Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = marine-derived Streptomyces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1671 KiB  
Article
Antimicrobial and Antibiofilm Activity of Marine Streptomyces sp. NBUD24-Derived Anthraquinones Against MRSA
by Yuxin Yang, Zhiyan Zhou, Guobao Huang, Shuhua Yang, Ruoyu Mao, Lijian Ding and Xiao Wang
Mar. Drugs 2025, 23(8), 298; https://doi.org/10.3390/md23080298 - 25 Jul 2025
Viewed by 344
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, with methicillin-resistant Staphylococcus aureus (MRSA) representing one of the most clinically significant multidrug-resistant pathogens. In this study, three structurally unique anthracycline derivatives—keto-ester (1), 4-deoxy-ε-pyrromycinone (2), and misamycin (3 [...] Read more.
Antimicrobial resistance (AMR) has emerged as a global health crisis, with methicillin-resistant Staphylococcus aureus (MRSA) representing one of the most clinically significant multidrug-resistant pathogens. In this study, three structurally unique anthracycline derivatives—keto-ester (1), 4-deoxy-ε-pyrromycinone (2), and misamycin (3)—were first isolated and characterized from the fermentation broth of the marine-derived Streptomyces tauricus NBUD24. These compounds exhibited notable antibacterial efficacy against MRSA, with minimum inhibitory concentrations (MICs) ranging from 16 to 32 µg/mL. Cytotoxicity assays confirmed their safety profile at therapeutic concentrations. The biofilm formation assay demonstrated that 4-deoxy-ε-pyrromycinone inhibited biofilm formation of MRSA ATCC43300, with an inhibition rate of 64.4%. Investigations of antibacterial mechanisms revealed that these compounds exert antibacterial effects primarily through disruption of bacterial cell wall integrity and destruction of DNA structure. These findings underscore the potential of marine-derived microbial metabolites as promising scaffolds for developing next-generation antimicrobial candidates to combat drug-resistant infections. Full article
Show Figures

Figure 1

11 pages, 1625 KiB  
Article
A VioA Variant Activates Antibiotic Streptogramins in the Heterologous Host Streptomyces sp. OUC20-O
by Jie Shan, Liangguang Yue, Luyao Xu, Runyi Wang, Qingzhou Meng, Jun Feng, Joon-Hee Lee, Ming Lu and Huayue Li
Mar. Drugs 2025, 23(5), 205; https://doi.org/10.3390/md23050205 - 11 May 2025
Viewed by 547
Abstract
Heterologous expression of the G231L variant of VioA into 16 strains of marine-derived Streptomyces, combined with bioactivity tracking, leads to the activation of seven antibiotic streptogramins (17) in Streptomyces sp. OUC20-O. Among these, compound 1, named linstreptogramin, [...] Read more.
Heterologous expression of the G231L variant of VioA into 16 strains of marine-derived Streptomyces, combined with bioactivity tracking, leads to the activation of seven antibiotic streptogramins (17) in Streptomyces sp. OUC20-O. Among these, compound 1, named linstreptogramin, is a new compound with an unusual linear streptogramin skeleton. The planar structure and stereochemistry of compound 1 were established based on extensive MS and NMR spectroscopic analyses, together with ECD calculations. In the antibacterial activity evaluation, compounds 14 showed significant growth inhibition against the multidrug-resistant Enterococcus faecium CCARM 5203 with MIC values of 0.2–1.6 µg/mL, which are comparable to the positive control vancomycin. Full article
(This article belongs to the Special Issue Marine Microorganisms Bioprospecting)
Show Figures

