Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,533)

Search Parameters:
Keywords = match line

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1196 KiB  
Article
Integrated Additive Manufacturing of TGV Interconnects and High-Frequency Circuits via Bipolar-Controlled EHD Jetting
by Dongqiao Bai, Jin Huang, Hongxiao Gong, Jianjun Wang, Yunna Pu, Jiaying Zhang, Peng Sun, Zihan Zhu, Pan Li, Huagui Wang, Pengbing Zhao and Chaoyu Liang
Micromachines 2025, 16(8), 907; https://doi.org/10.3390/mi16080907 (registering DOI) - 2 Aug 2025
Abstract
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to [...] Read more.
Electrohydrodynamic (EHD) printing offers mask-free, high-resolution deposition across a broad range of ink viscosities, yet combining void-free filling of high-aspect-ratio through-glass vias (TGVs) with ultrafine drop-on-demand (DOD) line printing on the same platform requires balancing conflicting requirements: for example, high field strengths to drive ink into deep and narrow vias; sufficiently high ink viscosity to prevent gravity-induced leakage; and stable meniscus dynamics to avoid satellite droplets and charge accumulation on the glass surface. By coupling electrostatic field analysis with transient level-set simulations, we establish a dimensionless regime map that delineates stable cone-jetting regime; these predictions are validated by high-speed imaging and surface profilometry. Operating within this window, the platform achieves complete, void-free filling of 200 µm × 1.52 mm TGVs and continuous 10 µm-wide traces in a single print pass. Demonstrating its capabilities, we fabricate transparent Ku-band substrate-integrated waveguide antennas on borosilicate glass: the printed vias and arc feed elements exhibit a reflection coefficient minimum of –18 dB at 14.2 GHz, a –10 dB bandwidth of 12.8–16.2 GHz, and an 8 dBi peak gain with 37° beam tilt, closely matching full-wave predictions. This physics-driven, all-in-one EHD approach provides a scalable route to high-performance, glass-integrated RF devices and transparent electronics. Full article
17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

18 pages, 778 KiB  
Article
The Effects of Handedness Consistency on the Identification of Own- and Cross-Race Faces
by Raymond P. Voss, Ryan Corser, Stephen Prunier and John D. Jasper
Brain Sci. 2025, 15(8), 828; https://doi.org/10.3390/brainsci15080828 (registering DOI) - 31 Jul 2025
Viewed by 138
Abstract
Background/Objectives: People are better at recognizing the faces of racial in-group members than out-group members. This own-race bias relies on pattern recognition and memory processes, which rely on hemispheric specialization. We hypothesized that handedness, a proxy for hemispheric specialization, would moderate own-race [...] Read more.
Background/Objectives: People are better at recognizing the faces of racial in-group members than out-group members. This own-race bias relies on pattern recognition and memory processes, which rely on hemispheric specialization. We hypothesized that handedness, a proxy for hemispheric specialization, would moderate own-race bias. Specifically, consistently handed individuals perform better on tasks that require the hemispheres to work independently, while inconsistently handed individuals perform better on tasks that require integration. This led to the hypothesis that inconsistently handed individuals would show less own-race bias, driven by an increase in accuracy. Methods: 281 participants completed the study in exchange for course credit. Of those, the sample was isolated to Caucasian (174) and African American individuals (41). Participants were shown two target faces (one Caucasian and one African American), given several distractor tasks, and then asked to identify the target faces during two sequential line-ups, each terminating when participants made an identification judgment. Results: Continuous handedness score and the match between participant race and target face race were entered into a binary logistic regression predicting correct/incorrect identifications. The overall model was statistically significant, Χ2 (3, N = 430) = 11.036, p = 0.012, Nagelkerke R2 = 0.038, culminating in 76% correct classifications. Analyses of the parameter estimates showed that the racial match, b = 0.53, SE = 0.23, Wald Χ2 (1) = 5.217, p = 0.022, OR = 1.703 and the interaction between handedness and the racial match, b = 0.51, SE = 0.23, Wald test = 4.813, p = 0.028, OR = 1.671 significantly contributed to the model. The model indicated that the probability of identification was similar for own- or cross-race targets amongst inconsistently handed individuals. Consistently handed individuals, by contrast, showed an increase in accuracy for the own-race target and a decrease in accuracy for cross-race targets. Conclusions: Results partially supported the hypotheses. Inconsistently handed individuals did show less own-race bias. This finding, however, seemed to be driven by differences in accuracy amongst consistently handed individuals rather than a hypothesized increase in accuracy amongst inconsistently handed individuals. Underlying hemispheric specialization, as measured by proxy with handedness, may impact the own-race bias in facial recognition. Future research is required to investigate the mechanisms, however, as the directional differences were different than hypothesized. Full article
(This article belongs to the Special Issue Advances in Face Perception and How Disorders Affect Face Perception)
Show Figures

