Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,060)

Search Parameters:
Keywords = marine observation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4437 KiB  
Review
Development and Core Technologies of Long-Range Underwater Gliders: A Review
by Xu Wang, Changyu Wang, Ke Zhang, Kai Ren and Jiancheng Yu
J. Mar. Sci. Eng. 2025, 13(8), 1509; https://doi.org/10.3390/jmse13081509 - 5 Aug 2025
Abstract
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies [...] Read more.
Long-range underwater gliders (LRUGs) have emerged as essential platforms for sustained and autonomous observation in deep and remote marine environments. This paper provides a comprehensive review of their developmental status, performance characteristics, and application progress. Emphasis is placed on two critical enabling technologies that fundamentally determine endurance: lightweight, pressure-resistant hull structures and high-efficiency buoyancy-driven propulsion systems. First, the role of carbon fiber composite pressure hulls in enhancing energy capacity and structural integrity is examined, with attention to material selection, fabrication methods, compressibility compatibility, and antifouling resistance. Second, the evolution of buoyancy control systems is analyzed, covering the transition to hybrid active–passive architectures, rapid-response actuators based on smart materials, thermohaline energy harvesting, and energy recovery mechanisms. Based on this analysis, the paper identifies four key technical challenges and proposes strategic research directions, including the development of ultralight, high-strength structural materials; integrated multi-mechanism antifouling technologies; energy-optimized coordinated buoyancy systems; and thermally adaptive glider platforms. Achieving a system architecture with ultra-long endurance, enhanced energy efficiency, and robust environmental adaptability is anticipated to be a foundational enabler for future long-duration missions and globally distributed underwater glider networks. Full article
(This article belongs to the Section Ocean Engineering)
26 pages, 9053 KiB  
Article
Numerical Study of the Use of a Flapping Foil in Energy Harvesting with Suction- and Blower-Based Control
by Yalei Bai, Huimin Yao and Min Zheng
Aerospace 2025, 12(8), 698; https://doi.org/10.3390/aerospace12080698 - 5 Aug 2025
Abstract
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to [...] Read more.
The method of extracting energy from a fluid environment using flapping foils offers advantages such as structural simplicity and environmental friendliness. However, its low energy harvesting efficiency remains a significant factor limiting its development. This study employs suction and blower-based control (SBC) to enhance the energy harvesting efficiency of flapping foils. Using an orthogonal experimental design and numerical methods, 49 representative combinations of SBC geometries were selected for numerical simulation. The effects and priority rankings of geometric parameters on foil performance were statistically analyzed. It was found that under the optimal geometry (the suction slot position is 0.54c, the injection slot position is 0.79c, the width of the slot is 0.015c, the angle of the suction slot is −3°, and the angle of the injection slot is −9°), the energy harvesting efficiency can reach 40.7%. Furthermore, under laminar flow conditions, the benefit of SBC increases with higher Reynolds numbers (Re). At Re = 2200, SBC maximized the improvement in energy harvesting efficiency by 76%. No significant correlation was observed between the flapping amplitude and the SBC effect. However, the reduced frequency significantly influences the efficiency improvement generated by SBC. The SBC method shifts the foil’s optimal operating region towards lower reduced frequencies, which benefits energy harvesting efficiency. The research presented herein may have potential applications in the development of marine energy systems and bio-inspired propulsion. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

20 pages, 6543 KiB  
Article
Study of Antarctic Sea Ice Based on Shipborne Camera Images and Deep Learning Method
by Xiaodong Chen, Shaoping Guo, Qiguang Chen, Xiaodong Chen and Shunying Ji
Remote Sens. 2025, 17(15), 2685; https://doi.org/10.3390/rs17152685 - 3 Aug 2025
Viewed by 64
Abstract
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab [...] Read more.
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab and U-Net, were employed to automatically obtain sea ice concentration (SIC) and sea ice thickness (SIT), providing high-frequency data at 5-min intervals. During the observation period, ice navigation accounted for 32 days, constituting less than 20% of the total 163 voyage days. Notably, 63% of the navigation was in ice fields with less than 10% concentration, while only 18.9% occurred in packed ice (concentration > 90%) or level ice regions. SIT ranges from 100 cm to 234 cm and follows a normal distribution. The results demonstrate that, to achieve enhanced navigation efficiency and fulfill expedition objectives, the research vessel substantially reduced duration in high-concentration ice areas. Additionally, the results of SIC extracted from shipborne camera images were compared with the data from the Copernicus Marine Environment Monitoring Service (CMEMS) satellite remote sensing. In summary, the sea ice parameter data obtained from shipborne camera images offer high spatial and temporal resolution, making them more suitable for engineering applications in establishing sea ice environmental parameters. Full article
Show Figures

