doi.org/10.3390/buildings15122107 - 17 Jun 2025
Viewed by 371
Abstract
This research explores a studio experience conducted at the Department of Architecture, Gebze Technical University, focusing on the integration of tectonic housing concepts into architectural design education. The study adopts a comprehensive methodology combining phenomenological readings, material experimentation, and contextual analysis through seminars, [...] Read more.
This research explores a studio experience conducted at the Department of Architecture, Gebze Technical University, focusing on the integration of tectonic housing concepts into architectural design education. The study adopts a comprehensive methodology combining phenomenological readings, material experimentation, and contextual analysis through seminars, workshops, and studio projects. Innovative and experimental approaches were employed to move beyond traditional representation techniques, enabling students to engage with architecture through dynamic and multisensory methods. Findings demonstrate that this approach significantly enhances students’ creative capacities, fosters environmental responsiveness, and promotes a deeper understanding of the built environment. The study concludes that integrating tectonic interpretations into studio education can offer a transformative model for future architectural practice, providing a sustainable and human-centered design framework for architectural education and research. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 6028 KiB  
Article
A Comprehensive Framework for the Development of a Compact, Cost-Effective, and Robust Hyperspectral Camera Using COTS Components and a VPH Grism
by Sukrit Thongrom, Panuwat Pengphorm, Surachet Wongarrayapanich, Apirat Prasit, Chanisa Kanjanasakul, Wiphu Rujopakarn, Saran Poshyachinda, Chalongrat Daengngam and Nawapong Unsuree
Sensors 2025, 25(12), 3631; https://doi.org/10.3390/s25123631 - 10 Jun 2025
Viewed by 664
Abstract
Hyperspectral imaging (HSI) is an effective technique for material identification and classification, utilizing spectral signatures with applications in remote sensing, environmental monitoring, and allied disciplines. Despite its potential, the broader adoption of HSI technology is hindered by challenges related to compactness, affordability, and [...] Read more.
Hyperspectral imaging (HSI) is an effective technique for material identification and classification, utilizing spectral signatures with applications in remote sensing, environmental monitoring, and allied disciplines. Despite its potential, the broader adoption of HSI technology is hindered by challenges related to compactness, affordability, and durability, exacerbated by the absence of standardized protocols for developing practical hyperspectral cameras. This study introduces a comprehensive framework for developing a compact, cost-effective, and robust hyperspectral camera, employing commercial off-the-shelf (COTS) components and a volume phase holographic (VPH) grism. The use of COTS components reduces development time and manufacturing costs while maintaining adequate performance, thereby improving accessibility for researchers and engineers. The incorporation of a VPH grism enables an on-axis optical design, enhancing compactness, reducing alignment sensitivity, and improving system robustness. The proposed framework encompasses spectrograph design, including optical simulations and tolerance analysis conducted in ZEMAX OpticStudio, alongside assembly procedures, performance assessment, and hyperspectral image acquisition via a pushbroom scanning approach, all integrated into a structured, step-by-step workflow. The resulting prototype, housed in an aluminum enclosure, operates within the 420–830 nm wavelength range, achieving a spectral resolution of 2 nm across 205 spectral bands. It effectively differentiates vegetation, water, and built structures, resolves atmospheric absorption features, and demonstrates the ability to distinguish materials in low-light conditions, providing a scalable and practical advancement in HSI technology. Full article
(This article belongs to the Topic Hyperspectral Imaging and Signal Processing)
Show Figures

Figure 1

15 pages, 3831 KiB  
Article
Formation and Bioactivity of Composite Structure with Sr-HA Phase and H2Ti5O11·H2O Nanorods on Ti Surface via Ultrasonic-Assisted Micro-Arc Oxidation and Heat Treatment
by Qing Du, Qiang Zhai, Su Cheng, Yudong Lin, Daqing Wei, Yaming Wang and Yu Zhou
Coatings 2025, 15(6), 666; https://doi.org/10.3390/coatings15060666 - 30 May 2025
Viewed by 629
Abstract
To address the biological inertness of pure titanium implants, a composite coating with a strontium-doped hydroxyapatite (Sr-HA) phase and H2Ti5O11·H2O nanorods was engineered via ultrasonic-assisted micro-arc oxidation (UMAO) with hydrothermal treatment (HT). The ultrasonic field [...] Read more.
To address the biological inertness of pure titanium implants, a composite coating with a strontium-doped hydroxyapatite (Sr-HA) phase and H2Ti5O11·H2O nanorods was engineered via ultrasonic-assisted micro-arc oxidation (UMAO) with hydrothermal treatment (HT). The ultrasonic field was applied to modulate the MAO discharge behavior, enhancing ion transport and coating formation. Structural characterization revealed that UMAO-HT coatings exhibited a lower anatase/rutile ratio and higher Sr-HA crystallinity, as compared to MAO-HT. In vitro simulated body immersion studies showed that UMAO-HT induced rapid apatite formation within 24 h, with a better apatite-inducing ability than the conventional MAO-HT. Density functional theory (DFT) simulations demonstrated that Sr substitution in HA lowered the (001) surface work function, enhancing Ca2⁺ adsorption energy and promoting apatite phase nucleation. This work reported the synergistic effects of ultrasonic-induced microstructure optimization and Sr-HA higher bioactivity, providing a mechanistic framework for designing next-generation bioactive coatings with enhanced osseointegration potential. Full article
Show Figures