Figure 1

28 pages, 3751 KiB  
Article
First to Score, First to Win? Comparing Match Outcomes and Developing a Predictive Model of Success Using Performance Metrics at the FIFA Club World Cup 2025
by Andreas Stafylidis, Konstantinos Chatzinikolaou, Athanasios Mandroukas, Charalampos Stafylidis, Yiannis Michailidis and Thomas I. Metaxas
Appl. Sci. 2025, 15(15), 8471; https://doi.org/10.3390/app15158471 - 30 Jul 2025
Viewed by 585
Abstract
In the present study, 96 teams’ performances across 48 matches in the group stage of the FIFA Club World Cup 2025 were analyzed. Teams scoring first won 62.5% of matches (p < 0.05), while goals were evenly distributed between halves (p [...] Read more.
In the present study, 96 teams’ performances across 48 matches in the group stage of the FIFA Club World Cup 2025 were analyzed. Teams scoring first won 62.5% of matches (p < 0.05), while goals were evenly distributed between halves (p > 0.05) and showed marginal variation across six 15 min intervals, peaking near the 30–45 and 75–90 min marks. Parametric analyses revealed a significant effect of match outcome on possession, with winning teams exhibiting higher average possession (53.3%) compared to losing and drawing teams. Non-parametric analyses identified significant differences between match outcomes for goals scored, attempts at goal, total and completed passes, pass completion rate, defensive line breaks, receptions in the final third, ball progressions, defensive pressures, and total distance covered. Winning teams scored more goals and registered more attempts on target than losing teams, although some metrics showed no significant difference between wins and draws. Logistic regression analysis identified attempts at goal on target, defensive pressures, total completed passes, total distance covered, and receptions in the final third as significant predictors of match success (AUC = 0.85), correctly classifying 80.2% of match outcomes. These results emphasized the crucial role of offensive accuracy and possession dominance in achieving success in elite football. Full article
Show Figures

Figure 1

34 pages, 4827 KiB  
Article
Optimization of Passenger Train Line Planning Adjustments Based on Minimizing Systematic Costs
by Jinfei Wu, Xinghua Shan and Shuo Zhao
Inventions 2025, 10(4), 64; https://doi.org/10.3390/inventions10040064 - 30 Jul 2025
Viewed by 160
Abstract
Optimizing passenger train line planning is a complex task that involves balancing operational costs and passenger service quality. This study investigates the adjustment and optimization of train line plans to better align with passenger demand and operational constraints, while minimizing systematic costs. These [...] Read more.
Optimizing passenger train line planning is a complex task that involves balancing operational costs and passenger service quality. This study investigates the adjustment and optimization of train line plans to better align with passenger demand and operational constraints, while minimizing systematic costs. These costs include train operation expenses (e.g., line usage fees and station service fees), passenger travel costs, and hidden costs such as imbalances in station stops. Line usage fees refer to charges for using railway tracks, whereas station service fees cover services provided at train stations. The optimization process employs a Simulated Annealing Algorithm to adjust train compositions, capacity configurations, and stop patterns to better match passenger demand. The results indicate a 13.89% reduction in the objective function value, reflecting improved overall efficiency. Notably, most costs are reduced, including train operating costs and passenger travel costs. However, ticketing service fees—which are calculated as a percentage of passenger fare revenue—increased slightly due to additional backtracking in passenger travel paths, which raised the total fare collected. Overall, the optimization improves the operational performance of the train network, enhancing both efficiency and service quality. Full article
Show Figures