Figure 1

9 pages, 1438 KiB  
Communication
Polyketides with a 6/6/6/6 Oxaphenalene Pyranone Skeleton from Marine-Derived Streptomyces sp. HDN150000
by Xiaoting Zhang, Falei Zhang, Wenxue Wang, Xingtao Ren, Tianjiao Zhu, Qian Che, Dehai Li and Guojian Zhang
Mar. Drugs 2025, 23(5), 188; https://doi.org/10.3390/md23050188 - 27 Apr 2025
Viewed by 580
Abstract
Three new structures named naphpyrone I–K (13) that contain a 6/6/6/6 oxaphenalene pyranone skeleton were isolated and purified from a marine-derived Streptomyces sp. HDN155000. Their chemical structures, including configurations, were elucidated by extensive NMR, MS, single-crystal X-ray diffraction, theoretical [...] Read more.
Three new structures named naphpyrone I–K (13) that contain a 6/6/6/6 oxaphenalene pyranone skeleton were isolated and purified from a marine-derived Streptomyces sp. HDN155000. Their chemical structures, including configurations, were elucidated by extensive NMR, MS, single-crystal X-ray diffraction, theoretical NMR calculations, DP4+ probability analysis, and ECD analyses. Naphpyrone K (3) showed cytotoxic activities against L-02, K562, NCI-H446/EP, MDA-MB-231, and NCI-H446 cancer cells with IC50 values of 5.13, 3.34, 2.50, 2.61, and 2.20 μM, respectively. These findings highlight the potential for screening and developing therapeutic drugs from aromatic polyketides derived from marine actinobacteria. Full article
(This article belongs to the Special Issue Marine Streptomyces-Derived Natural Products 2024)
Show Figures

Figure 1

13 pages, 1651 KiB  
Article
Bioactive Secondary Metabolites from an Arctic Marine-Derived Strain, Streptomyces sp. MNP-1, Using the OSMAC Strategy
by Mengna Wu, Zijun Liu, Jiahui Wang, Wentao Hu and Huawei Zhang
Molecules 2025, 30(8), 1657; https://doi.org/10.3390/molecules30081657 - 8 Apr 2025
Viewed by 620
Abstract
An Arctic marine-derived strain, MNP-1, was characterized by a combined methodological approach, incorporating a variety of analytical techniques including morphological features, biochemical characteristics, and 16S ribosomal RNA (rRNA) sequence analysis. The chemical investigation of Streptomyces sp. MNP-1 using the OSMAC (one strain many [...] Read more.
An Arctic marine-derived strain, MNP-1, was characterized by a combined methodological approach, incorporating a variety of analytical techniques including morphological features, biochemical characteristics, and 16S ribosomal RNA (rRNA) sequence analysis. The chemical investigation of Streptomyces sp. MNP-1 using the OSMAC (one strain many compounds) strategy yielded the isolation of twenty known compounds (1–20), which were unambiguously identified by various spectroscopic approaches including 1H and 13C NMR and ESI-MS (previously reported data). Bioassay results indicated that compounds 2, 3, 5, 9, 14, 15, and 20 had antimicrobial activity against human pathogenic strains including Staphylococcus aureus, Escherichia coli, and Candida albicans with MIC values ranging from 4 to 32 μg/mL, and compounds 3 and 14 exhibited moderate inhibitory activity on A549, MCF-7, and HepG2 tumor lines showing IC50 values within the range of 19.88 to 35.82 µM. These findings suggest that Streptomyces sp. MNP-1 is one of the prolific manufacturers of bioactive secondary metabolites with therapeutic potential. Full article
Show Figures

