Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,233)

Search Parameters:
Keywords = material stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7203 KiB  
Article
Experimental Lateral Behavior of Porcelain-Clad Cold-Formed Steel Shear Walls Under Cyclic-Gravity Loading
by Caeed Reza Sowlat-Tafti, Mohammad Reza Javaheri-Tafti and Hesam Varaee
Infrastructures 2025, 10(8), 202; https://doi.org/10.3390/infrastructures10080202 (registering DOI) - 2 Aug 2025
Abstract
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative [...] Read more.
Lightweight steel-framing (LSF) systems have become increasingly prominent in modern construction due to their structural efficiency, design flexibility, and sustainability. However, traditional facade materials such as stone are often cost-prohibitive, and brick veneers—despite their popularity—pose seismic performance concerns. This study introduces an innovative porcelain sheathing system for cold-formed steel (CFS) shear walls. Porcelain has no veins thus it offers integrated and reliable strength unlike granite. Four full-scale CFS shear walls incorporating screwed porcelain sheathing (SPS) were tested under combined cyclic lateral and constant gravity loading. The experimental program investigated key seismic characteristics, including lateral stiffness and strength, deformation capacity, failure modes, and energy dissipation, to calculate the system response modification factor (R). The test results showed that configurations with horizontal sheathing, double mid-studs, and three blocking rows improved performance, achieving up to 21.1 kN lateral resistance and 2.5% drift capacity. The average R-factor was 4.2, which exceeds the current design code values (AISI S213: R = 3; AS/NZS 4600: R = 2), suggesting the enhanced seismic resilience of the SPS-CFS system. This study also proposes design improvements to reduce the risk of brittle failure and enhance inelastic behavior. In addition, the results inform discussions on permissible building heights and contribute to the advancement of CFS design codes for seismic regions. Full article
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

13 pages, 647 KiB  
Article
Reference Values for Liver Stiffness in Newborns by Gestational Age, Sex, and Weight Using Three Different Elastography Methods
by Ángel Lancharro Zapata, Alejandra Aguado del Hoyo, María del Carmen Sánchez Gómez de Orgaz, Maria del Pilar Pintado Recarte, Pablo González Navarro, Perceval Velosillo González, Carlos Marín Rodríguez, Yolanda Ruíz Martín, Manuel Sanchez-Luna, Miguel A. Ortega, Coral Bravo Arribas and Juan Antonio León Luís
J. Clin. Med. 2025, 14(15), 5418; https://doi.org/10.3390/jcm14155418 (registering DOI) - 1 Aug 2025
Viewed by 83
Abstract
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex [...] Read more.
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex and linear probes. Materials and Methods: This was a cross-sectional observational study conducted at a single center on a hospital-based cohort of 287 newborns between 24 and 42 weeks of gestation, admitted between January 2023 and May 2024. Cases with liver disease, significant neonatal morbidity, or technically invalid studies were excluded. Hepatic elastography was performed during the first week of life using pSWE and 2D-SWE with both convex and linear probes. Clinical and technical neonatal variables were recorded. Liver stiffness values were analyzed in relation to gestational age, birth weight, and sex. Linear regression models were applied to assess associations, considering p-values < 0.05 as statistically significant. Results: After applying exclusion criteria, valid liver stiffness measurements were obtained in 208 cases with pSWE, 224 with 2D-SWE (convex probe), and 222 with 2D-SWE (linear probe). A statistically significant inverse association between liver stiffness and gestational age (p < 0.03) was observed across all techniques except for 2D-SWE with the linear probe. Only 2D-SWE with the convex probe showed a significant association with birth weight. No significant differences were observed based on neonatal sex. The 2D-SWE technique with the convex probe demonstrated significantly shorter examination times compared to pSWE (p < 0.001). Conclusions: Neonatal liver stiffness measured by pSWE and 2D-SWE with a convex probe shows an inverse correlation with gestational age, potentially reflecting the structural and functional maturation of the liver. These techniques are safe, reliable, and provide useful information for distinguishing normal findings in preterm neonates from early hepatic pathology. The values obtained represent a valuable reference for clinical hepatic assessment in the neonatal period. Full article
(This article belongs to the Special Issue Multiparametric Ultrasound Techniques for Liver Disease Assessments)
Show Figures

