A Dual-Band Quarter-Wave Transform and Its Applications to Directional Coupler Design †
Abstract
1. Introduction
2. Theoretical Analysis
2.1. Conditions for Impedance Matching
2.2. Condition for a Phase Delay of 90°
2.3. Design Equations
3. Design Example
4. Microstrip Realization and Measurement
4.1. Branch-Line Hybrid with k = 6
4.2. Rat-Race Hybrid with k = 5.75
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozar, D.M. Microwave Engineering, 4th ed.; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Monzon, C. A small dual-frequency transformer in two sections. IEEE Trans. Microw. Theory Tech. 2003, 51, 1157–1161. [Google Scholar] [CrossRef]
- Zhang, J.-D.; Wu, W.; Fang, D.-G. Dual-band and dual circularly polarized shared-aperture array antennas with single-layer substrate. IEEE Trans. Antennas Propag. 2016, 64, 109–116. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, Y.; Xin, H. A tapped stepped-impedance balun with dual-band operations. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 119–122. [Google Scholar] [CrossRef]
- Saad, P.; Colantonio, P.; Piazzon, L.; Giannini, F.; Andersson, K.; Fager, C. Design of a concurrent dual-band 1.8–2.4 GHz GaN-HEMT Doherty power amplifier. IEEE Trans. Microw. Theory Tech. 2012, 60 Pt 2, 1840–1849. [Google Scholar] [CrossRef]
- Cheng, Q.-F.; Fu, H.-P.; Zhu, S.-K.; Ma, J.-G. Two-stage high-efficiency concurrent dual-band harmonic-tuned power amplifier. IEEE Trans. Microw. Theory Tech. 2016, 64, 3232–3243. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Z.; Yilmaz, H.; Berroth, M. A dual frequency Wilkinson power divider. IEEE Trans. Microw. Theory Tech. 2006, 54, 278–285. [Google Scholar] [CrossRef]
- Wang, X.; Sakagami, I.; Ma, Z.; Mase, A.; Yoshikawa, M.; Ichimura, M. Miniaturized dual-band Wilkinson power divider with self-compensation structure. IEEE Trans. Compon. Packag. Manuf. Technol. 2015, 5, 389–397. [Google Scholar] [CrossRef]
- Chen, C.-J. Design of dual-frequency transformers using three equal-length transmission lines. In Proceedings of the 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 25–27 August 2021; pp. 1–4. [Google Scholar]
- Zaidi, A.M.; Khan, T.; Beg, M.T.; Kanaujia, B.K.; Rambabu, K. Dual-band design techniques for microwave passive circuits: A review and applications. IEEE Microw. Mag. 2022, 23, 61–77. [Google Scholar] [CrossRef]
- Alazemi, A.J.; Almatar, D.H. A frequency-reconfigurable dual-band RF crossover based on coupled lines and open stubs. Electronics 2024, 13, 2641. [Google Scholar] [CrossRef]
- Li, S.; Yao, Y.; Cheng, X.; Yu, J. Design of a Dual-Band Filter Based on the Band Gap Waveguide. Electronics 2024, 13, 3982. [Google Scholar] [CrossRef]
- Xiao, Y.; He, L.; Wei, X. Dual-Band Dual-Circularly Polarized Shared-Aperture Phased Array for S-/C-Band Satellite Communications. Electronics 2025, 14, 387. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, C.; Chen, Z.; Sun, H.; Huang, Z.; Tang, R.; Yang, J.; Li, W. Dual-Band Gysel Filtering Power Divider with a Frequency Transform Resonator and Microstrip/Slotline Phase Inverter. Electronics 2025, 14, 61. [Google Scholar] [CrossRef]
- Fujimoto, T.; Guan, C.-E. A Printed Hybrid-Mode Antenna for Dual-Band Circular Polarization with Flexible Frequency Ratio. Electronics 2025, 14, 2504. [Google Scholar] [CrossRef]
- Chen, C.-J.; Tsai, H.-Y. Design of dual-band quarter-wave transforms using three equal-length transmission lines. In Proceedings of the 2019 Asia-Pacific Microwave Conference, Singapore, 10–13 December 2019. [Google Scholar]
- Lin, I.-H.; DeVincentis, M.; Caloz, C.; Itoh, T. Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Trans. Microw. Theory Tech. 2004, 52, 1142–1149. [Google Scholar] [CrossRef]
- Cheng, K.-K.M.; Wong, F.-L. A novel approach to the design and implementation of dual-band compact planar 90° branch-line coupler. IEEE Trans. Microw. Theory Tech. 2004, 52, 2458–2463. [Google Scholar] [CrossRef]
