Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,449)

Search Parameters:
Keywords = material footprint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Viewed by 264
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

36 pages, 4554 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 - 2 Aug 2025
Viewed by 133
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
Show Figures

Figure 1

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Viewed by 153
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 269
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Figure 1

20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 242
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Figure 1

33 pages, 2747 KiB  
Review
Biochar-Derived Electrochemical Sensors: A Green Route for Trace Heavy Metal Detection
by Sairaman Saikrithika and Young-Joon Kim
Chemosensors 2025, 13(8), 278; https://doi.org/10.3390/chemosensors13080278 - 1 Aug 2025
Viewed by 112
Abstract
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, [...] Read more.
The increasing demand for rapid, sensitive, and eco-friendly methods for the detection of trace heavy metals in environmental samples, attributed to their serious threats to health and the environment, has spurred considerable interest in the development of sustainable sensor materials. Toxic metal ions, namely, lead (Pb2+), cadmium (Cd2+), mercury (Hg2+), arsenic (As3+), and chromium, are potential hazards due to their non-biodegradable nature with high toxicity, even at trace levels. Acute health complications, including neurological, renal, and developmental disorders, arise upon exposure to such metal ions. To monitor and mitigate these toxic exposures, sensitive detection techniques are essential. Pre-existing conventional detection methods, such as atomic absorption spectroscopy (AAS) and inductively coupled plasma-mass spectrometry (ICP-MS), involve expensive instrumentation, skilled operators, and complex sample preparation. Electrochemical sensing, which is simple, portable, and eco-friendly, is foreseen as a potential alternative to the above conventional methods. Carbon-based nanomaterials play a crucial role in electrochemical sensors due to their high conductivity, stability, and the presence of surface functional groups. Biochar (BC), a carbon-rich product, has emerged as a promising electrode material for electrochemical sensing due to its high surface area, sustainability, tunable porosity, surface rich in functional groups, eco-friendliness, and negligible environmental footprint. Nevertheless, broad-spectrum studies on the use of biochar in electrochemical sensors remain narrow. This review focuses on the recent advancements in the development of biochar-based electrochemical sensors for the detection of toxic heavy metals such as Pb2+, Cd2+, and Hg2+ and the simultaneous detection of multiple ions, with special emphasis on BC synthesis routes, surface modification methodologies, electrode fabrication techniques, and electroanalytical performance. Finally, current challenges and future perspectives for integrating BC into next-generation sensor platforms are outlined. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

29 pages, 5505 KiB  
Article
Triaxial Response and Elastoplastic Constitutive Model for Artificially Cemented Granular Materials
by Xiaochun Yu, Yuchen Ye, Anyu Yang and Jie Yang
Buildings 2025, 15(15), 2721; https://doi.org/10.3390/buildings15152721 - 1 Aug 2025
Viewed by 123
Abstract
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton [...] Read more.
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton is often obtained directly from on-site or nearby excavation spoil, endowing the material with a markedly lower embodied carbon footprint and strong alignment with current low-carbon, green-construction objectives. Yet, such heterogeneity makes a single material-specific constitutive model inadequate for predicting the mechanical behavior of other ACG variants, thereby constraining broader applications in dam construction and foundation reinforcement. This study systematically summarizes and analyzes the stress–strain and volumetric strain–axial strain characteristics of ACG materials under conventional triaxial conditions. Generalized hyperbolic and parabolic equations are employed to describe these two families of curves, and closed-form expressions are proposed for key mechanical indices—peak strength, elastic modulus, and shear dilation behavior. Building on generalized plasticity theory, we derive the plastic flow direction vector, loading direction vector, and plastic modulus, and develop a concise, transferable elastoplastic model suitable for the full spectrum of ACG materials. Validation against triaxial data for rock-fill materials, LCSG, and cemented coal–gangue backfill shows that the model reproduces the stress and deformation paths of each material class with high accuracy. Quantitative evaluation of the peak values indicates that the proposed constitutive model predicts peak deviatoric stress with an error of 1.36% and peak volumetric strain with an error of 3.78%. The corresponding coefficients of determination R2 between the predicted and measured values are 0.997 for peak stress and 0.987 for peak volumetric strain, demonstrating the excellent engineering accuracy of the proposed model. The results provide a unified theoretical basis for deploying ACG—particularly its low-cement, locally sourced variants—in low-carbon dam construction, foundation rehabilitation, and other sustainable civil engineering projects. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