Figure 1

16 pages, 4891 KiB  
Article
Effects of Performance Variations in Key Components of CRTS I Slab Ballastless Track on Structural Response Following Slab-Replacement Operations
by Wentao Wu, Hongyao Lu, Yuelei He and Haitao Xia
Materials 2025, 18(15), 3621; https://doi.org/10.3390/ma18153621 (registering DOI) - 1 Aug 2025
Viewed by 112
Abstract
Slab-replacement operations are crucial for restoring deteriorated CRTS I slab ballastless tracks to operational standards. This study investigates the structural implications of the operation by evaluating the strength characteristics and material properties of track components both prior to and following replacement. Apparent strength [...] Read more.
Slab-replacement operations are crucial for restoring deteriorated CRTS I slab ballastless tracks to operational standards. This study investigates the structural implications of the operation by evaluating the strength characteristics and material properties of track components both prior to and following replacement. Apparent strength was measured using rebound hammer tests on three categories of slabs: retained, deteriorated, and newly installed track slabs. In addition, samples of old and new filling resins were collected and tested to determine their elastic moduli. These empirical data were subsequently used to develop a refined finite-element model that captures both pre- and post-replacement conditions. Under varying temperature loads, disparities in component performance were found to significantly affect stress distribution. Specifically, before replacement, deteriorated track slabs exhibited 10.74% lower strength compared to adjacent retained slabs, whereas, after replacement, new slabs showed a 25.26% increase in strength over retained ones. The elastic modulus of old filling resin was measured at 5.19 kN/mm, 35.13% below the minimum design requirement, while the new resin reached 10.48 kN/mm, exceeding the minimum by 31.00%. Although the slab-replacement operation enhances safety by addressing structural deficiencies, it may also create new weak points in adjacent areas, where insufficient stiffness results in stress concentrations and potential damage. This study offers critical insights for optimizing maintenance strategies and improving the long-term performance of ballastless track systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

27 pages, 15611 KiB  
Article
An Innovative Design of a Rail Vehicle for Modern Passenger Railway Transport
by Martin Bučko, Dalibor Barta, Alyona Lovska, Miroslav Blatnický, Ján Dižo and Mykhailo Pavliuchenkov
Future Transp. 2025, 5(3), 98; https://doi.org/10.3390/futuretransp5030098 (registering DOI) - 1 Aug 2025
Viewed by 60
Abstract
The structural design of rail vehicle bodies significantly influences rail vehicle performance, passenger comfort, and operational efficiency. This study presents a comparative analysis of three key concepts of a rail vehicle body, namely a differential, an integral, and a hybrid structure, with a [...] Read more.
The structural design of rail vehicle bodies significantly influences rail vehicle performance, passenger comfort, and operational efficiency. This study presents a comparative analysis of three key concepts of a rail vehicle body, namely a differential, an integral, and a hybrid structure, with a focus on their structural principles, material utilization, and implications for manufacturability and maintenance. Three rail vehicle body variants were developed, each incorporating a low-floor configuration to enhance accessibility and interior layout flexibility. The research explores the suitable placement of technical components such as a power unit and an air-conditioning system, and it evaluates interior layouts aimed at maximizing both passenger capacity and their travelling comfort. Key features, including door and window technologies, thermal comfort solutions, and seating arrangements, are also analyzed. The study emphasizes the importance of compromises between structural stiffness, reparability, production complexity, and passenger-oriented design considerations. A part of the research includes a proposal of three variants of a rail vehicle body frame, together with their strength analysis by means of the finite element method. These analyses identified that the maximal permissible stresses for the individual versions of the frame were not exceeded. Findings contribute to the development of more efficient, accessible, and sustainable regional passenger rail vehicles. Full article
Show Figures