Figure 1

5 pages, 6475 KiB  
Interesting Images
Retractile Polyps of Soft Coral Gersemia rubiformis (Octocorallia: Alcyoniidae) Offer Protection to Developing Basket Stars (Gorgonocephalus sp.)
by Kathryn Murray, Bárbara de Moura Neves, Emmeline Broad and Vonda E. Hayes
Diversity 2025, 17(8), 543; https://doi.org/10.3390/d17080543 - 1 Aug 2025
Viewed by 114
Abstract
Cold-water soft corals are a known habitat for juvenile basket stars (Gorgonocephalus sp.), but the role of this relationship in the earliest life stages of basket stars warrants further investigation. Here, basket stars and colonies of the soft coral Gersemia rubiformis were [...] Read more.
Cold-water soft corals are a known habitat for juvenile basket stars (Gorgonocephalus sp.), but the role of this relationship in the earliest life stages of basket stars warrants further investigation. Here, basket stars and colonies of the soft coral Gersemia rubiformis were collected together from the Funk Island Deep Marine Refuge (NW Atlantic) and maintained in a laboratory setting for observation. During this time, two developing (<1 mm disc diameter) basket stars were discovered on coral colonies and could be seen retracting with the coral polyp into the colony. The basket stars were recorded unharmed once the polyps were expanded again and continued to retract within the colony over the period of observation. The results of this study show that developing basket stars can spend time inside the coral colony, which could be a form of protection. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

16 pages, 1947 KiB  
Article
Benthic Macrofauna in the Loukkos Estuary, Morocco: Patterns and Environmental Drivers
by Feirouz Touhami
Ecologies 2025, 6(3), 53; https://doi.org/10.3390/ecologies6030053 - 1 Aug 2025
Viewed by 167
Abstract
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), [...] Read more.
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), polychaetes (23%), and crustaceans (21%). Species richness varied considerably along the estuarine gradient, ranging from fewer than five species in the upstream sector to up to 30 species downstream. Overall, higher diversity was observed in the downstream areas and during the dry season. Macrofaunal density also exhibited substantial variability, ranging from 95 ind.m−2 to 14,852 ind.m−2, with a mean density of 2535 ± 4058 ind.m−2. Multivariate analyses identified four distinct benthic assemblages structured primarily by spatial factors (ANOSIM R = 0.86, p = 0.002), with negligible seasonal effect (R = −0.03, p = 0.6). Assemblages ranged from marine-influenced communities at the estuary mouth dominated by Cerastoderma edule, through rich and diverse seagrass-associated communities in the lower estuary dominated by Bittium reticulatum, and moderately enriched mid-estuary communities characterized by Scrobicularia plana and Hediste diversicolor, to species-poor upstream communities dominated by the tolerant species H. diversicolor. Canonical analysis showed that salinity and vegetation explain nearly 40% of the variation in benthic assemblages, highlighting the key role of Zostera seagrass beds as structuring habitats. Moreover, upstream anthropogenic pressures alter environmental conditions, reducing benthic diversity and favoring tolerant species. Full article
Show Figures

Figure 1

14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Viewed by 110
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