Figure 1

18 pages, 1337 KiB  
Article
Dysregulated Alternative Splicing in Breast Cancer Subtypes of RIF1 and Other Transcripts
by Emma Parker, Laura Akintche, Alexandra Pyatnitskaya, Shin-ichiro Hiraga and Anne D. Donaldson
Int. J. Mol. Sci. 2025, 26(15), 7308; https://doi.org/10.3390/ijms26157308 - 29 Jul 2025
Viewed by 246
Abstract
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells [...] Read more.
Genome instability is a hallmark of cancer, often driven by mutations and altered expression of genome maintenance factors involved in DNA replication and repair. Rap1 Interacting Factor 1 (RIF1) plays a crucial role in genome stability and is implicated in cancer pathogenesis. Cells express two RIF1 splice variants, RIF1-Long and RIF1-Short, which differ in their ability to protect cells from DNA replication stress. Here, we investigate differential expression and splicing of RIF1 in cancer cell lines following replication stress and in patients using matched normal and tumour data from The Cancer Genome Atlas (TCGA). Overall RIF1 expression is altered in several cancer types, with increased transcript levels in colon and lung cancers. RIF1 also exhibits distinct splicing patterns, particularly in specific breast cancer subtypes. In Luminal A (LumA), Luminal B (LumB), and HER2-enriched breast cancers (HER2E), RIF1 Exon 31 tends to be excluded, favouring RIF1-Short expression and correlating with poorer clinical outcomes. These breast cancer subtypes also tend to exclude other short exons, suggesting length-dependent splicing dysregulation. Basal breast cancer also shows exon exclusion, but unlike other subtypes, it shows no short-exon bias. Surprisingly, however, in basal breast cancer, RIF1 Exon 31 is not consistently excluded, which may impact prognosis since RIF1-Long protects against replication stress. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

24 pages, 3885 KiB  
Article
Discrete Meta-Modeling Method of Breakable Corn Kernels with Multi-Particle Sub-Area Combinations
by Jiangdong Xu, Yanchun Yao, Yongkang Zhu, Chenxi Sun, Zhi Cao and Duanyang Geng
Agriculture 2025, 15(15), 1620; https://doi.org/10.3390/agriculture15151620 - 26 Jul 2025
Viewed by 179
Abstract
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be [...] Read more.
Simulation is an important technical tool in corn threshing operations, and the establishment of the corn kernel model is the core part of the simulation process. The existing modeling method is to treat the whole kernel as a rigid body, which cannot be crushed during the simulation process, and the calculation of the crushing rate needs to be considered through multiple criteria such as the contact force, the number of collisions, and so on. Aiming at the issue that kernel crushing during maize threshing cannot be accurately modeled in discrete element simulations, in this study, a sub-area crushing model was constructed; representative samples with 26%, 30% and 34% moisture content were selected from a double-season maturing region in China; based on the physical dimensions and biological structure of the maize kernel, three stress regions were defined; and mechanical property tests were conducted on each of the three stress regions using a texturometer as a way to determine the different crushing forces due to the heterogeneity of the maize structure. The correctness of the model was verified by stacking angle and mechanical property experiments. A discrete element model of corn kernels was established using the Bonding V2 method and sub-area modeling. Bonding parameters were calculated by combining stacking angle tests and mechanical property tests. The flattened corn kernel was used as a prototype, and the bonding parameters were determined through size and mechanical property tests. A 22-ball bonding model was developed using dimensional parameters, and the kernel density was recalculated. Results showed that the relative error between the stacking angle test and the measured mean value was 0.31%. The maximum deviation of axial compression simulation results from the measured mean value was 22.8 N, and the minimum deviation was 3.67 N. The errors between simulated and actual rupture forces at the three force areas were 5%, 10%, and 0.6%, respectively. The decreasing trend of the maximum rupture force for the three moisture levels in the simulation matched that of the actual rupture force. The discrete element model can accurately reflect the rupture force, energy relationship, and rupture process on both sides, top, and bottom of the grain, and it can solve the error problem caused by the contact between the threshing element and the grain line in the actual threshing process to achieve the design optimization of the threshing drum. The modeling method provided in this study can also be applied to breakable discrete element models for wheat and soybean, and it provides a reference for optimizing the design of subsequent threshing devices. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 4646 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 347
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