Figure 1

20 pages, 3891 KiB  
Article
Breast Cancer Detection Using a High-Performance Ultra-Wideband Vivaldi Antenna in a Radar-Based Microwave Breast Cancer Imaging Technique
by Şahin Yıldız and Muhammed Bahaddin Kurt
Appl. Sci. 2025, 15(11), 6015; https://doi.org/10.3390/app15116015 - 27 May 2025
Viewed by 765
Abstract
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency [...] Read more.
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency operating range of the proposed antenna is UWB 3.6–13 GHz, its directivity is 11 dB, and its gain is 9.27 dB. The antenna is designed with FR4 dielectric material and dimensions of 34.6 mm × 33 mm × 1.6 mm. It was demonstrated that the bandwidth, gain, and directivity of the proposed antenna meet the requirements for UWB radar applications. The Vivaldi antenna was tested on an imaging system developed using the CST Microwave Studio (CST MWS) program. In CST MWS, a hemispherical heterogeneous breast model with a radius of 50 mm was created and a spherical tumor with a diameter of 0.9 mm was placed inside. A Gaussian pulse was sent through Vivaldi antennas and the scattered signals were collected. Then, adaptive Wiener filter and image formation algorithm delay-multiply-sum (DMAS) steps were applied to the reflected signals. Using these steps, the tumor in the breast model was scanned at high resolution. In the simulation application, the tumor in the heterogeneous phantom was detected and imaged in the correct position. A monostatic radar-based system was implemented for scanning a breast phantom in the prone position in an experimental setting. For experimental measurements, homogeneous (fat and tumor) and heterogeneous (skin, fat, glandular, and tumor) breast phantoms were produced according to the electrical properties of the tissues. The phantoms were designed as hemispherical with a diameter of 100 mm. A spherical tumor tissue with a diameter of 16 mm was placed in the phantoms produced in the experimental environment. The dynamic range of the VNA device used allowed us to image a 16 mm diameter tumor in the experimental setting. The developed microwave imaging system shows that it is suitable for the early-stage detection of breast cancer by scanning the tumor in the correct location in breast phantoms. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 8051 KiB  
Article
Investigation of Compatibility Mechanisms and Diffusion Behavior of Polymer SBS-Modified Asphalt Compatibilizer Using Molecular Dynamics Simulation
by Ning Li, Zhenzheng Liu, Jiaqi Yin, Hai Zhang, Hui Dou and Bo Li
Materials 2025, 18(10), 2238; https://doi.org/10.3390/ma18102238 - 12 May 2025
Cited by 1 | Viewed by 485
Abstract
Compatibilizers play a critical role in resolving compatibility issues between styrene–butadiene–styrene (SBS) modifiers and asphalt systems. These additives enhance the uniform dispersion of SBS modifiers and stabilize their cross-linked network structure within the asphalt matrix. This study employed molecular dynamics (MD) simulations via [...] Read more.
Compatibilizers play a critical role in resolving compatibility issues between styrene–butadiene–styrene (SBS) modifiers and asphalt systems. These additives enhance the uniform dispersion of SBS modifiers and stabilize their cross-linked network structure within the asphalt matrix. This study employed molecular dynamics (MD) simulations via Materials Studio (MS) to investigate the effects of a compatibilizer on compatibility mechanisms and diffusion behavior in SBS-modified asphalt (SBSMA). Model validation was conducted through density and glass transition temperature (Tg) analyses. The cohesive energy density (CED) and solubility parameters were quantified to assess the impact of compatibilizer dosage on system compatibility. Radial distribution function (RDF) and mean square displacement (MSD) analyses elucidated molecular diffusion dynamics. The results indicate that compatibilizers enhance cohesive energy density by 12.5%, suppress irregular intermolecular motion, and reduce system instability. The synergistic interaction between aromatic and saturated components in compatibilizers effectively disperses asphaltene aggregates and inhibits π–π stacking. Additionally, strong solubility interactions with hydrocarbon mixtures facilitate the diffusion of asphaltene gum molecules. These findings provide molecular-level insights for optimizing compatibilizer design in SBSMA applications. Full article
(This article belongs to the Special Issue Development of Sustainable Asphalt Materials)
Show Figures