Figure 1

18 pages, 3972 KiB  
Article
The Influence of Halloysite Clay on the Properties of the Polybutylene Succinate (PBS)/Sawdust, PBS/Sugarcane Bagasse, and PBS/Sawdust/Sugarcane Bagasse Hybrid Composites
by Tlholohelo Sylvia Sikhosana, Ntsoaki Joyce Malebo, Mpho Phillip Motloung, Tladi Gideon Mofokeng and Mokgaotsa Jonas Mochane
Polymers 2025, 17(15), 2120; https://doi.org/10.3390/polym17152120 - 31 Jul 2025
Viewed by 162
Abstract
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) [...] Read more.
In this study, the influences of natural fibres (sugarcane bagasse (SB) and sawdust (SD)) on the material properties of polybutylene succinate (PBS) prepared through melt compounding were investigated. The study further evaluated the effects of incorporating halloysite nanotubes (HS) and expandable graphite (EG) on the properties of PBS/SD and PBS/SB binary and PBS/SB/SD hybrid composites. The morphological analysis indicated poor interfacial adhesion between PBS and the fibres. The obtained findings indicated enhancements in the complex viscosity of PBS in the presence of natural fibres, and further improvements in the presence of HS and EG. The stiffness of PBS hybrid composites also increased upon the addition of HS and EG. Moreover, the crystallization temperatures of PBS increased in the presence of fillers, with EG showing better nucleation efficiency. However, the mechanical properties (toughness and impact resilience) decreased due to the increased stiffness of the composites and the poor interfacial adhesion between the matrix and the fillers, indicating the need to pre-treat the fibres to enhance compatibility. Overall, the material properties of PBS/SD/SB hybrid composites were enhanced by incorporating HS and EG at low concentrations. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

25 pages, 16276 KiB  
Article
Localized Compression Behavior of GFRP Grid Web–Concrete Composite Beams: Experimental, Numerical, and Analytical Studies
by Yunde Li, Hai Cao, Yang Zhou, Weibo Kong, Kun Yu, Haoting Jiang and Zhongya Zhang
Buildings 2025, 15(15), 2693; https://doi.org/10.3390/buildings15152693 - 30 Jul 2025
Viewed by 118
Abstract
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable [...] Read more.
Glass fiber-reinforced polymer (GFRP) composites exhibit significant advantages over conventional structural webbing materials, including lightweight and corrosion resistance. This study investigates the localized compression performance of the proposed GFRP grid web–concrete composite beam through experimental and numerical analyses. Three specimen groups with variable shear-span ratios (λ = 1.43, 1.77) and local stiffener specimens were designed to assess their localized compressive behavior. Experimental results reveal that a 19.2% reduction in shear-span ratio enhances ultimate load capacity by 22.93% and improves stiffness by 66.85%, with additional performance gains of 77.53% in strength and 94.29% in stiffness achieved through local stiffener implementation. In addition, finite element (FE) analysis demonstrated a strong correlation with experimental results, showing less than 5% deviation in ultimate load predictions while accurately predicting stress distributions and failure modes. FE parametric analysis showed that increasing the grid thickness and decreasing the grid spacing within a reasonable range can considerably enhance the localized compression performance. The proposed analytical model, based on Winkler elastic foundation theory, predicts ultimate compression capacities within 10% of both the experimental and numerical results. However, the GFRP grid strength adjustment factor βg should be further refined through additional experiments and numerical analyses to improve reliability. Full article
Show Figures