Graphical abstract

22 pages, 4278 KiB  
Article
In Vitro and In Silico Studies on the Anti-H1N1 Activity of Bioactive Compounds from Marine-Derived Streptomyces ardesiacus
by Yung-Husan Chen, Cheng-Yang Hsieh, Chun-Tang Chiou, Engelo John Gabriel V. Caro, Lemmuel L. Tayo and Po-Wei Tsai
Mar. Drugs 2025, 23(4), 149; https://doi.org/10.3390/md23040149 - 29 Mar 2025
Viewed by 762
Abstract
This study explores the potential anti-H1N1 Influenza A activity of bioactive compounds extracted from Streptomyces ardesiacus, a marine-derived microorganism known for producing diverse secondary metabolites. Four major compounds—1-acetyl-β-carboline, 1H-indole-3-carbaldehyde, anthranilic acid, and indole-3-carboxylic acid—were isolated and characterized through NMR. Among [...] Read more.
This study explores the potential anti-H1N1 Influenza A activity of bioactive compounds extracted from Streptomyces ardesiacus, a marine-derived microorganism known for producing diverse secondary metabolites. Four major compounds—1-acetyl-β-carboline, 1H-indole-3-carbaldehyde, anthranilic acid, and indole-3-carboxylic acid—were isolated and characterized through NMR. Among these, the identified structure of 1-acetyl-β-carboline showed the highest IC50 effect, with a dose of 9.71 μg/mL in anti-influenza assays. Using network pharmacology and molecular docking analyses, the interactions of these compounds with key proteins involved in H1N1 pathogenesis were examined. Protein–protein interaction (PPI) networks and Gene Ontology enrichment analysis revealed CDC25B, PARP1, and PTGS2 as key targets, associating these compounds with pathways related to catalytic activity, inflammation, and cell cycle regulation. The molecular docking results demonstrated that 1-acetyl-β-carboline exhibited binding affinities comparable to Tamiflu, the positive control drug, with LibDock scores of 81.89, 77.49, and 89.21 for CDC25B, PARP1, and PTGS2, respectively, compared to Tamiflu’s scores of 84.34, 86.13, and 91.29. These findings highlight the potential of the active compound 1-acetyl-β-carboline from S. ardesiacus as a novel anti-influenza agent, offering insights into their molecular mechanisms of action. The results support further in vitro and in vivo studies to validate the observed inhibitory mechanisms and therapeutic applications against H1N1 Influenza A. Full article
(This article belongs to the Special Issue Marine Streptomyces-Derived Natural Products 2024)
Show Figures

Figure 1

20 pages, 4162 KiB  
Article
Anti-Angiogenic Potential of Marine Streptomyces-Derived Lucknolide A on VEGF/VEGFR2 Signaling in Human Endothelial Cells
by Byeoung-Kyu Choi, Min-Hee Jo, Hee Jae Shin and Sun Joo Park
Molecules 2025, 30(5), 987; https://doi.org/10.3390/molecules30050987 - 20 Feb 2025
Cited by 2 | Viewed by 1001
Abstract
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and [...] Read more.
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and evaluated its potential as a VEGFR2 inhibitor. LA selectively inhibited the proliferation of human endothelial cells EA.hy926 and HUVEC while exhibiting minimal effects on normal fibroblasts and various tumor cells. LA induced S-phase cell cycle arrest and apoptosis in EA.hy926 cells, increasing apoptotic markers p53, Bax, and p21 and decreasing the anti-apoptotic protein Bcl-2, with these effects being further enhanced under VEGF stimulation. Additionally, LA suppressed VEGFR2 phosphorylation and its downstream signaling pathways, including Akt/mTOR/p70S6K, MEK/ERK, Src, FAK, and p38 MAPK, which are crucial for endothelial survival and angiogenesis. Molecular docking studies revealed that LA binds to both inactive (DFG-out, PDB: 4ASD) and active (DFG-in, PDB: 3B8R) VEGFR2 conformations, with a significantly stronger affinity for the active state (−107.96 kcal/mol) than the inactive state (−33.56 kcal/mol), suggesting its potential as a VEGFR2 kinase inhibitor. Functionally, LA significantly inhibited VEGF-induced endothelial migration, tube formation, and microvessel sprouting in both in vitro and ex vivo rat aortic ring assays. Additionally, LA reduced tumor-associated tube formation induced by human breast tumor cells (MDA-MB-231), indicating its potential to suppress VEGF-dependent tumor angiogenesis. These findings suggest that LA is a promising selective anti-angiogenic agent with potential therapeutic applications in angiogenesis-related diseases such as cancer. Full article
(This article belongs to the Special Issue Bioactive Compounds: Applications and Benefits for Human Health)
Show Figures