18 pages, 1643 KiB  
Article
Precise Tracking Control of Unmanned Surface Vehicles for Maritime Sports Course Teaching Assistance
by Wanting Tan, Lei Liu and Jiabao Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1482; https://doi.org/10.3390/jmse13081482 - 31 Jul 2025
Viewed by 149
Abstract
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents [...] Read more.
With the rapid advancement of maritime sports, the integration of auxiliary unmanned surface vehicles (USVs) has emerged as a promising solution to enhance the efficiency and safety of maritime education, particularly in tasks such as buoy deployment and escort operations. This paper presents a novel high-precision trajectory tracking control algorithm designed to ensure stable navigation of the USVs along predefined competition boundaries, thereby facilitating the reliable execution of buoy placement and escort missions. First, the paper proposes an improved adaptive fractional-order nonsingular fast terminal sliding mode control (AFONFTSMC) algorithm to achieve precise trajectory tracking of the reference path. To address the challenges posed by unknown environmental disturbances and unmodeled dynamics in marine environments, a nonlinear lumped disturbance observer (NLDO) with exponential convergence properties is proposed, ensuring robust and continuous navigation performance. Additionally, an artificial potential field (APF) method is integrated to dynamically mitigate collision risks from both static and dynamic obstacles during trajectory tracking. The efficacy and practical applicability of the proposed control framework are rigorously validated through comprehensive numerical simulations. Experimental results demonstrate that the developed algorithm achieves superior trajectory tracking accuracy under complex sea conditions, thereby offering a reliable and efficient solution for maritime sports education and related applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 4232 KiB  
Article
Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy
by Nobumitsu Hirai, Yuhei Miwa, Shunta Hattori, Hideyuki Kanematsu, Akiko Ogawa and Futoshi Iwata
Microorganisms 2025, 13(8), 1779; https://doi.org/10.3390/microorganisms13081779 - 30 Jul 2025
Viewed by 217
Abstract
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected [...] Read more.
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected to provide insight into this. In this study, we report on the successful in situ nanoscale observations of a marine bacterial biofilm on glass in phosphate buffer solution (PBS) using both scanning ion conductance microscopy (SICM) and confocal laser scanning microscopy (CLSM) over the same area. By observing the same area by SICM and CLSM, we were able to clarify the three-dimensional morphology of the biofilm, the arrangement of bacteria within the biofilm, and the difference in local ion conductivity within the biofilm simultaneously, which could not be achieved by observation using a microscope alone. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

8 pages, 7294 KiB  
Interesting Images
A Rocky Intertidal Desert at the Head of a Large Macrotidal Estuary in Quebec, Canada
by Ricardo A. Scrosati
Diversity 2025, 17(8), 535; https://doi.org/10.3390/d17080535 - 30 Jul 2025
Viewed by 239
Abstract
This article documents the widespread absence of sessile species in bedrock intertidal habitats at the head of the St. Lawrence Estuary, a large macrotidal estuary located in eastern Canada. Extensive observations revealed that no seaweeds or sessile invertebrates occurred anywhere (including cracks and [...] Read more.
This article documents the widespread absence of sessile species in bedrock intertidal habitats at the head of the St. Lawrence Estuary, a large macrotidal estuary located in eastern Canada. Extensive observations revealed that no seaweeds or sessile invertebrates occurred anywhere (including cracks and crevices) on substrate areas that become exposed to the air during low tides. Only one sessile species, a green filamentous alga, was found submerged in tidepools. The lack of truly marine sessile species is likely explained by the very low water salinity of this coast, while the absence of sessile freshwater species on intertidal substrates outside of tidepools likely responds to a combination of oligohaline conditions during high tides and daily exposures to the air during low tides, which freshwater species are typically not adapted to. Influences of winter ice scour and coastal suspended sediments are likely secondary. Experimental research could unravel the interactive effects of these abiotic stressors. Overall, this “intertidal desert” could be a useful model system to further explore the boundaries of life on our planet. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 158
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4697 KiB  
Article
Audouin’s Gull Colony Itinerancy: Breeding Districts as Units for Monitoring and Conservation
by Massimo Sacchi, Barbara Amadesi, Adriano De Faveri, Gilles Faggio, Camilla Gotti, Arnaud Ledru, Sergio Nissardi, Bernard Recorbet, Marco Zenatello and Nicola Baccetti
Diversity 2025, 17(8), 526; https://doi.org/10.3390/d17080526 - 28 Jul 2025
Viewed by 366
Abstract
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we [...] Read more.
We investigated the spatial structure and colony itinerancy of Audouin’s gull (Ichthyaetus audouinii) adult breeders across multiple breeding sites in the central Mediterranean Sea during 25 years of fieldwork. Using cluster analysis of marked individuals from different years and sites, we identified five spatial breeding units of increasing hierarchical scale—Breeding Sites, Colonies, Districts, Regions and Marine Sectors—which reflect biologically meaningful boundaries beyond simple geographic proximity. To determine the most appropriate scale for monitoring local populations, we applied multievent capture–recapture models and examined variation in survival and site fidelity across these units. Audouin’s gulls frequently change their location at the Breeding Site and Colony levels from one year to another, without apparent survival costs. In contrast, dispersal beyond Districts boundaries was found to be rare and associated with reduced survival rates, indicating that breeding Districts represent the most relevant biological unit for identifying local populations. The survival disadvantage observed in individuals leaving their District likely reflects increased extrinsic mortality in unfamiliar environments and the selective dispersal of lower-quality individuals. Within breeding Districts, birds may benefit from local knowledge and social information, supporting demographic stability and higher fitness. Our findings highlight the value of adopting a District-based framework for long-term monitoring and conservation of this endangered species. At this scale, demographic trends such as population growth or decline emerge more clearly than when assessed at the level of singular colonies. This approach can enhance our understanding of population dynamics in other mobile species and support more effective conservation strategies aligned with natural population structure. Full article
(This article belongs to the Special Issue Ecology, Diversity and Conservation of Seabirds—2nd Edition)
Show Figures