9 pages, 350 KiB  
Article
Clostridioides difficile Infection in the United States of America—A Comparative Event Risk Analysis of Patients Treated with Fidaxomicin vs. Vancomycin Across 67 Large Healthcare Providers
by Sebastian M. Wingen-Heimann, Christoph Lübbert, Davide Fiore Bavaro and Sina M. Hopff
Infect. Dis. Rep. 2025, 17(4), 87; https://doi.org/10.3390/idr17040087 - 23 Jul 2025
Viewed by 215
Abstract
Background/Objectives: Clostridioides difficile infection (CDI) is a major cause of infectious diarrhea in the inpatient and community setting. Real-world data outside the strict environment of randomized controlled trials (RCTs) are needed to improve the quality of evidence. The aim of this study was [...] Read more.
Background/Objectives: Clostridioides difficile infection (CDI) is a major cause of infectious diarrhea in the inpatient and community setting. Real-world data outside the strict environment of randomized controlled trials (RCTs) are needed to improve the quality of evidence. The aim of this study was to compare different clinical outcomes of CDI patients treated with fidaxomicin with those treated with vancomycin using a representative patient population in the United States of America (USA). Methods: Comprehensive real-world data were analyzed for this retrospective observational study, provided by the TriNetX database, an international research network with electronic health records from multiple USA healthcare providers. This includes in- and outpatients treated with fidaxomicin (FDX) or vancomycin (VAN) for CDI between 01/2013 and 12/2023. The following cohorts were compared: (i) patients treated with fidaxomicin within 10 days following CDI diagnosis (FDX group) vs. (ii) patients treated with vancomycin within 10 days following CDI diagnosis (VAN group). Outcomes analysis between the two cohorts was performed after propensity score matching and included event risk and Kaplan–Meier survival analyses for the following concomitant diseases/events occurring during an observational period of 12 months following CDI diagnosis: death, sepsis, candidiasis, infections caused by vancomycin-resistant enterococci, inflammatory bowel disease, cardiovascular disease, psychological disease, central line-associated blood stream infection, surgical site infection, and ventilator-associated pneumonia. Results: Following propensity score matching, 2170 patients were included in the FDX group and VAN groups, respectively. The event risk analysis demonstrated improved outcomes of patients treated with FDX compared to VAN in 6 out of the 10 events that were analyzed. The highest risk ratio (RR) and odds ratio (OR) were found for sepsis (RR: 3.409; OR: 3.635), candidiasis (RR: 2.347; OR: 2.431), and death (RR: 1.710; OR: 1.811). The Kaplan–Meier survival analysis showed an overall survival rate until the end of the 12-month observational period of 87.06% in the FDX group and 78.49% in the VAN group (log-rank p < 0.001). Conclusions: Our comparative event risk analysis demonstrated improved outcomes for patients treated with FDX compared to VAN in most of the observed events and underlines the results of previously conducted RCTs, highlighting the beneficial role of FDX compared to VAN. Further big data analyses from other industrialized countries are needed for comparison with our observations. Full article
Show Figures

Figure 1

13 pages, 6558 KiB  
Article
Efficient Optimization Method for Designing Defected Ground Structure-Based Common-Mode Filters
by Ook Chung, Jongheun Lee, Suhyoun Song, Hogeun Yoo and Jaehoon Lee
Electronics 2025, 14(14), 2903; https://doi.org/10.3390/electronics14142903 - 20 Jul 2025
Viewed by 277
Abstract
An efficient optimization method for designing defected ground structure (DGS)-based common-mode filters (CMFs) is proposed, utilizing equation-based transmission line models integrated with a genetic algorithm (GA). Designing an optimal DGS-based CMF using full-wave simulation tools is time-consuming due to its process-intensive nature. The [...] Read more.
An efficient optimization method for designing defected ground structure (DGS)-based common-mode filters (CMFs) is proposed, utilizing equation-based transmission line models integrated with a genetic algorithm (GA). Designing an optimal DGS-based CMF using full-wave simulation tools is time-consuming due to its process-intensive nature. The proposed optimization method implements transmission line theory to allow for direct S-parameter calculation, enabling integration with an optimization algorithm to identify optimal parameters within a confined 5 mm × 10 mm design space. This work demonstrates a compact asymmetric DGS design to illustrate the method’s capability. The resulting compact asymmetric DGS-based CMF achieves wideband common-mode suppression with a –10 dB bandwidth from 3.18 GHz to 12.89 GHz. The optimization method significantly reduces design time by minimizing the need for lengthy and repetitive full-wave simulations. The measured S-parameters of the fabricated CMF closely match the simulated results, validating the model’s accuracy. Compared with traditional methods for designing DGS-based CMFs, the proposed method utilizes transmission line theory to optimize the design efficiently, providing a practical and efficient solution. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 2522 KiB  
Article
Using Convolutional Neural Networks and Pattern Matching for Digitization of Printed Circuit Diagrams
by Lukas Fuchs, Marc Diesse, Matthias Weber, Arif Rasim, Julian Feinauer and Volker Schmidt
Electronics 2025, 14(14), 2889; https://doi.org/10.3390/electronics14142889 - 19 Jul 2025
Viewed by 250
Abstract
The efficient and reliable maintenance and repair of industrial machinery depend critically on circuit diagrams, which serve as essential references for troubleshooting and must be updated when machinery is modified. However, many circuit diagrams are not available in structured, machine-readable format; instead, they [...] Read more.
The efficient and reliable maintenance and repair of industrial machinery depend critically on circuit diagrams, which serve as essential references for troubleshooting and must be updated when machinery is modified. However, many circuit diagrams are not available in structured, machine-readable format; instead, they often exist as unstructured PDF files, rendered images, or even photographs. Existing digitization methods often address isolated tasks, such as symbol detection, but fail to provide a comprehensive solution. This paper presents a novel pipeline for extracting the underlying graph structures of circuit diagrams, integrating image preprocessing, pattern matching, and graph extraction. A U-net model is employed for noise removal, followed by gray-box pattern matching for device classification, line detection by morphological operations, and a final graph extraction step to reconstruct circuit connectivity. A detailed error analysis highlights the strengths and limitations of each pipeline component. On a skewed test diagram from a scan with slight rotation, the proposed pipeline achieved a device detection accuracy of 88.46% with no false positives and a line detection accuracy of 94.7%. Full article
Show Figures