Graphical abstract

12 pages, 880 KiB  
Article
Antimicrobial Lobophorins from Endophytic Strain Streptomyces sp. R6 Obtained from Azadirachta indica
by Xinyuan Chen, Ying Du, Yunlong Ma, Peibin Liu and Yan Chen
Molecules 2025, 30(3), 586; https://doi.org/10.3390/molecules30030586 - 27 Jan 2025
Viewed by 996
Abstract
Endophytic bacteria are an important source for developing antimicrobial substances. With the aim to find eco-friendly antimicrobial agents from natural sources, Streptomyces sp. R6 was isolated from Azadirachta indica. After that, a new spirotetronate natural product, lobophorin S (compound 2), together [...] Read more.
Endophytic bacteria are an important source for developing antimicrobial substances. With the aim to find eco-friendly antimicrobial agents from natural sources, Streptomyces sp. R6 was isolated from Azadirachta indica. After that, a new spirotetronate natural product, lobophorin S (compound 2), together with lobophorin H8 (compound 1) and a known macrolide compound divergolide C (compound 3) were isolated from the cultural solution of strain R6. These compounds mark the first isolation of marine-derived microbial natural products known as lobophorins (LOBs) from endophytic bacteria. The structures of these three compounds were identified by extensive NMR and HRMS analyses. The antimicrobial activities of these three compounds against eight fungal and four bacterial phytopathogens were separately evaluated. Compound 1 demonstrated better antibacterial activity against Erwinia carotovora, Pseudomonas syringae pv. tomato, and P. syringae pv. lachrymans with MIC values of 3.91, 7.81, and 15.63 μg/mL, respectively. Additionally, compounds 13 all showed antifungal activity against Botrytis cinerea, with the MIC values of 1.95, 7.81, and 15.63 μg/mL, respectively. Notably, the in vivo antifungal effect of 1 against B. cinerea was up to 78.51 ± 3.80% at 1.95 µg/mL, significantly surpassing polyoxin B (70.70 ± 3.81%). These results highlight the potential of lobophorins as promising lead compounds for the development of new, sustainable agents to control plant diseases. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

14 pages, 5122 KiB  
Article
A Lucknolide Derivative Induces Mitochondrial ROS-Mediated G2/M Arrest and Apoptotic Cell Death in B16F10 Mouse Melanoma Cells
by Jae Hyeop Lee, Byeoung-Kyu Choi, Minsoo Kim, Hee Jae Shin and Sun Joo Park
Mar. Drugs 2024, 22(12), 533; https://doi.org/10.3390/md22120533 - 28 Nov 2024
Cited by 2 | Viewed by 1600
Abstract
Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide [...] Read more.
Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived Streptomyces sp., was chemically modified by introducing a 10-undecenoyl group to synthesize LA-UC. LA-UC preferentially inhibited the proliferation of melanoma cells, including B16F10, while exerting minimal effects on normal melanocytes or other tumor cell types, indicating the selective action of LA-UC against melanoma cells. LA-UC decreased G2/M checkpoint proteins, including cyclin B1 and Cdc2, while activating caspase-3 and caspase-9, resulting in G2/M cell cycle arrest and inducing apoptotic cell death in B16F10 cells. The addition of a pan-caspase inhibitor confirmed the caspase-dependent mechanism of LA-UC-induced cell death. Additionally, LA-UC elevated mitochondrial ROS levels, leading to mitochondrial membrane disruption, upregulation of pro-apoptotic proteins, and DNA damage in melanoma cells. The ROS scavenger N-acetylcysteine reduced LA-UC-induced mitochondrial ROS accumulation, mitochondrial membrane disruption, DNA damage, and apoptosis. Collectively, these findings suggest that LA-UC induces G2/M cell cycle arrest and caspase-dependent apoptosis in B16F10 cells through excessive mitochondrial ROS generation, membrane impairment, and DNA damage, highlighting its potential as a promising therapeutic candidate for melanoma treatment. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Figure 1