Graphical abstract

22 pages, 1882 KiB  
Article
Assessing Pharmaceuticals in Bivalves and Microbial Sewage Contamination in Hout Bay, Cape Town: Identifying Impact Zones in Coastal and Riverine Environments
by Cecilia Y. Ojemaye, Amy Beukes, Justin Moser, Faith Gara, Jo Barnes, Lesley Petrik and Lesley Green
Environments 2025, 12(8), 257; https://doi.org/10.3390/environments12080257 - 28 Jul 2025
Viewed by 951
Abstract
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms [...] Read more.
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms such as mussels, as well as microbial indicators of faecal contamination in river water and seawater, for estimating the extent of impact zones in the coastal environment of Hout Bay. This research investigated the persistent pharmaceuticals found in marine outfall wastewater effluent samples in Hout Bay, examining whether these substances were also detectable in marine biota, specifically focusing on Mytilus galloprovincialis mussels. The findings reveal significant levels of sewage-related pollutants in the sampled environments, with concentrations ranging from 32.74 to 43.02 ng/g dry weight (dw) for acetaminophen, up to 384.96 ng/g for bezafibrate, and as high as 338.56 ng/g for triclosan. These results highlight persistent PPCP contamination in marine organisms, with increasing concentrations observed over time, suggesting a rise in population and pharmaceutical use. Additionally, microbial analysis revealed high levels of E. coli in the Hout Bay River, particularly near stormwater from the Imizamo Yethu settlement, with counts exceeding 8.3 million cfu/100 mL. These findings underscore the significant impact of untreated sewage on the environment. This study concludes that current sewage treatment is insufficient to mitigate pollution, urging the implementation of more effective wastewater management practices and long-term monitoring of pharmaceutical levels in marine biota to protect both the environment and public health. Full article
Show Figures

Figure 1

17 pages, 2420 KiB  
Article
Hybrid Obstacle Avoidance Algorithm Based on IAPF and MPC for Underactuated Multi-USV Formation
by Hui Sun, Qing Xue, Mingyang Pan, Zongying Liu and Hangqi Li
J. Mar. Sci. Eng. 2025, 13(8), 1436; https://doi.org/10.3390/jmse13081436 - 27 Jul 2025
Viewed by 270
Abstract
In this paper, we propose a hybrid algorithm that integrates an improved artificial potential field method (IAPF), model predictive control (MPC), and an extended state observer (ESO) to address the obstacle avoidance problem in multi-unmanned surface vehicle (Multi-USV) formations, including both dynamic and [...] Read more.
In this paper, we propose a hybrid algorithm that integrates an improved artificial potential field method (IAPF), model predictive control (MPC), and an extended state observer (ESO) to address the obstacle avoidance problem in multi-unmanned surface vehicle (Multi-USV) formations, including both dynamic and static obstacles, as well as navigation through narrow waterways. Initially, the virtual structure method was applied for formation control. Next, the traditional potential field method was enhanced by employing a saturated attractive potential field and a partitioned repulsive potential field, which improve formation stability and obstacle avoidance accuracy in complex environments. The extended state observer was then employed to estimate and compensate for unknown system dynamics and external disturbances from the marine environment in real time, improving system robustness. On this basis, by leveraging the multi-step predictive optimization capabilities of model predictive control, the proposed algorithm dynamically adjusts control inputs based on the desired trajectories generated from potential field forces, which ensures the stability of formation control and effective obstacle avoidance. The simulation results demonstrate that the proposed algorithm effectively avoids both dynamic and static obstacles in multi-unmanned surface vehicle formations and enables successful navigation through narrow waterways by altering the formation. Full article
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 187
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

Back to TopTop