Figure 1

15 pages, 4254 KiB  
Article
Analysis of the Application of Cryptophane-A\-E in a Mass-Sensing Methane Gas Sensor: Insights from a Numerical Simulation
by Xinlei Liu, Dan Xiao, Qinglan Zhang, Yu Guan, Bin Shen and Jiazhe Li
Chemosensors 2025, 13(5), 179; https://doi.org/10.3390/chemosensors13050179 - 12 May 2025
Viewed by 680
Abstract
Supramolecular compounds are capable of encapsulating small molecules to form host–guest compounds, which can be combined with sound surface wave technology to achieve high-precision detection of specific gases. In this paper, we analyzed the adsorption ability of Cryptophane-A and Cryptophane-E, the caged supramolecular [...] Read more.
Supramolecular compounds are capable of encapsulating small molecules to form host–guest compounds, which can be combined with sound surface wave technology to achieve high-precision detection of specific gases. In this paper, we analyzed the adsorption ability of Cryptophane-A and Cryptophane-E, the caged supramolecular materials, at room temperature by numerical simulation using first principles. The geometrical optimization of Cryptophane-A, Cryptophane-E, and gas molecules was carried out by the Dmol3 module in Materials Studio. Through adsorption calculation of gas molecules, the change of density of states and the magnitude of adsorption energy of Cryptophane-A and E were compared and analyzed. The results show that Cryptophane-A and E are van der Waals adsorption for molecules in gas (except CO2 and C2H6). The adsorption energy of Cryptophane-A is lower than that of Cryptophane-E, but it is more selective and has preferential adsorption for methane. In this paper, we also tried to calculate the adsorption of Cryptophane-A and E on two methane molecules. The result showed that the former could adsorb two methane molecules, but the adsorption energy was lower than that of one methane molecule; the latter could not adsorb two methane molecules stably. The study shows that Cryptophane-A is more suitable as a sensitive material for CH4 detection, which provides support for the development of acoustic surface wave methane detection technology. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

15 pages, 1890 KiB  
Article
Evaluation of Neural Networks for Improved Computational Cost in Carbon Nanotubes Geometric Optimization
by Luis Josimar Vences-Reynoso, Daniel Villanueva-Vasquez, Roberto Alejo-Eleuterio, Federico Del Razo-López, Sonia Mireya Martínez-Gallegos and Everardo Efrén Granda-Gutiérrez
Modelling 2025, 6(2), 36; https://doi.org/10.3390/modelling6020036 - 2 May 2025
Viewed by 1125
Abstract
Geometric optimization of carbon nanotubes (CNTs) is a fundamental step in computational simulations, enabling precise studies of their properties for various applications. However, this process becomes computationally expensive as the molecular structure grows in complexity and size. To address this challenge, this study [...] Read more.
Geometric optimization of carbon nanotubes (CNTs) is a fundamental step in computational simulations, enabling precise studies of their properties for various applications. However, this process becomes computationally expensive as the molecular structure grows in complexity and size. To address this challenge, this study utilized three deep-learning-based neural network architectures: Multi-Layer Perceptron (MLP), Bidirectional Long Short-Term Memory (BiLSTM), and 1D Convolutional Neural Networks (1D-CNNs). Simulations were performed using the CASTEP module in Material Studio to generate datasets for training the neural networks. While the final geometric optimization calculations were completed within Material Studio, the neural networks effectively generated preoptimized CNT structures that served as starting points, significantly reducing computational time. The results showed that the 1D-CNN architecture performed best for CNTs with 28, 52, 76, and 156 atoms, while the MLP outperformed others for CNTs with 84, 124, 148, and 196 atoms. Across all cases, computational time was reduced by 39.68% to 90.62%. Although the BiLSTM also achieved reductions, its performance was less effective than the other two architectures. This work highlights the potential of integrating deep learning techniques into materials science; it also offers a transformative approach to reducing computational costs in optimizing CNTs and presents a way for accelerated research in molecular systems. Full article
Show Figures