Figure 1

10 pages, 2813 KiB  
Article
A Dual-Band Quarter-Wave Transform and Its Applications to Directional Coupler Design
by Sung-Nien Hsieh, Sheng-Lun Chang and Chih-Jung Chen
Electronics 2025, 14(14), 2881; https://doi.org/10.3390/electronics14142881 - 18 Jul 2025
Viewed by 253
Abstract
The quarter-wave transformer is a useful circuit for impedance matching. In this paper, we use three equal-length transmission lines to design dual-band quarter-wave transformers. Closed-form design equations are derived. The proposed structure is found to be suitable for dual-band operation with a frequency [...] Read more.
The quarter-wave transformer is a useful circuit for impedance matching. In this paper, we use three equal-length transmission lines to design dual-band quarter-wave transformers. Closed-form design equations are derived. The proposed structure is found to be suitable for dual-band operation with a frequency ratio greater than 5. Numerous microwave passive components are composed of quarter-wave transformers. For these components consisting of quarter-wave transformers, the use of dual-band quarter-wave transformers can inherently result in dual-band operation. The proposed structure is, therefore, a simple and effective element for designing dual-band microwave passive components with a frequency ratio greater than 5. Because the existing techniques for designing dual-band circuits are mostly suitable for frequency ratios lower than 5, the proposed structure, therefore, complements the existing techniques. To demonstrate the applicability of the structure, two directional couplers, namely, a dual-band branch-line hybrid and a dual-band rat-race hybrid, are designed and fabricated on a RO4003C substrate. Measurement results validate the applicability of the proposed structure. Full article
(This article belongs to the Special Issue RF/MM-Wave Circuits Design and Applications, 2nd Edition)
Show Figures

Figure 1

33 pages, 654 KiB  
Article
Colloquialization Processes in the 20th Century: The Role of Discourse Markers in the Evolution of Sports Announcer Talk in Peninsular Spanish
by Shima Salameh Jiménez
Languages 2025, 10(7), 172; https://doi.org/10.3390/languages10070172 - 18 Jul 2025
Viewed by 290
Abstract
This paper analyzes 20th century colloquialization processes in Peninsular Spanish, in line with recent works addressing mass-media colloquialization. Previous studies suggest a change in sports-talk announcing towards a more informal model, which is supported by the incorporation of new linguistic features as well [...] Read more.
This paper analyzes 20th century colloquialization processes in Peninsular Spanish, in line with recent works addressing mass-media colloquialization. Previous studies suggest a change in sports-talk announcing towards a more informal model, which is supported by the incorporation of new linguistic features as well as by the influence of some external changes. In this context, this study delves into the role of discourse markers as a colloquialization parameter, as a growth in their employment has been detected since ca. 1990. To further explore the data, a manually compiled corpus has been transcribed and analyzed: our corpus consists of both radio and TV football-match recordings aired in Spain from 1980 to 2000 and from 2000 to 2024. These two big periods have been subdivided into five-year periods or micro-diachronies to allow for a more detailed analysis. Results reveal a consolidation of the use of discourse markers by sports announcers, contrasting with earlier broadcasts that tended to avoid them or that employed more formal discourse markers, typically related to written, planned discourses. Full article
(This article belongs to the Special Issue Pragmatic Diachronic Study of the 20th Century)
Show Figures