Figure 1

17 pages, 2616 KiB  
Article
Investigation of the Dynamic Characterization of Traditional and Modern Building Materials Using an Impact Excitation Test
by Anil Ozdemir
Buildings 2025, 15(15), 2682; https://doi.org/10.3390/buildings15152682 - 30 Jul 2025
Viewed by 189
Abstract
This study presents a comprehensive non-destructive evaluation of a broad range of construction materials using the impulse excitation of vibration (IEV) technique. Tested specimens included low- and normal-strength concrete, fiber-reinforced concrete (with basalt, polypropylene, and glass fibers), lime mortars (NHL-2 and -3.5), plaster, [...] Read more.
This study presents a comprehensive non-destructive evaluation of a broad range of construction materials using the impulse excitation of vibration (IEV) technique. Tested specimens included low- and normal-strength concrete, fiber-reinforced concrete (with basalt, polypropylene, and glass fibers), lime mortars (NHL-2 and -3.5), plaster, and clay bricks (light and dark). Compressive and flexural strength tests complemented dynamic resonance testing on the same samples to ensure full mechanical characterization. Flexural and torsional resonance frequencies were used to calculate dynamic elastic modulus, shear modulus, and Poisson’s ratio. Strong correlations were observed between dynamic elastic modulus and shear modulus, supporting the compatibility of dynamic results with the classical elasticity theory. Flexural frequencies were more sensitive to material differences than torsional ones. Fiber additives, particularly basalt and polypropylene, significantly improved dynamic stiffness, increasing the dynamic elastic modulus/compressive strength ratio by up to 23%. In contrast, normal-strength concrete exhibited limited stiffness improvement despite higher strength. These findings highlight the reliability of IEV in mechanical properties across diverse material types and provide comparative reference data for concrete and masonry applications. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials—2nd Edition)
Show Figures

Figure 1

23 pages, 4301 KiB  
Article
Multiscale Modeling and Optimization of Aluminum Foam Material Properties Under Dynamic Load
by Andrei-Nicolae Bădăluţă, Sergiu-Valentin Galaţanu, Jaroslav Kováčik and Liviu Marşavina
Appl. Sci. 2025, 15(15), 8433; https://doi.org/10.3390/app15158433 (registering DOI) - 29 Jul 2025
Viewed by 127
Abstract
Aluminum foam materials have gained significant attention over the past decade, particularly in the automotive industry, due to their excellent stiffness-to-weight ratio and superior energy absorption capabilities. In this study, a multiscale numerical material model was developed to accurately and efficiently simulate the [...] Read more.
Aluminum foam materials have gained significant attention over the past decade, particularly in the automotive industry, due to their excellent stiffness-to-weight ratio and superior energy absorption capabilities. In this study, a multiscale numerical material model was developed to accurately and efficiently simulate the vibrational behavior of aluminum foams. The foam specimens were categorized into four density classes based on their measured mass and calculated volume. Two specimens were selected to conduct CT (computerized tomography) scans and quantify the volume of air in their density class. Based on the CT measurements, a representative volume element (RVE) was built using ANSYS Material Designer (MD). The newly obtained material was employed in conducting normal mode numerical simulations. The resonance frequencies and response amplitudes were compared with physical experiments and showed correlation within 3%. These findings underscore the efficacy of using CT scans in foam to develop material models and accurately predict structural behavior. By conducting comprehensive investigations and numerical simulations, we established a correlation between physical tests and simulation results, highlighting the reliability of the developed models. Full article
Show Figures

Figure 1

30 pages, 9797 KiB  
Article
Rate-Dependent Tensile Behavior of Glass Fiber Composites Reinforced with Quadriaxial Fabrics, with or Without Coremat Xi3 Interlayer, for Marine Applications
by Lorena Deleanu, George Pelin, Ioana Gabriela Chiracu, Iulian Păduraru, Mario Constandache, George Ghiocel Ojoc and Alexandru Viorel Vasiliu
Polymers 2025, 17(15), 2074; https://doi.org/10.3390/polym17152074 - 29 Jul 2025
Viewed by 254
Abstract
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the [...] Read more.
This study is among the first to characterize the tensile response of composites with quadriaxial glass fiber fabrics designed for marine structural applications. Four composite configurations were fabricated at laboratory scale, combining two matrix types (unsaturated polyester resin and epoxy resin) and the presence or absence of a Coremat Xi3 middle layer. Tensile tests were conducted at four test rates (10 mm/min, 200 mm/min, 500 mm/min, and 1000 mm/min), ranging from quasi-static to moderately dynamic conditions. Tests were conducted using the Instron 5982 universal testing machine (from Laboratory for Advanced Materials and Tribology, INCAS Bucharest, Romania). The specimens have a rectangular cross section, in agreement with SR EN ISO 527-4:2023. For strain measurements, an Instron advanced video extensometer (AVE) was used. Key mechanical parameters, such as maximum force, tensile strength, Young’s modulus, strain at break, and energy absorption, were extracted and analyzed. Results show that the polyester-based composite without a mat interlayer displayed the best overall performance, with the highest ultimate strength (~280 MPa), significant energy absorption (~106 J), and a consistent increase in ductility with increasing test rate. In contrast, the epoxy composite with Coremat Xi3 exhibited lower stiffness and strength, but higher strain and energy absorption at higher test rates, indicating a progressive failure behavior. These findings enhance the understanding of the tensile response of composites made of quadriaxial glass fiber fabric and provide valuable design data for structural components in marine environments, where both strength and energy absorption are essential. These insights support producers and end-users of non-crimp fabrics in making experimentally based selections of a composite, technological strategies, and design optimization. Full article
(This article belongs to the Special Issue Epoxy Resins and Epoxy-Based Composites: Research and Development)
Show Figures