Graphical abstract

12 pages, 1608 KiB  
Article
Sm3+-Doped Bismuth(III) Oxosilicate (Bi4Si3O12:Sm3+): A Study of Crystal Structure and Mulliken Charges
by Yan Zhang, Xuefeng Xiao, Yan Huang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang, Tianyong Ma, Xuefeng Zhang, Jiayue Xu, Tian Tian and Hui Shen
Crystals 2025, 15(5), 423; https://doi.org/10.3390/cryst15050423 - 30 Apr 2025
Viewed by 357
Abstract
In this paper, using the Materials Studio software (version 2020) and based on first-principles and density functional theory, the effects of Sm3+ doping at different ratios (1/12, 1/6, and 1/3) on the crystal structure and Mulliken charge distribution of bismuth silicate (Bi [...] Read more.
In this paper, using the Materials Studio software (version 2020) and based on first-principles and density functional theory, the effects of Sm3+ doping at different ratios (1/12, 1/6, and 1/3) on the crystal structure and Mulliken charge distribution of bismuth silicate (Bi4Si3O12, BSO) were analyzed. The examination of the crystal framework and Mulliken charge allocation reveals that increasing levels of Sm3+ doping have the potential to warp the lattice’s symmetry and result in a decrease in electrical conductivity. With the rise in the concentration of Sm3+ doping, the Sm-O bond length shows a pattern of a rise at first and then a fall, demonstrating that electrons are shared, and reaches its minimum length with a doping proportion of 1/12. At the same time, when the doping concentration of Sm3+ rises, the Bi-O bond length becomes longer; it reaches its shortest length when the doping concentration is 1/12. This finding suggests that when a small quantity of Sm3+ is doped, especially when the doping concentration is 1/12, the covalent nature of the bonds between Sm-O and Bi-O atoms within the BSO crystal is strengthened. Full article
Show Figures

Figure 1

21 pages, 5508 KiB  
Article
Research on the Adsorption Characteristics of Shale Gas in Different Types of Kerogen
by Ao Yin, Zhixiang Liu, Yongli Zhang and Yulin Ma
Processes 2025, 13(5), 1362; https://doi.org/10.3390/pr13051362 - 29 Apr 2025
Viewed by 444
Abstract
To investigate the methane adsorption characteristics in different types of kerogen, microscopic models for three kerogen types—sapropelic (Type I), mixed (Type II), and humic (Type III)—were developed in this paper based on the paradigm diagram. Using Materials Studio 2020 software, a combination of [...] Read more.
To investigate the methane adsorption characteristics in different types of kerogen, microscopic models for three kerogen types—sapropelic (Type I), mixed (Type II), and humic (Type III)—were developed in this paper based on the paradigm diagram. Using Materials Studio 2020 software, a combination of molecular dynamics and Monte Carlo adsorption simulations was employed to examine the kerogen from the molecular structure to the cellular structure, with an analysis rooted in thermodynamic theory. The results indicated that the elemental composition of kerogen significantly influenced both the heat of adsorption and the adsorption position, with sulfur (S) having the greatest effect. Specifically, the C-S bond shifted the methane adsorption position horizontally by 0.861 Å and increased the adsorption energy by 1.418 kJ. Among the three types of kerogen crystals, a relationship was observed among the adsorption amount, limiting adsorption energy, and specific adsorption energy, with Type I < Type II < Type III. Additionally, the limiting adsorption energy was greater than the specific adsorption energy. The limiting adsorption energy of Type Ⅲ was only 28.436 kJ/mol, which indicates that methane is physically adsorbed in the kerogen. Regarding the diffusion coefficient, the value of 0.0464 Å2/Ps in the micropores of Type I kerogen was significantly higher than that in Types II and III, though it was much smaller than the diffusion coefficient observed in the macropores. Additionally, adsorption causes volumetric and effective pore volume expansion in kerogen crystals, which occurs in two phases: slow expansion and rapid expansion. Higher types of kerogen require a larger adsorption volume to reach the rapid expansion phase and expand more quickly. However, during the early stage of adsorption, the expansion rate is extremely low, and even a slight shrinkage may occur. Therefore, in shale gas extraction, it is crucial to design the extraction strategy based on the content and adsorption characteristics of the three kerogen types in order to enhance shale gas production and improve extraction efficiency. Full article
Show Figures

Figure 1

Back to TopTop