17 pages, 5628 KiB  
Article
Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A
by Jie Liu, Qiuyu Wei, Xin Liu, Jiang Chen, Yujie Zhan, Qinglian Li, Qian Wang, Bingyu Liang, Junjun Jiang, Fengxiang Qin, Zongxiang Yuan, Qiuzhen Qin, Xuehua Li, Yangping Li, Hao Liang, Li Ye and Bo Zhou
Curr. Issues Mol. Biol. 2024, 46(12), 13482-13498; https://doi.org/10.3390/cimb46120805 - 25 Nov 2024
Viewed by 1277
Abstract
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 [...] Read more.
The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers—K-41B and K-41Bm—were found to have potent anti-HIV-1IIIB activity in vitro. This study aimed to clarify whether K-41B and K-41Bm have inhibitory effects on different HIV-1 strains or whether these two derivatives have mechanisms of action different from that of their precursor, K-41A. An anti-HIV-1 assay indicated that K-41B and K-41Bm have potent anti-HIV-1BaL activity, with low 50% inhibitory concentrations (IC50s) (0.076 and 0.208 μM, respectively) and high selective indexes (SIs) (58.829 and 31.938, respectively) in the peripheral blood mononuclear cell (PBMC)-HIV-1BaL system. The time-of-addition (TOA) assay indicated that K-41B and K-41Bm may exert antiviral effects by activating multiple stages of HIV-1 replication. A cell protection assay indicated that the pretreatment of cells with K-41B or K-41Bm has almost no inhibitory effect on HIV-1 infection. A virus inactivation assay indicated that pretreatment of the virus with K-41B or K-41Bm inhibits HIV-1 infection by 60%. A cell–cell fusion assay showed that K-41B and K-41Bm blocked the cell fusion mediated by viral envelope proteins. The HIV-1 key enzyme experiment also indicated that both compounds have certain inhibitory effects on HIV-1 IN. Furthermore, molecular docking showed that K-41B and K-41Bm interact with several viral and host proteins, including HIV-1 IN, an envelope protein (gp120), a transmembrane protein (gp41), and cell surface receptors (CD4, CCR5, and CXCR4). Overall, in addition to having a similar anti-HIV-1 mechanism of inhibiting HIV-1 IN like the precursor polyether K-41A, the disaccharide-bearing polyether derivatives K-41B and K-41Bm may also inhibit viral entry. This suggests that they display anti-HIV-1 mechanisms that are different from those of their precursor polyethers. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

10 pages, 1665 KiB  
Article
Three New Depsipeptides, Homiamides A–C, Isolated from Streptomyces sp., ROA-065
by Jeong-Hyeon Kim, Ji Young Lee, Juri Lee, Prima F. Hillman, Jihye Lee, Byeongchan Choi, Man-Jeong Paik, Songyi Lee and Sang-Jip Nam
Molecules 2024, 29(23), 5539; https://doi.org/10.3390/molecules29235539 - 23 Nov 2024
Viewed by 1084
Abstract
Three new depsipeptides, homiamides A–C (13), were isolated from a marine sediment-derived strain of Streptomyces sp., ROA-065. The planar structures of homiamides A–C (13) were elucidated using mass spectrometry (MS) and nuclear magnetic resonance (NMR) [...] Read more.
Three new depsipeptides, homiamides A–C (13), were isolated from a marine sediment-derived strain of Streptomyces sp., ROA-065. The planar structures of homiamides A–C (13) were elucidated using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations of 13 were deduced from the application of the Marfey’s method and GC-MS analysis after formation of the O-trifluoroacetylated (S)-(+)-methyl-2-butyl ester derivatives of amino acids. Compounds 13 exhibited weak anti-bacterial activities against both Gram-positive bacteria and Gram-negative bacteria, with compound 1 showing MIC values of 32–64 μg/mL. In antifouling assays, compounds 1 and 2 displayed moderate activity against Micrococcus luteus KCTC 3063, while compound 3 exhibited weak activity against all tested bacteria. Full article
(This article belongs to the Special Issue Discovery of Microbial Natural Products)
Show Figures