Figure 1

16 pages, 4165 KiB  
Article
A Comprehensive Method with Verification for Characterizing the Visco-Hyperelastic Material Model of Polyurethane Foam of Passenger Car Seats
by Jianjiao Deng, Zunming Wang, Yi Qiu, Xu Zheng, Zuofeng Pan, Jingbao Zhao, Yuting Ma, Yabao Li and Chi Liu
Materials 2025, 18(15), 3526; https://doi.org/10.3390/ma18153526 - 28 Jul 2025
Viewed by 190
Abstract
Polyurethane foam is widely used as a primary filling material in car seats. While it provides good damping and energy absorption, the mechanical properties are complex but play a vital role in vibration attenuation and vehicle ride comfort. This study proposes a comprehensive [...] Read more.
Polyurethane foam is widely used as a primary filling material in car seats. While it provides good damping and energy absorption, the mechanical properties are complex but play a vital role in vibration attenuation and vehicle ride comfort. This study proposes a comprehensive experimental and analytical method to characterize the visco-hyperelastic properties of seat-grade polyurethane foam. Quasi-static and dynamic compression tests were conducted on foam blocks to obtain load–deflection curves and dynamic stiffness. A visco-hyperelastic material model was developed, where the hyperelastic response was derived via the hereditary integral and difference-stress method, and viscoelastic behavior was captured using a Prony series fitted to dynamic stiffness data. The model was validated using finite element simulations, showing good agreement with experimental results in both static and dynamic conditions. The proposed method enables accurate characterization of the visco-hyperelastic material properties of seat-grade polyurethane foam. Full article
Show Figures

Graphical abstract

14 pages, 2594 KiB  
Article
Low-Temperature Performance and Thermal Control of Asphalt Modified with Microencapsulated Phase-Change Materials
by Liming Zhang, Junmao Wang, Jinhua Wu, Ran Zhang, Yinchuan Guo, Hongbo Shen, Xinghua Liu and Kuncan Li
Coatings 2025, 15(8), 879; https://doi.org/10.3390/coatings15080879 - 26 Jul 2025
Viewed by 345
Abstract
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs [...] Read more.
Conventional asphalt is prone to cracking in cold climates due to its poor flexibility and limited ability to regulate temperature. This study investigates the use of low-temperature microencapsulated phase-change materials (MPCMs) to improve both the thermal storage and low-temperature performance of asphalt. MPCMs were incorporated into asphalt through physical blending at various concentrations. The physical, thermal, and rheological properties of the asphalt were then systematically evaluated. Tests included penetration, softening point, ductility, thermogravimetric analysis (TGA), and dynamic shear rheometer (DSR). The addition of MPCMs increased penetration and ductility. It slightly reduced the softening point and viscosity. These changes suggest improved flexibility and workability at low temperatures. Rheological tests showed reductions in rutting and fatigue factors. This indicates better resistance to thermal and mechanical stresses. Bending Beam Rheometer (BBR) results further confirmed that MPCMs lowered creep stiffness and increased the m-value. These findings demonstrate improved crack resistance under cold conditions. Thermal cycling tests also showed that MPCMs delayed the cooling process and reduced temperature fluctuations. This highlights their potential to enhance both energy efficiency and the durability of asphalt pavements in cold regions. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 189
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