28 pages, 9076 KiB  
Article
Performance Evaluation of Waste Toner and Recycled LDPE-Modified Asphalt Pavement: A Mechanical and Carbon Assessment-Based Optimization Approach Towards Sustainability
by Muhammad Usman Siddiq, Muhammad Kashif Anwar, Faris H. Almansour, Jahanzeb Javed and Muhammad Ahmed Qurashi
Sustainability 2025, 17(15), 7003; https://doi.org/10.3390/su17157003 - 1 Aug 2025
Viewed by 227
Abstract
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either [...] Read more.
Due to the increasing environmental concerns and the growing generation of electronic waste and plastic, sustainable waste management solutions are essential for the construction industry. This study explores the potential of using electronic waste toner powder (WTP) and recycled low-density polyethylene (LDPE), either individually or in combination as modifiers for asphalt binder to enhance pavement performance and reduce environmental impact. The analysis focused on three key components: (1) binder development and testing; (2) performance evaluation through Marshall stability, indirect tensile strength, and Dynamic Shear Rheometer (DSR) testing for rutting resistance; and (3) sustainability assessment in terms of carbon footprint reduction. The results revealed that the formulation of 25% WTP and 8% LDPE processed at 160 °C achieved the best mechanical performance and lowest carbon index, enhancing Marshall stability by 32% and rutting resistance by 41%. Additionally, this formulation reduced the carbon footprint by 27% compared to conventional asphalt. The study demonstrated that the combination of WTP and LDPE significantly improves the sustainability and performance of asphalt pavements, offering mechanical, environmental, and economic benefits. By providing a quantitative assessment of waste-modified asphalt, this study uniquely demonstrates the combined use of WTP and LDPE in asphalt, offering a novel dual-waste valorization approach that enhances pavement performance while promoting circular economy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Asphalt Materials and Pavement Engineering)
Show Figures

Figure 1

19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 (registering DOI) - 1 Aug 2025
Viewed by 229
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

16 pages, 5071 KiB  
Article
Effect of Diatomite Content in a Ceramic Paste for Additive Manufacturing
by Pilar Astrid Ramos Casas, Andres Felipe Rubiano-Navarrete, Yolanda Torres-Perez and Edwin Yesid Gomez-Pachon
Ceramics 2025, 8(3), 96; https://doi.org/10.3390/ceramics8030096 (registering DOI) - 31 Jul 2025
Viewed by 161
Abstract
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable [...] Read more.
Ceramic pastes used in additive manufacturing offer several advantages, including low production costs due to the availability of raw materials and efficient processing methods, as well as a reduced environmental footprint through minimized material waste, optimized resource use, and the inclusion of recyclable or sustainably sourced components. This study evaluates the effect of diatomite content in a ceramic paste composed of carboxymethyl cellulose, kaolinite, and feldspar on its extrusion behavior and thermal conductivity, with additional analysis of its implications for microstructure, mechanical properties, and thermal performance. Four ceramic pastes were prepared with diatomite additions of 0, 10, 30, and 60% by weight. Thermal conductivity, extrusion behavior, morphology, and distribution were examined using scanning electron microscopy (SEM), while thermal degradation was assessed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that increasing diatomite content leads to a reduction in thermal conductivity, which ranged from 0.719 W/(m·°C) for the control sample to 0.515 W/(m·°C) for the 60% diatomite sample, as well as an improvement in extrusion behavior. The ceramic paste demonstrated adequate extrusion performance for 3D printing at diatomite contents above 30%. These findings lay the groundwork for future research and optimization in the development of functional ceramic pastes for advanced manufacturing applications. Full article
Show Figures

Figure 1

26 pages, 3459 KiB  
Article
Compressive Behaviour of Sustainable Concrete-Filled Steel Tubes Using Waste Glass and Rubber Glove Fibres
by Zobaer Saleheen, Tatheer Zahra, Renga Rao Krishnamoorthy and Sabrina Fawzia
Buildings 2025, 15(15), 2708; https://doi.org/10.3390/buildings15152708 - 31 Jul 2025
Viewed by 111
Abstract
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in [...] Read more.
To reduce the carbon footprint of the concrete industry and promote a circular economy, this study explores the reuse of waste materials such as glass powder (GP) and nitrile rubber (NR) fibres in concrete. However, the inclusion of these waste materials results in lower compressive strength compared to conventional concrete, limiting their application to non-structural elements. To overcome this limitation, this study adopts the concept of confined concrete by developing concrete-filled steel tube (CFST) stub columns. In total, twelve concrete mix variations were developed, with and without steel tube confinement. GP was utilised at replacement levels of 10–30% by weight of cement, while NR fibres were introduced at 0.5% and 1% by volume of concrete. The findings demonstrate that the incorporation of GP and NR fibres leads to a reduction in compressive strength, with a compounded effect observed when both materials are combined. Steel confinement within CFST columns effectively mitigated the strength reductions, restoring up to 17% of the lost capacity and significantly improving ductility and energy absorption capacity. All CFST columns exhibited consistent local outward buckling failure mode, irrespective of the concrete mix variations. A comparison with predictions from existing design codes and empirical models revealed discrepancies, underscoring the need for refined design approaches for CFST columns incorporating sustainable concrete infill. This study contributes valuable insights into the development of eco-friendly, high-performance structural systems, highlighting the potential of CFST technology in facilitating the adoption of waste materials in the construction sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 197
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

21 pages, 1456 KiB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 208
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 189
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

Back to TopTop