Graphical abstract

11 pages, 1411 KiB  
Article
Genome-Based Mining of Carpatamides I–M and Their Candidate Biosynthetic Gene Cluster
by Shu-Mei Shen, Yun-Chang Xie, Li-Rong Tu, Miao-Er Wu, Yan-Min Wang, Chun-Hui Song, Yu-Hui Sun and Ming-He Luo
Mar. Drugs 2024, 22(11), 521; https://doi.org/10.3390/md22110521 - 20 Nov 2024
Cited by 1 | Viewed by 1321
Abstract
Chemically investigating the marine-derived Streptomyces parvus 1268 led to the isolation of a new compound of carpatamide I (1). Subsequent genomic analysis identified its candidate biosynthetic gene cluster ctd of approximately 44 kb. In order to obtain more carpatamide derivatives, we [...] Read more.
Chemically investigating the marine-derived Streptomyces parvus 1268 led to the isolation of a new compound of carpatamide I (1). Subsequent genomic analysis identified its candidate biosynthetic gene cluster ctd of approximately 44 kb. In order to obtain more carpatamide derivatives, we conducted the upregulation of Ctd14, which is a positive regulator, and obtained improvement of carpatamide I and four new compounds of carpatamides J–M (25). The structures of the aforementioned five new isolates were identified by a combination of ESI-HRMS as well as one-dimensional (1D) and two-dimensional (2D) spectral NMR datasets. Bioassay results showed that compounds 15 displayed anti-inflammatory activity and weak cytotoxicity against cell lines of A549, HT-29, and HepG2. Full article
(This article belongs to the Special Issue Marine Streptomyces-Derived Natural Products 2024)
Show Figures

Graphical abstract

17 pages, 5375 KiB  
Article
Streptomyces hygroscopicus and rapamycinicus Evaluated from a U.S. Marine Sanctuary: Biosynthetic Gene Clusters Encode Antibiotic and Chemotherapeutic Secondary Metabolites
by Hannah R. Flaherty, Semra A. Aytur and John P. Bucci
J. Mar. Sci. Eng. 2024, 12(11), 2076; https://doi.org/10.3390/jmse12112076 - 17 Nov 2024
Viewed by 1840
Abstract
Cancer remains a leading cause of death worldwide. Also threatening the public is the emergence of antibiotic resistance to existing medicines. Despite the challenge to produce viable natural products to market, there continues to be a need within public health to provide new [...] Read more.
Cancer remains a leading cause of death worldwide. Also threatening the public is the emergence of antibiotic resistance to existing medicines. Despite the challenge to produce viable natural products to market, there continues to be a need within public health to provide new chemotherapeutic drugs such as those exhibiting cytotoxicity and tumor cell growth-inhibitory properties. As marine genomic research advances, it is apparent that marine-derived sediment harbors uniquely potent bioactive compounds compared to their terrestrial counterparts. The Streptomyces genus in particular produces more than 30% of all secondary metabolites currently approved for human health, thus harboring unexplored reservoirs of chemotherapeutic and antibiotic agents to combat emerging disease. The present study identifies the presence of Streptomyces hygroscopicus and rapamycinicus in environmental sediment at locations within the U.S. Stellwagen Bank National Marine Sanctuary (SBNMS) from 2017 to 2022. Sequencing and bioinformatics methods catalogued biosynthetic gene clusters (BGCs) that drive cytotoxic and antibiotic biochemical processes in samples collected from sites permittable and protected to fishing activity. Poisson regression models confirmed that Sites 1 and 3 had significantly higher occurrences of rapamycinicus than other sites (p < 0.01). Poisson regression models confirmed that Sites 1, 2 and 3 had significantly higher occurrence for Streptomyces hygroscopicus across sites (p < 0.05). Interestingly, permitted fishing sites showed a greater prevalence of both species. Statistical analyses showed a significant difference in aligned hits with polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) by site and between species with hygroscopicus showing a greater quantity than rapamycinicus among Streptomyces spp. (p < 0.05; F = 4.7 > F crit). Full article
(This article belongs to the Special Issue Benthic Microbial Community in Marine and Coastal Environment)
Show Figures