- Cheng, K.-K.M.; Yeung, S. A novel dual-band 3-dB branch-line coupler design with controllable bandwidths. IEEE Trans. Microw. Theory Tech. 2012, 60, 3055–3061. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Kuo, J.-T.; Chang, C.-W. Miniaturized dual-band hybrid couplers with arbitrary power division ratios. IEEE Trans. Microw. Theory Tech. 2009, 57, 149–156. [Google Scholar]
- Chi, P.-L.; Ho, K.-L. Design of dual-band coupler with arbitrary power division ratios and phase differences. IEEE Trans. Microw. Theory Tech. 2014, 62, 2965–2974. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, K.J. A stub tapped branch-line coupler for dual-band operations. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 106–108. [Google Scholar] [CrossRef]
- Chin, K.-S.; Lin, K.-M.; Wei, Y.-H.; Tseng, T.-H.; Yang, Y.-J. Compact dual-band branch-line and rat-race couplers with stepped-impedance- stub lines. IEEE Trans. Microw. Theory Tech. 2010, 58, 1213–1221. [Google Scholar] [CrossRef]
- Park, M.-J.; Lee, B. A dual-band Wilkinson power divider. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 85–87. [Google Scholar] [CrossRef]
- Fang, W.-T.; Chang, E.-W.; Lin, Y.-S. Bridged-T coil for miniature dual-band branch-line coupler and power divider designs. IEEE Trans. Microw. Theory Tech. 2018, 66, 889–901. [Google Scholar] [CrossRef]
- Zaidi, A.M.; Beg, M.T.; Kanaujia, B.K.; Srivastava, K.; Rambabu, K. A dual band branch line coupler with wide frequency ratio. IEEE Access 2019, 7, 25046–25052. [Google Scholar] [CrossRef]
- Collado, C.; Grau, A.; De Flaviis, F. Dual-band planar quadrature hybrid with enhanced bandwidth response. IEEE Trans. Microw. Theory Tech. 2006, 54, 180–188. [Google Scholar] [CrossRef]
- Kim, H.; Lee, B.; Park, M.-J. Dual-band branch-line coupler with port extensions. IEEE Trans. Microw. Theory Tech. 2010, 58, 651–655. [Google Scholar]
- Cheng, K.-K.M.; Law, C. A novel approach to the design and implementation of dual-band power divider. IEEE Trans. Microw. Theory Tech. 2008, 56, 487–492. [Google Scholar] [CrossRef]
- Chang, J.-Y.; Lo, T.-Y.; Chen, P.-Y.; Wei, T.-Z.; Huang, S.-P.; Tsai, W.-T.; Liou, C.-Y.; Mao, S.-G. Ka-Band Miniaturized 90 nm Complementary Metal Oxide Semiconductor Wideband Rat-Race Coupler Using Left-Handed and Right-Handed Transmission Lines. Electronics 2024, 13, 417. [Google Scholar] [CrossRef]
- Rutkowski, A.; Stadnik, H. 2.45 GHz Band Quadrature Microwave Frequency Discriminators with Integrated Correlators Based on Power Dividers and Rat-Race Hybrids. Electronics 2021, 10, 2763. [Google Scholar] [CrossRef]
- Chen, C.-J.; Sung, C.-H.; Su, Y.-D. A Multi-Stub Lowpass Filter. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 532–534. [Google Scholar] [CrossRef]
Zq [Ω] | ZH [Ω] | ZL [Ω] |
---|---|---|
35.35 | 61 | 20.5 |
50 | 86.25 | 28.98 |
Zq [Ω] | ZH [Ω] | ZL [Ω] |
---|---|---|
70.71 | 113.5 | 44.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, S.-N.; Chang, S.-L.; Chen, C.-J. A Dual-Band Quarter-Wave Transform and Its Applications to Directional Coupler Design. Electronics 2025, 14, 2881. https://doi.org/10.3390/electronics14142881
Hsieh S-N, Chang S-L, Chen C-J. A Dual-Band Quarter-Wave Transform and Its Applications to Directional Coupler Design. Electronics. 2025; 14(14):2881. https://doi.org/10.3390/electronics14142881
Chicago/Turabian StyleHsieh, Sung-Nien, Sheng-Lun Chang, and Chih-Jung Chen. 2025. "A Dual-Band Quarter-Wave Transform and Its Applications to Directional Coupler Design" Electronics 14, no. 14: 2881. https://doi.org/10.3390/electronics14142881
APA StyleHsieh, S.-N., Chang, S.-L., & Chen, C.-J. (2025). A Dual-Band Quarter-Wave Transform and Its Applications to Directional Coupler Design. Electronics, 14(14), 2881. https://doi.org/10.3390/electronics14142881