Figure 1

26 pages, 1270 KiB  
Article
Boosting Genomic Prediction Transferability with Sparse Testing
by Osval A. Montesinos-López, Jose Crossa, Paolo Vitale, Guillermo Gerard, Leonardo Crespo-Herrera, Susanne Dreisigacker, Carolina Saint Pierre, Iván Delgado-Enciso, Abelardo Montesinos-López and Reka Howard
Genes 2025, 16(7), 827; https://doi.org/10.3390/genes16070827 - 16 Jul 2025
Viewed by 296
Abstract
Background/Objectives: Improving sparse testing is essential for enhancing the efficiency of genomic prediction (GP). Accordingly, new strategies are being explored to refine genomic selection (GS) methods under sparse testing conditions. Methods: In this study, a sparse testing approach was evaluated, specifically in the [...] Read more.
Background/Objectives: Improving sparse testing is essential for enhancing the efficiency of genomic prediction (GP). Accordingly, new strategies are being explored to refine genomic selection (GS) methods under sparse testing conditions. Methods: In this study, a sparse testing approach was evaluated, specifically in the context of predicting performance for tested lines in untested environments. Sparse testing is particularly practical in large-scale breeding programs because it reduces the cost and logistical burden of evaluating every genotype in every environment, while still enabling accurate prediction through strategic data use. To achieve this, we used training data from CIMMYT (Obregon, Mexico), along with partial data from India, to predict line performance in India using observations from Mexico. Results: Our results show that incorporating data from Obregon into the training set improved prediction accuracy, with greater effectiveness when the data were temporally closer. Across environments, Pearson’s correlation improved by at least 219% (in a testing proportion of 50%), while gains in the percentage of matching in top 10% and 20% of top lines were 18.42% and 20.79%, respectively (also in a testing proportion of 50%). Conclusions: These findings emphasize that enriching training data with relevant, temporally proximate information is key to enhancing genomic prediction performance; conversely, incorporating unrelated data can reduce prediction accuracy. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

20 pages, 2048 KiB  
Article
Effect of Tm-2a, Sw-5 and Ty-1 Gene Introduction on the Agronomic Performance and Metabolic Profile of Traditional Muchamiel-Type Tomato Varieties
by Alicia Sánchez, Juana Cava, Virginia Hernández, Pilar Flores, Santiago García-Martínez, Pedro Carbonell, Elena Sánchez, Nuria López, Elia Molina, José Fenoll and Pilar Hellín
Horticulturae 2025, 11(7), 838; https://doi.org/10.3390/horticulturae11070838 - 15 Jul 2025
Viewed by 325
Abstract
The introduction of virus resistance genes into traditional tomato varieties offers a strategy to preserve genetic diversity and enhance commercial viability. However, the homozygous presence of these genes has been associated with negative effects on yield and fruit quality. This two-year study evaluated [...] Read more.
The introduction of virus resistance genes into traditional tomato varieties offers a strategy to preserve genetic diversity and enhance commercial viability. However, the homozygous presence of these genes has been associated with negative effects on yield and fruit quality. This two-year study evaluated the impact of introducing the Tm-2a, Sw-5 and Ty-1 genes, which are associated with resistance to ToMV, TSWV and TYLCV, respectively, on the agronomic yield, fruit characteristics and metabolic profile of Muchamiel-type cultivars. Four hybrids were obtained by crossing two breeding lines carrying the resistance genes in homozygosis (UMH1139 and UMH1200) with two traditional susceptible varieties (MC1 and MC2). Hybrids matched or exceeded the agronomic performance of their parents. Fruit morphology of the hybrids was similar to traditional parents. The presence of Ty-1 correlated with reduced organic acid concentration, though hybrids exhibited higher levels than the homozygous line, UMH1200. No negative effects on soluble sugars or secondary metabolites were observed. Genotypes carrying resistance genes, breeding lines and hybrids exhibited higher flavonoid contents, suggesting a potential role in virus response. Hybrids maintained or improved the bioactive profile of traditional varieties. These findings support the development of Muchamiel-type hybrids that combine the presence of virus resistance genes in heterozygosity with the desirable traits of traditional tomatoes. Full article
(This article belongs to the Special Issue Genetics, Genomics and Breeding of Vegetable Crops)
Show Figures

Graphical abstract

Back to TopTop