Figure 1

15 pages, 691 KiB  
Article
Investigation of Potent Antifungal Metabolites from Marine Streptomyces bacillaris STR2 (MK045300) from Western Algeria
by Nesrine Boublenza, Nadir Boudjlal Dergal, Larbi Belyagoubi, Ameur Cherif and Abdelhanine Ayad
Bacteria 2024, 3(4), 390-404; https://doi.org/10.3390/bacteria3040027 - 8 Nov 2024
Viewed by 1726
Abstract
Fungal infections significantly threaten public health, and many strains are resistant to antifungal drugs. Marine Actinobacteria have been identified as the generators of powerful bioactive compounds with antifungal activity and can be used to address this issue. In this context, strains of Actinomycetes [...] Read more.
Fungal infections significantly threaten public health, and many strains are resistant to antifungal drugs. Marine Actinobacteria have been identified as the generators of powerful bioactive compounds with antifungal activity and can be used to address this issue. In this context, strains of Actinomycetes were isolated from the marine area of Rachgoun Island, located in western Algeria. The isolates were phenotypically and genetically characterized. The most potent antifungal isolate was selected, and its crude extract was purified and characterized by the GC/MS method. The results revealed that the STR2 strain showed the strongest activity against at least one target fungal species tested on a panel of fungal pathogens, including Candida albicans, Aspergillus fumigatus, Aspergillus niger, and Fusarium oxysporum. The molecular assignment of the STR2 strain based on the 16S rRNA gene positioned this isolate as a Streptomyces bacillaris species. The presence of safranal (2,3-dihydro-2,2,6-trimethylbenzaldehyde) in the crude chloroform extract of Streptomyces bacillaris STR2 strain was discovered for the first time in bacteria using chromatographic analysis of its TLC fractions. Moreover, certain molecules of biotechnological interest, such as phenols, 1,3-dioxolane, and phthalate derivatives, were also identified. This study highlights the potential of marine actinomycetes to produce structurally unique natural compounds with antifungal activity. Full article
Show Figures

Figure 1

13 pages, 2599 KiB  
Article
Heterologous Expression of Type II PKS Gene Cluster Leads to Diversified Angucyclines in Streptomyces albus J1074
by Xiaoting Zhang, Falei Zhang, Chen Li, Jiayi Li, Xiao Xu, Tianjiao Zhu, Qian Che, Deihai Li and Guojian Zhang
Mar. Drugs 2024, 22(11), 480; https://doi.org/10.3390/md22110480 - 22 Oct 2024
Cited by 2 | Viewed by 2183
Abstract
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host [...] Read more.
Heterologous expression has emerged as an effective strategy in activating Streptomyces cryptic gene clusters or improving yield. Eight compounds were successfully obtained by heterologous expression of the type II PKS gene cluster spi derived from marine Streptomyces sp. HDN155000 in the chassis host Streptomyces albus J1074. The structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as theoretical NMR calculations and electronic circular dichroism (ECD) calculations. Interestingly, compound WS009 Z (2) contains a rare thiomethyl group, angumycinone T (4) has a novel oxo-bridge formed between C12a and C4, and angumycinone X (3) showed cytotoxicity toward K562 and NCI-H446/EP cell lines. Full article
Show Figures

Figure 1

18 pages, 4586 KiB  
Article
Marine Staurosporine Analogues: Activity and Target Identification in Triple-Negative Breast Cancer
by Ru-Yi Chen, Li-Jian Ding, Yan-Jun Liu, Jin-Jin Shi, Jing Yu, Chang-Yun Li, Jian-Fei Lu, Guan-Jun Yang and Jiong Chen
Mar. Drugs 2024, 22(10), 459; https://doi.org/10.3390/md22100459 - 5 Oct 2024
Cited by 3 | Viewed by 2565
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This [...] Read more.
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with high mortality and drug resistance and no targeted drug available at present. Compound 4, a staurosporine alkaloid derived from Streptomyces sp. NBU3142 in a marine sponge, exhibits potent anti-TNBC activity. This research investigated its impact on MDA-MB-231 cells and their drug-resistant variants. The findings highlighted that compound 4 inhibits breast cancer cell migration, induces apoptosis, arrests the cell cycle, and promotes cellular senescence in both regular and paclitaxel-resistant MDA-MB-231 cells. Additionally, this study identified mitogen-activated protein kinase kinase kinase 11 (MAP3K11) as a target of compound 4, implicating its role in breast tumorigenesis by affecting cell proliferation, migration, and cell cycle progression. Full article
(This article belongs to the Special Issue Discovery of Marine-Derived Anticancer Agents)
Show Figures

Figure 1

Back to TopTop