24 pages, 7001 KiB  
Article
VAM-Based Equivalent Cauchy Model for Accordion Honeycomb Structures with Zero Poisson’s Ratio
by Yuxuan Lin, Mingfang Chen, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Rong Liu
Materials 2025, 18(15), 3502; https://doi.org/10.3390/ma18153502 - 25 Jul 2025
Viewed by 421
Abstract
The accordion honeycomb has unique deformation characteristics in cellular materials. This study develops a three-dimensional equivalent Cauchy continuum model (3D-ECM) based on the variational asymptotic method (VAM) to efficiently predict the mechanical response of the accordion honeycomb. The accuracy of the 3D-ECM is [...] Read more.
The accordion honeycomb has unique deformation characteristics in cellular materials. This study develops a three-dimensional equivalent Cauchy continuum model (3D-ECM) based on the variational asymptotic method (VAM) to efficiently predict the mechanical response of the accordion honeycomb. The accuracy of the 3D-ECM is validated via quasi-static compression experiments on 3D-printed specimens and detailed 3D finite element simulations (3D-FEM), showing a strong correlation between simulation and experimental data. Parametric analyses reveal that the re-entrant angle, ligament-to-strut length ratio, and thickness ratios significantly affect the equivalent elastic moduli, providing insights into geometric optimization strategies for targeted mechanical performance. Comparative experiments among honeycomb structures with positive, negative, and zero Poisson’s ratios show that the accordion honeycomb achieves superior dimensional stability and tunable stiffness but exhibits lower energy-absorption efficiency due to discontinuous buckling and recovery processes. Further comparison among different ZPR honeycombs confirms that the accordion design offers the highest equivalent modulus in the re-entrant direction. The findings underscore the accordion honeycomb’s promise in scenarios demanding structural reliability, tunable stiffness, and moderate energy absorption. Full article
(This article belongs to the Special Issue Lightweight and High-Strength Sandwich Panel (2nd Edition))
Show Figures

Figure 1

24 pages, 4281 KiB  
Article
Free Vibration Characteristics of FG-CNTRC Conical–Cylindrical Combined Shells Resting on Elastic Foundations Using the Haar Wavelet Discretization Method
by Jianyu Fan, Haoran Zhang, Yongqiang Tu, Shaohui Yang, Yan Huang, Zhichang Du and Hakim Boudaoud
Polymers 2025, 17(15), 2035; https://doi.org/10.3390/polym17152035 - 25 Jul 2025
Viewed by 203
Abstract
Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are a novel breed of polymer nanocomposite, in which the nonuniform distribution of the carbon nanotube (CNT) reinforcement is adopted to maximize the macro-mechanical performance of the polymer with a lower content of CNTs. Composite conical–cylindrical [...] Read more.
Functionally graded carbon nanotube reinforced composites (FG-CNTRCs) are a novel breed of polymer nanocomposite, in which the nonuniform distribution of the carbon nanotube (CNT) reinforcement is adopted to maximize the macro-mechanical performance of the polymer with a lower content of CNTs. Composite conical–cylindrical combined shells (CCCSs) are widely utilized as loading-bearing components in various engineering applications, and a comprehensive understanding of the vibration characteristics of these shells under different external excitations and boundary conditions is crucial for engineering applications. In this study, the free vibration behaviors of FG-CNTRC CCCSs supported by an elastic foundation are examined using the Haar wavelet discretization method (HWDM). First, by means of the HWDM, the equations of motion of each shell segment, the continuity and boundary conditions are converted into a system of algebraic equations. Subsequently, the natural frequencies and modes of the CCCSs are achieved by calculating the resultant algebraic equations. The convergence and accuracy are evaluated, and the results demonstrate that the proposed method has stable convergence, high efficiency, and excellent accuracy. Furthermore, an exhaustive parametric investigation is conducted to reveal the effects of foundation stiffnesses, boundary conditions, material mechanical properties, and geometric parameters on the vibration characteristics of the FG-CNTRC CCCS. Full article
Show Figures

Figure 1

Back to TopTop